JPS624392B2 - - Google Patents

Info

Publication number
JPS624392B2
JPS624392B2 JP10804680A JP10804680A JPS624392B2 JP S624392 B2 JPS624392 B2 JP S624392B2 JP 10804680 A JP10804680 A JP 10804680A JP 10804680 A JP10804680 A JP 10804680A JP S624392 B2 JPS624392 B2 JP S624392B2
Authority
JP
Japan
Prior art keywords
ammonia
adenine
reaction
catalytic reduction
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10804680A
Other languages
Japanese (ja)
Other versions
JPS5732284A (en
Inventor
Jiro Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojin Co Ltd
Original Assignee
Kojin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojin Co Ltd filed Critical Kojin Co Ltd
Priority to JP10804680A priority Critical patent/JPS5732284A/en
Priority to DE8383111170T priority patent/DE3176085D1/en
Priority to DE8181106043T priority patent/DE3167196D1/en
Priority to EP81106043A priority patent/EP0045503B1/en
Priority to EP83111170A priority patent/EP0118597B1/en
Publication of JPS5732284A publication Critical patent/JPS5732284A/en
Priority to US06/571,150 priority patent/US4861883A/en
Publication of JPS624392B2 publication Critical patent/JPS624392B2/ja
Priority to US07/323,709 priority patent/US4997939A/en
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアデニンの新規な製造法に関する。さ
らに詳しくは、一般式(): (式中、Arはアリール基を表わす)で示されるマ
ロノニトリル誘導体をアンモニアの共存下に蟻酸
または蟻酸誘導体と加熱反応させ、ついで接触還
元反応時にアンモニアの共存を防止することを特
徴とするアデニンの製造法に関する。 従来、アリールアゾマロノニトリルを出発原料
に用いるアデニンの製造法は特公昭51−23516号
公報、特開昭49−81394号公報および特開昭53−
137975号公報が既に知られている。 特公昭51−23516号公報の方法は、アリールア
ゾマロノニトリルをアンモニアの共存下に蟻酸誘
導体と接触還元条件で反応させて1段の反応でア
デニンを製造する方法である。特開昭49−81394
号公報および特開昭53−137975号公報の方法は、
まずアリールアゾマロノニトリルをアンモニアの
共存下に蟻酸誘導体と加熱反応させて、一般式
(): (式中Arは前記と同じ)で示されるピリミジン中
間体を生成させ、該中間体を単離しあるいは単離
しないで、引き続き接触還元条件下に蟻酸誘導体
と反応させる2段階の反応でアデニンを製造する
方法である。 これらのアデニンの製造法はそれ以前の方法に
比べてすぐれた方法には相違ないが、収率、生成
する粗製アデニンの純度などが、アデニンの工業
的製造法として必ずしも満足できる方法ではな
い。すなわち1段製造法においては操作は簡便で
あるが収率および純度が不充分であり、また2段
製造法においては一般式()を有するピリミジ
ン中間体をいつたん単離したのち、新たに接触還
元条件下に反応を行なえば、収率および純度は良
好であるが、一般式()を有するピリミジン中
間体を系外に取り出すことは非常にやつかいな操
作であるため工業的には採用し難い。一般式
()を有するピリミジン中間体を系外に取り出
さず逐次的に反応を行なう2段法ではやはり生成
するアデニンの収率および純度が充分でない。 しかるに本発明者らは叙上の問題点を克服すべ
く鋭意研究を重ねた結果、前記2段法を実施する
に際し、接触還元を行なう後段の反応にアンモニ
アの共存を可及的防止するよう操作することによ
つて、一般式()の化合物を単離せずしてしか
もなお単離したばあいと比べてほとんど遜色のな
