JP2006089692A - Green light-emitting fluorophor and mercury fluorescent lamp using the same - Google Patents

Green light-emitting fluorophor and mercury fluorescent lamp using the same Download PDF

Info

Publication number
JP2006089692A
JP2006089692A JP2004279887A JP2004279887A JP2006089692A JP 2006089692 A JP2006089692 A JP 2006089692A JP 2004279887 A JP2004279887 A JP 2004279887A JP 2004279887 A JP2004279887 A JP 2004279887A JP 2006089692 A JP2006089692 A JP 2006089692A
Authority
JP
Japan
Prior art keywords
phosphor
green
emission
green light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004279887A
Other languages
Japanese (ja)
Inventor
Makoto Yoshimatsu
良 吉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hotalux Ltd
Original Assignee
NEC Lighting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Lighting Ltd filed Critical NEC Lighting Ltd
Priority to JP2004279887A priority Critical patent/JP2006089692A/en
Publication of JP2006089692A publication Critical patent/JP2006089692A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorophor settled the problem that green light-emitting fluorophor LaPO4:Ce, Tb excitable by 254 nm wave length mercury emission line is good in efficiency, has sharp emission spectrum, emits yellow-greenish light but is poor in color purity as a green light-emitting fluorophor. <P>SOLUTION: The green light-emitting fluorophor contains zinc (Zn), germanium (Ge) and oxygen (O), wherein zinc is coactivated with manganese (Mn) as the luminescent center, and is represented by formula (1). (Zn<SB>1-x</SB>, Mnx)<SB>2</SB>Ge<SB>y</SB>O<SB>z</SB>(1). (Wherein, x and y are 0<x<1.0 and 0.8≤y<2). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、緑色蛍光体及びそれを用いた蛍光ランプに関し、特に水銀輝線で励起する緑色蛍光体及びそれを用いた水銀蛍光ランプに関する。   The present invention relates to a green phosphor and a fluorescent lamp using the same, and more particularly to a green phosphor excited by a mercury emission line and a mercury fluorescent lamp using the green phosphor.

現在、平面型の表示装置(以下、フラットディスプレイと称す)の開発が盛んに行なわれている。フラットディスプレーとしては、液晶表示装置、プラズマ表示装置が主流ではあるが、更に電界放出型表示装置(FED:Field Emission Display)等の開発が行なわれている。   Currently, flat display devices (hereinafter referred to as flat displays) are being actively developed. As flat displays, liquid crystal display devices and plasma display devices are mainstream, but field emission display devices (FED: Field Emission Display) and the like are being developed.

液晶表示装置は、平面型の表示装置の中で唯一自発光型の表示装置ではなく、バックライトとして、水銀輝線(波長:185、254、365、405、436nm)を励起源とした冷陰極蛍光ランプが用いられている。バックライトに用いられる白色発光の冷陰極蛍光ランプは、通常、赤色発光、緑色発光および青色発光の蛍光体を混合させたものを、水銀の発光により励起させ赤色、緑色および青色の蛍光を発光させることで得ている。   The liquid crystal display device is not the only self-luminous display device among flat-type display devices, but as a backlight, cold cathode fluorescent light using mercury emission lines (wavelengths: 185, 254, 365, 405, 436 nm) as an excitation source. A lamp is used. White-light-emitting cold-cathode fluorescent lamps used in backlights usually emit red, green, and blue fluorescent light by exciting a mixture of red-light-emitting, green-light-emitting, and blue-light-emitting phosphors. I get it.

このうち、緑色発光蛍光体として使用されているLaPO4:Ce,Tbは安定で水銀の発光する波長254nmの紫外線を吸収し効率よく緑色発光するが、これまでの経緯からこれ以上の効率改善(輝度アップ)が難しい蛍光体である。また、発光中心であるTbイオンに起因した、波長543nmに発光ピークをもつシャープな発光形状から、黄緑色を示しているので液晶表示装置等に用いる白色光源としては、色純度の更なる改善が必要である。 Among them, LaPO 4 : Ce, Tb used as a green light emitting phosphor is stable and absorbs ultraviolet light with a wavelength of 254 nm emitted from mercury and emits green light efficiently. However, the efficiency has been improved further from the past ( It is a phosphor that is difficult to increase brightness. In addition, since it shows a yellowish green color from a sharp emission shape having an emission peak at a wavelength of 543 nm due to the Tb ion as the emission center, the white light source used for liquid crystal display devices and the like has a further improvement in color purity. is necessary.

このため、LaPO4:Ce,Tbの改善や、新しい緑色蛍光体の研究や開発が行われているが、未だ十分な性能を満たすような蛍光体の開発には至っていない。 For this reason, improvement of LaPO 4 : Ce, Tb and research and development of new green phosphors have been carried out, but phosphors that satisfy sufficient performance have not yet been developed.

一方、プラズマディスプレーは、キセノンなどの希ガスを封止した画素中でプラズマを発生させ蛍光体を発光させている。希ガスの発光波長は、水銀の輝線よりも短波長(波長147nm)の紫外線であるために、希ガスの発光波長である波長147nmで励起されて発光する蛍光体が必要となっている。このために、希ガスを封入した希ガス放電ランプやプラズマディスプレー等で用いられるZn2(Si1-xGex)O4:Mn(但し、0.01≦x≦0.5)からなる緑色蛍光体の開発が行なわれている(特許文献1参照)。 On the other hand, in the plasma display, plasma is generated in a pixel sealed with a rare gas such as xenon to cause the phosphor to emit light. Since the emission wavelength of the rare gas is ultraviolet light having a wavelength shorter than the emission line of mercury (wavelength 147 nm), a phosphor that emits light by being excited at the wavelength 147 nm that is the emission wavelength of the rare gas is required. Therefore, a green color composed of Zn 2 (Si 1-x Ge x ) O 4 : Mn (0.01 ≦ x ≦ 0.5) used in a rare gas discharge lamp or a plasma display in which a rare gas is sealed. A phosphor has been developed (see Patent Document 1).

特許文献2には、電界放出型表示装置用の緑色蛍光体として、ZnOにGeとMnを共付活した緑色発光蛍光体が開示されている。   Patent Document 2 discloses a green light emitting phosphor obtained by co-activating ZnO with Ge and Mn as a green phosphor for a field emission display device.

ZnOにGeとMnを共付活した緑色発光蛍光体は、ZnO/Ge/Mnの3成分系蛍光体に占めるGeの濃度が28〜36モル%であり、Mnの濃度が、0.5〜5モル%の範囲が、発光中心が530〜540nmの緑色発光蛍光体にとって好適でこの範囲をはずれると緑色発光を示さなくなるとされている。   In the green light emitting phosphor in which Ge and Mn are co-activated in ZnO, the Ge concentration in the ZnO / Ge / Mn ternary phosphor is 28 to 36 mol%, and the Mn concentration is 0.5 to A range of 5 mol% is suitable for a green light-emitting phosphor having an emission center of 530 to 540 nm, and when it is outside this range, it does not show green light emission.

しかしながら、水銀の輝線により、明るく、演色性良好で、また色純度の良く発光する緑色蛍光体は、液晶表示装置のバックライト用等に用いる白色蛍光ランプ用の緑色蛍光体として、あるいは、赤色蛍光ランプおよび青色蛍光ランプと併せてカラー表示するパネル用の緑色蛍光ランプ用の緑色蛍光体として等の用途があり、産業界からだけでなく一般消費者からも強く要求されている。
特開2003−176481号公報 特開2004−99692号公報
However, green phosphors that are bright, have good color rendering properties, and emit light with good color purity due to mercury emission lines are used as green phosphors for white fluorescent lamps used for backlights of liquid crystal display devices, etc. In addition to lamps and blue fluorescent lamps, they have uses such as green phosphors for green fluorescent lamps for panels for color display, and are strongly demanded not only by industry but also by general consumers.
JP 2003-176482 A JP 2004-99692 A

従来から使用されている水銀輝線である254nmの波長により励起される緑色発光蛍光体であるLaPO4:Ce,Tbは、効率が良いが、蛍光ランプのさらなる高効率化に向けて発光効率の改善が必要とされる。しかしながら、LaPO4:Ce,Tb蛍光体は熟成を重ねた実用蛍光体の一つであり効率改善は難しいのが現状である。また、LaPO4:Ce,Tb蛍光体はTb発光中心イオンに起因した非常に急峻な発光スペクトルをもち黄緑色がかった発光であり、緑色蛍光体としては色純度が悪いと言ったことも問題である。 Conventionally used LaPO 4 : Ce, Tb, which is a green light-emitting phosphor excited by a wavelength of 254 nm, which is a mercury emission line, is efficient, but the luminous efficiency is improved for further improvement of the efficiency of the fluorescent lamp. Is needed. However, the LaPO 4 : Ce, Tb phosphor is one of the practical phosphors that have been matured, and it is difficult to improve the efficiency. In addition, the LaPO 4 : Ce, Tb phosphor has a very steep emission spectrum due to the Tb emission center ion and has a yellowish greenish luminescence. is there.

本発明は、亜鉛(Zn)、ゲルマニウム(Ge)、酸素(O)を含み発光中心としてマンガン(Mn)が亜鉛に付活された、式(1)で示されることを特徴とする緑色発光蛍光体である。   The present invention relates to a green light-emitting fluorescent material represented by the formula (1), wherein zinc (Zn), germanium (Ge), and oxygen (O) are contained, and manganese (Mn) is activated by zinc as an emission center. Is the body.

(Zn1-x,Mnx2Geyz ・・・(1)
(ここでxおよびyは、0<x<1、0.8≦y<2で表される)
更に、本発明の緑色蛍光体を、赤色発光蛍光体および青色発光蛍光体と合わせて水銀蛍光ランプに用いることで、色純度が良く、且つ発光効率の高い白色水銀蛍光ランプを得ることができる。また、本発明の緑色蛍光体を含む緑色水銀ランプ、赤色蛍光体を含む赤色水銀ランプおよび、緑色蛍光体を含む緑色水銀ランプと合わせてカラーパネルを構成することもできる。
(Zn 1-x , Mn x ) 2 Ge y O z (1)
(Where x and y are represented by 0 <x <1, 0.8 ≦ y <2)
Furthermore, by using the green phosphor of the present invention together with the red light emitting phosphor and the blue light emitting phosphor in a mercury fluorescent lamp, a white mercury fluorescent lamp with good color purity and high luminous efficiency can be obtained. In addition, a color panel can be configured in combination with the green mercury lamp including the green phosphor, the red mercury lamp including the red phosphor, and the green mercury lamp including the green phosphor of the present invention.

本発明の緑色蛍光体は、従来から水銀線を用いた蛍光ランプに使用される緑色発光蛍光体であるLaPO4:Ce,Tbよりもブロードな発光を持ち、色純度がよく、また水銀線である波長254nmの紫外線によって高効率で発光する。そのため、水銀蛍光ランプに本発明蛍光体を使用することで演色性が改善され、さらに高輝度で高効率な蛍光ランプを提供することができる。 The green phosphor of the present invention has a broader emission than LaPO 4 : Ce, Tb, which is a green light-emitting phosphor conventionally used in fluorescent lamps using mercury rays, has a good color purity, and is a mercury ray. Light is emitted with high efficiency by ultraviolet light having a wavelength of 254 nm. Therefore, the color rendering property is improved by using the phosphor of the present invention in a mercury fluorescent lamp, and a fluorescent lamp with higher brightness and higher efficiency can be provided.

発明者は、ガラス管内部に水銀を封入した波長254nmの光を励起光源とする水銀蛍光ランプで、水銀線の波長を効率よく吸収でき、LaPO4:Ce,Tbよりも色純度が良く、高輝度な緑色発光蛍光体を得るために種々検討した結果、ゲルマン酸塩を母体材料として、発光中心としてMnイオンを付活剤とした、Zn、Ge、O、Mnの元素の組み合わせからなる、式(1)であらわされる緑色発光蛍光体を見出した。 The inventor is a mercury fluorescent lamp that uses light with a wavelength of 254 nm enclosed in a glass tube as an excitation light source, and can efficiently absorb the wavelength of the mercury line, has better color purity than LaPO 4 : Ce, Tb, As a result of various studies to obtain a bright green light-emitting phosphor, a formula comprising a combination of Zn, Ge, O, and Mn elements using germanate as a base material and Mn ions as an emission center as an activator. The green light-emitting phosphor represented by (1) was found.

(Zn1-x,Mnx2Gey4 ・・・(1)
(ここでxおよびyは、0<x<1、0.8≦y<2で表される)
式(1)で示される緑色発光蛍光体は、波長254nmの水銀線によって効率よく励起され、従来蛍光ランプに使用されている緑色蛍光体LaPO4:Ce,Tbよりも発光がブロードな形状を示し、緑色の色純度が良く、また輝度の高い発光を有している。
(Zn 1-x , Mn x ) 2 Ge y O 4 (1)
(Where x and y are represented by 0 <x <1, 0.8 ≦ y <2)
The green light emitting phosphor represented by the formula (1) is excited efficiently by a mercury beam having a wavelength of 254 nm, and has a broader emission shape than the green phosphor LaPO 4 : Ce, Tb used in conventional fluorescent lamps. It has good green color purity and high luminance.

式(1)で表される緑色発光蛍光体は、Geの量(yに対応)を化学量論で決まる1以上(y<1.0)にすることで従来の緑色蛍光体であるLaPO4:Ce,Tbよりも輝度が大きくなるが、Geの組成比(y)が2になるとZnがGeと化合しZnGeO3を生成しやすくなり式(1)から構造がずれてしまいやすくなることが予想される。このためにyは2よりも小さい必要があり、y≦0.8であることが好ましい。 The green light emitting phosphor represented by the formula (1) is a conventional green phosphor LaPO 4 by setting the amount of Ge (corresponding to y) to 1 or more (y <1.0) determined by the stoichiometry. : Brightness is higher than Ce and Tb, but when the Ge composition ratio (y) is 2, Zn is likely to combine with Ge to generate ZnGeO 3, and the structure is likely to deviate from Equation (1). is expected. For this purpose, y needs to be smaller than 2, and preferably y ≦ 0.8.

式(1)で表される蛍光体は、LaPO4:Ce,Tbと異なり、yの値が大きくなることで反射率が変化する。yが化学量論で決まる1以下の場合蛍光体の紛体は着色しているがy≦1で白色となり、yが大きくなるにつれ反射率が大きくなる。 Unlike the LaPO 4 : Ce, Tb, the phosphor represented by the formula (1) changes its reflectivity as the value of y increases. When y is 1 or less determined by stoichiometry, the phosphor powder is colored, but when y ≦ 1, it becomes white, and the reflectance increases as y increases.

本実施例は、ガラス管内部に水銀を封入した波長254nmの光を励起光源とする水銀蛍光ランプで、水銀線の波長を効率よく吸収でき、LaPO4:Ce,Tbよりも色純度が良く、高輝度な緑色発光蛍光体を得るために種々検討した結果、ゲルマン酸塩を母体材料として、発光中心としてMnイオンを付活剤とした、Zn、Ge、O、Mnの元素の組み合わせからなる、式(1)であらわされる緑色発光蛍光体を見出した。 This example is a mercury fluorescent lamp using mercury light enclosed in a glass tube and having a wavelength of 254 nm as an excitation light source, which can efficiently absorb the wavelength of mercury rays, and has better color purity than LaPO 4 : Ce, Tb. As a result of various investigations to obtain a high-luminance green light-emitting phosphor, it consists of a combination of elements of Zn, Ge, O, and Mn using germanate as a base material and Mn ions as an emission center as an activator. A green light-emitting phosphor represented by the formula (1) was found.

(Zn1-x,Mnx2Gey4・・・(1)
(ここでxおよびyは、0<x<1,0.8≦y<2で表される)
次に、本発明の蛍光体の製造方法を説明する。
(Zn 1 -x , Mn x ) 2 Ge y O 4 (1)
(Where x and y are represented by 0 <x <1, 0.8 ≦ y <2)
Next, a method for producing the phosphor of the present invention will be described.

まず、蛍光体合成の原料としては、硫化亜鉛(ZnS)、炭酸亜鉛(ZnCO3)および酸化亜鉛(ZnO)などの亜鉛化合物、二酸化ゲルマニウム(GeO2)などのゲルマニウム化合物および四酸化三マンガン(Mn34)および炭酸マンガン(MnCO3)などのマンガン化合物を用いる。これら各原料を、組成式に従って秤量、採取し、湿式または乾式で十分混合する。 First, as raw materials for phosphor synthesis, zinc compounds such as zinc sulfide (ZnS), zinc carbonate (ZnCO 3 ) and zinc oxide (ZnO), germanium compounds such as germanium dioxide (GeO 2 ), and trimanganese tetroxide (Mn) Manganese compounds such as 3 O 4 ) and manganese carbonate (MnCO 3 ) are used. Each of these raw materials is weighed and collected according to the composition formula, and thoroughly mixed by wet or dry methods.

この混合物をアルミナ坩堝、白金坩堝、カーボン坩堝などの耐熱容器に充填し、大気雰囲気中または酸化雰囲気中で950〜1200℃で3〜10時間で焼成し、得られた焼成物を粉砕、篩い分けして、本発明の蛍光体を得ることができる。   This mixture is filled in a heat-resistant container such as an alumina crucible, platinum crucible, or carbon crucible and fired at 950 to 1200 ° C. for 3 to 10 hours in an air atmosphere or an oxidizing atmosphere, and the resulting fired product is crushed and sieved. Thus, the phosphor of the present invention can be obtained.

Zn、GeおよびMnを供給する材料としては、酸化物あるいは炭酸化物を用いることが好ましい。   As materials for supplying Zn, Ge, and Mn, oxides or carbonates are preferably used.

酸化亜鉛(ZnO)、二酸化ゲルマニウム(GeO2)および炭酸マンガン(MnCO3)を秤量し実施例1〜8の蛍光体を製造した。 Zinc oxide (ZnO), germanium dioxide (GeO 2 ) and manganese carbonate (MnCO 3 ) were weighed to produce phosphors of Examples 1-8.

尚、組成は、秤量した酸化亜鉛(ZnO)、二酸化ゲルマニウム(GeO2)および炭酸マンガン(MnCO3)の重量からZn、GeおよびMnの組成を求め、できあがった蛍光体の総重量からZn、GeおよびMnの重量を差し引いた値から酸素の組成を求めた。実施例1〜8の蛍光体は全て酸素の組成が4に近い値を示したので表中の酸素をO4と表している。 The composition was determined by determining the composition of Zn, Ge, and Mn from the weights of the weighed zinc oxide (ZnO), germanium dioxide (GeO 2 ), and manganese carbonate (MnCO 3 ). And the composition of oxygen was determined from the value obtained by subtracting the weight of Mn. Since all of the phosphors of Examples 1 to 8 had a composition of oxygen close to 4, oxygen in the table was represented as O 4 .

実施例1〜4は、検討1として、xを固定してyを変化させた。検討2は、検討1で最も大きい輝度を示したGeの組成(y=1.2)にyを固定してxを変化させ輝度および反射率を測定した結果である。実施例1〜8の測定結果を表1に示す。   In Examples 1 to 4, as Study 1, x was fixed and y was changed. Study 2 is the result of measuring the brightness and reflectivity by changing x while fixing y in the composition (y = 1.2) of Ge that showed the greatest brightness in Study 1. Table 1 shows the measurement results of Examples 1 to 8.

Figure 2006089692
Figure 2006089692

尚、表1中の反射率は、測定の際に安定した反射率を示す標準サンプルの反射率を基準とした値である。   In addition, the reflectance in Table 1 is a value based on the reflectance of a standard sample showing a stable reflectance at the time of measurement.

表1に示すように、CIE色度座標は、従来例が(0.336,0.588)であるのに対して、実施例1〜8の全てにおいて、(0.29±0.06,0.6765±0.0035)となり、図6のCIE色座標からわかるように緑色の色純度が良いことがわかる。   As shown in Table 1, the CIE chromaticity coordinates are (0.336, 0.588) in the conventional example, whereas (0.29 ± 0.06) in all of Examples 1 to 8. 0.6765 ± 0.0035), and as can be seen from the CIE color coordinates in FIG.

実施例3の(Zn0.99,Mn0.012Ge1.24を用い、波長536nmの発光をモニタした励起強度と、波長254nmで励起した発光強度をモニタした結果を図1および図2に示す。 FIG. 1 and FIG. 2 show the results of monitoring the excitation intensity monitored for emission at a wavelength of 536 nm and the emission intensity excited at a wavelength of 254 nm using (Zn 0.99 , Mn 0.01 ) 2 Ge 1.2 O 4 of Example 3.

図1に示すように、本発明の緑色蛍光体は、励起光の波長が約230nmのときにピークを持ったブロードな励起強度分布を持っている。図1から、水素の輝線である波長254および365nmの発光に対して効率よく励起されることがわかる。   As shown in FIG. 1, the green phosphor of the present invention has a broad excitation intensity distribution having a peak when the wavelength of the excitation light is about 230 nm. From FIG. 1, it can be seen that excitation is efficiently performed with respect to emission of wavelengths 254 and 365 nm, which are emission lines of hydrogen.

図2に示されるように波長254nmで励起した発光強度は、約536nmの波長にピークを持った非常にブロードな発光形状を有している。   As shown in FIG. 2, the emission intensity excited at a wavelength of 254 nm has a very broad emission shape having a peak at a wavelength of about 536 nm.

他の実施例の励起強度分布および発光強度についてのデータは示していないが、いずれの実施例の、発光モニタ波長536nmで測定した励起スペクトルと励起波長254nmで測定した発光スペクトルの形状は似た形状を示した。   Although the data on the excitation intensity distribution and emission intensity of the other examples are not shown, the shapes of the excitation spectrum measured at the emission monitor wavelength of 536 nm and the emission spectrum measured at the excitation wavelength of 254 nm are similar to each other. showed that.

図3は、実施例3と従来のLaPO4:Ce,Tbとの励起波長254nmの発光スペクトルを示した図である。図3に示したように、本発明の蛍光体の発光スペクトルが、500nm〜600nmのブロードなスペクトルであるのに対して、LaPO4:Ce,Tbの発光スペクトルが、550nmに急峻なピークを持ったスペクトルであることがわかる。 FIG. 3 is a graph showing an emission spectrum of Example 3 and conventional LaPO 4 : Ce, Tb at an excitation wavelength of 254 nm. As shown in FIG. 3, the emission spectrum of the phosphor of the present invention is a broad spectrum of 500 nm to 600 nm, whereas the emission spectrum of LaPO 4 : Ce, Tb has a steep peak at 550 nm. It can be seen that it is a spectrum.

図4は、検討1の実施例1〜4の蛍光体の発光ピーク強度および反射率とGe組成比(y)とを示す図である。   FIG. 4 is a diagram showing the emission peak intensity and reflectance of the phosphors of Examples 1 to 4 in Study 1 and the Ge composition ratio (y).

図4からわかるように、Geの濃度が大きくなるにつれて発光ピーク強度および反射率が大きくなることがわかる。発光ピーク強度および反射率ともにy≧1.2で定常状態になることがわかる。   As can be seen from FIG. 4, the emission peak intensity and reflectivity increase as the Ge concentration increases. It can be seen that both the emission peak intensity and the reflectance are in a steady state when y ≧ 1.2.

図5は、Geの組成比を1.2に固定し、Mn組成を変化させたときの、Mnの組成比に対する発光ピーク強度と反射率を示したものである。   FIG. 5 shows the emission peak intensity and the reflectance with respect to the composition ratio of Mn when the composition ratio of Ge is fixed at 1.2 and the Mn composition is changed.

実施例3と実施例6とは、別に製造したもので、組成比が同じであっても輝度・反射率ともに異なった値をしているがこれは製造上のばらつきと考えられる。
り、輝度は実施例3の時にもっとも高くなることがわかる。その時、従来例の112%となり高効率な蛍光体であることがわかる。また、CIE色度座標も従来例が(0.336,0.588)であるのに対して、実施例3では(0.287,0.678)となり、緑色の色純度が良いことがわかる。反射率は、その粉体の光取り出し効率の指針となるもので、例えば実施例1のときは粉体自身が着色している。Geの置換量にともない粉体の白色が増加していることが見て取れる。化学両論組成ではy=1.0になるが、本発明ではy=1.0以上とすることが有効であることを見いだした。
Example 3 and Example 6 were manufactured separately, and even when the composition ratio was the same, both the luminance and the reflectance were different, but this is considered to be a manufacturing variation.
It can be seen that the luminance is the highest in Example 3. At that time, it is 112% of the conventional example, which shows that the phosphor is highly efficient. In addition, the CIE chromaticity coordinates are (0.336, 0.588) in the conventional example, and (0.287, 0.678) in Example 3, indicating that the green color purity is good. . The reflectance is a guideline for the light extraction efficiency of the powder. For example, in the case of Example 1, the powder itself is colored. It can be seen that the white color of the powder increases with the amount of Ge substitution. In the stoichiometric composition, y = 1.0, but in the present invention, it was found that y = 1.0 or more is effective.

本発明の緑色蛍光体は、緑色の色純度が良く、且つ、高輝度であるので、液晶表示装置のバックライト用に用いる白色蛍光ランプ用の緑色蛍光体として、あるいは、赤色蛍光ランプおよび青色蛍光ランプと併せてカラー表示するパネル用の緑色蛍光ランプ用の緑色蛍光体として用いるのに好適である。   Since the green phosphor of the present invention has good green color purity and high luminance, it is used as a green phosphor for white fluorescent lamps used for backlights of liquid crystal display devices, or red fluorescent lamps and blue fluorescent lamps. It is suitable for use as a green phosphor for a green fluorescent lamp for a panel for color display together with the lamp.

実施例3の蛍光体の励起スペクトル(発光モニタ波長:536nm)Excitation spectrum of the phosphor of Example 3 (emission monitor wavelength: 536 nm) 実施例3の蛍光体の発光スペクトル(励起波長:254nm)Emission spectrum of the phosphor of Example 3 (excitation wavelength: 254 nm) 従来例および実施例3の発光スペクトル形状および発光強度の比較(励起波長:254nm)Comparison of emission spectrum shape and emission intensity of conventional example and example 3 (excitation wavelength: 254 nm) 検討1:y組成比増減に伴う輝度・反射率の変化Study 1: Changes in luminance and reflectance with increasing and decreasing y composition ratio 検討2:x組成比増減に伴う輝度・反射率の変化Study 2: Changes in luminance and reflectivity as x composition ratio increases and decreases 従来例および実施例3のCIE色度座標CIE chromaticity coordinates of conventional example and example 3

Claims (2)

亜鉛(Zn)、ゲルマニウム(Ge)、酸素(O)を含み発光中心としてマンガン(Mn)が亜鉛に付活された、式(1)で示されることを特徴とする緑色発光蛍光体。
(Zn1-x,Mnx2Geyz ・・・(1)
(ここでxおよびyは、0<x<1、0.8≦y<2で表される)
A green light-emitting phosphor represented by the formula (1), wherein zinc (Zn), germanium (Ge), and oxygen (O) are contained, and manganese (Mn) is activated by zinc as a light emission center.
(Zn 1-x , Mn x ) 2 Ge y O z (1)
(Where x and y are represented by 0 <x <1, 0.8 ≦ y <2)
請求項1に記載の緑色発光蛍光体を用いたことを特徴とする水銀蛍光ランプ。   A mercury fluorescent lamp using the green light-emitting phosphor according to claim 1.
JP2004279887A 2004-09-27 2004-09-27 Green light-emitting fluorophor and mercury fluorescent lamp using the same Pending JP2006089692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279887A JP2006089692A (en) 2004-09-27 2004-09-27 Green light-emitting fluorophor and mercury fluorescent lamp using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004279887A JP2006089692A (en) 2004-09-27 2004-09-27 Green light-emitting fluorophor and mercury fluorescent lamp using the same

Publications (1)

Publication Number Publication Date
JP2006089692A true JP2006089692A (en) 2006-04-06

Family

ID=36230972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279887A Pending JP2006089692A (en) 2004-09-27 2004-09-27 Green light-emitting fluorophor and mercury fluorescent lamp using the same

Country Status (1)

Country Link
JP (1) JP2006089692A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140585A (en) * 2010-01-08 2011-07-21 Keio Gijuku Method for producing particulate phosphor
WO2014067111A1 (en) * 2012-10-31 2014-05-08 海洋王照明科技股份有限公司 Germanate luminescent material and preparation method therefor
CN104974751A (en) * 2015-06-23 2015-10-14 同济大学 Germanium silicate based elastic stress light-emitting material and preparation method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140585A (en) * 2010-01-08 2011-07-21 Keio Gijuku Method for producing particulate phosphor
WO2014067111A1 (en) * 2012-10-31 2014-05-08 海洋王照明科技股份有限公司 Germanate luminescent material and preparation method therefor
CN104736663A (en) * 2012-10-31 2015-06-24 海洋王照明科技股份有限公司 Germanate luminescent material and preparation method therefor
JP2016502567A (en) * 2012-10-31 2016-01-28 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Germanate light emitting material and method for producing the same
US9650568B2 (en) 2012-10-31 2017-05-16 Ocean's King Lighting Science & Technology Co., Ltd. Germanate luminescent material and preparation method therefor
CN104974751A (en) * 2015-06-23 2015-10-14 同济大学 Germanium silicate based elastic stress light-emitting material and preparation method therefor

Similar Documents

Publication Publication Date Title
JP4779384B2 (en) Ce-activated rare earth aluminate-based phosphor and light emitting device using the same
US8361346B2 (en) Phosphors, fabricating method thereof, and light emitting device employing the same
JP2005139449A (en) Red phosphor, method for producing the same, red led element given by utilizing the same, white led element, and active light-emitting-type liquid crystal display element
TWI405838B (en) Red light fluorescent material and manufacturing method thereof, and white light luminescent device
WO2006051768A1 (en) Phosphor and method for producing same, and light-emitting device using same and method for manufacturing such device
JP2005068403A (en) Alkaline earth aluminate phosphor for cold-cathode fluorescent lamp, and cold-cathode fluorescent lamp
JP2005179498A (en) Red phosphor material, white light-emitting diode using the same, and illuminator using the white light-emitting diode
JP4309242B2 (en) Red phosphor material, white light emitting diode using red phosphor material, and lighting device using white light emitting diode
JP4433793B2 (en) Phosphor and light emitting device using the same
JPH0578659A (en) Fluorescent substance and fluorescent lamp
JP2008024852A (en) Method for producing phosphor
JP2006089692A (en) Green light-emitting fluorophor and mercury fluorescent lamp using the same
KR100443257B1 (en) Red phosphor for UV LED and active matrix LCD
CN102020989B (en) Flourescent material and manufacturing method thereof as well as luminous device containing flourescent material
JP2008308634A (en) Manganese-activated rare earth aluminate phosphor and fluorescent lamp using the same
JP2001172625A (en) Vacuum ultraviolet excitable fluorescent substance and light emitting device using the same
JP3754701B2 (en) Phosphor and light emitting device using the same
JP2005146071A (en) Vacuum ultraviolet-excited green luminescent material and light emitting device
KR100772944B1 (en) Green light-emitting fluorescent material and fluorescent lamp using same
JP3792665B2 (en) Red light emitting phosphor, light emitting element and fluorescent lamp
JP2004123764A (en) Red light-emitting phosphor and light-emitting element using the same
JP2001303047A (en) Vacuum ultraviolet exciting fluorescent substance and emission device using the same
WO2023063251A1 (en) Phosphor, light emitting device, lighting device, image display device and indicator lamp for vehicles
JP2004292569A (en) Green-emitting phosphor, fluorescent lamp, and luminescent element
JP2010192254A (en) Cold-cathode fluorescent lamp, and aluminate-based phosphor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060210

A621 Written request for application examination

Effective date: 20060907

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090408

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090415

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090805