い、かつ従来の製造法よりも一層高収率、高純度
でアデニンがえられることを見出し、本発明を完
成するにいたつた。 接触還元反応の際、共存するアンモニアの量は
系の液体成分に対してもちろん0%であることが
最も好ましいが、実際上は2%以下多くても5%
以下であれば充分に本発明の目的を達成でき、実
際採用される本発明のアンモニアの除去方法によ
つて前記範囲内に制限される。 このアンモニアの影響は、一般式()を有す
るピリミジン中間体が反応条件下でアンモニアに
よつて徐々に無定形の物質に変化するためであ
り、直接的に接触還元反応の収率および生成物の
純度を低下させるだけでなく、接触還元反応を妨
害する作用をも示す。 したがつて共存するアンモニアの影響を減少さ
せるためには、接触還元反応速度を増大させ、反
応温度をできるだけ低くすることが望ましい。す
なわち、水素圧を高くし、充分な攪拌を行ない、
反応系をできるだけ均一にする(一般式()を
有するピリミジン中間体はホルムアミドなどの溶
媒に難溶である)ことによつて接触還元反応の速
度を増大させ、また反応温度は好ましくは120〜
160℃であるが、接触還元時は120〜140℃に保つ
などの操作により、アンモニアの影響をある程度
防止できる。しかしこれらの条件は装置に依存
し、いずれも限界があり、これらの方法だけでは
本発明の目的の高収率および高純度を達成するこ
とができず、それゆえさらにアンモニアの除去が
不可欠である。 アンモニアの除去方法はとくに限定する必要は
ないが、接触還元反応を行なう前に効率よく実施
できる方法であればよい。 たとえば一般式()を有するピリミジン中間
体を形成させる反応は密閉型の反応器中で一般的
に120〜160℃で行なわれるため、その反応終了後
熱時残圧を放出させることによつてアンモニアを
除去する方法、いつたん冷却して減圧する除去方
法、チツ素ガスなどをバブリングさせる方法およ
びこれらを併用する方法などがある。 実際工業的に実施するばあいは、アンモニア共
存防止方法が熱時アンモニア放出とチツ素ガスな
どのガスバブリングとの併用であることが好まし
い。すなわち、ガスの熱時放出は操作が簡単であ
り、またガスバブリングは次工程の接触還元のた
めに行なわれる反応器のチツ素置換と兼用できて
便利である。 本発明をさらに詳しく説明する。一般式()
を有するピリミジン中間体の生成を行なう第1段
目の反応はアンモニア共存下で実施するため密閉
容器中で行なわれる。蟻酸誘導体としては、たと
えばホルムアミド、蟻酸エチルなどの蟻酸エステ
ル、オルソ蟻酸メチルなどのオルソ蟻酸エステ
ル、ホルムアミジンアセテートなどのホルムアミ
ジン塩などが用いられるが、取扱いの容易さ、価
格、入手の容易さなどの理由からホルムアミドが
最も好適に用いられる。 また反応にホルムアミドや蟻酸エチルなどを用
いるばあいはとくに溶媒を必要としないが、希釈
剤として、たとえば炭素数1〜4個を有する低級
アルコール類、テトラヒドロフラン、ジオキサン
などのエーテル類、セロソルブ、ブチルセロソル
ブなどのエチレングリコールエーテル類などを用
いても何ら支障はない。 ホルムアミジン塩を用いるばあいは前記アルコ
ールおよびエーテルを溶媒として用いることが好
ましい。 なお蟻酸誘導体の使用量はアリールアゾマロノ
ニトリルに対しても等モル量が理論量であるが、
実際には2〜50倍モル量が用いられる。これは生
成した一般式()を有するピリミジン中間体が
難溶性であるため前記希釈剤を用いるばあいは低
モル量でよいが、用いないばあいは希釈剤の働き
をも必要とするためである。 つぎにアンモニアの使用量は一般式()を有
するアリールアゾマロノニトリルに対して等モル
量が理論量であるが、実際には1.5〜10倍モルが
好ましい。もちろんそれ以上のアンモニアを使用
しても一般式()を有するピリミジン中間体は
生成するが、収率および純度が低下するので好ま
しくない。 反応温度は120〜160℃が好ましく、その温度に
保つて1〜10時間反応させる。このような方法で
一般式()を有するピリミジン中間体は90〜97
%の反応率で生成する。 ついで系内に残存するアンモニアを除去する。
たとえば一般式()を有するアリールアゾマロ
ノニトリルに対してホルムアミドを10重量部アン
モニアを6倍モル使用して150〜155℃で2〜5時
間反応させたあとはゲージ圧で8〜9Kg/cm2の残
圧がある。密閉容器のガス放出バルブを徐々に開
けて揮発性ガスを放出させる。このばあい急激に
バルブを開けると内容物が吹き出すことがあるの
で注意を要する。 アンモニア除去効果は当然ながらより高温での
操作が好ましいが、反応温度で実施するのが実際
的で便利である。この方法によつてアンモニアの
大部分は除去され、反応系の組成および処理温度
によつて異なるが、アンモニアの量は液体成分に
対して2%以下とすることができる。さらに除去
率を向上させるために、ついでチツ素ガスなどの
不活性ガスを系内に導入させるか、または系内を
徐々に減圧にするか、あるいは減圧下不活性ガス
をバブリングさせるようにしてもよい。 熱時放出させることによるアンモニアの除去方
法以外に、反応終了後容器を外部から冷却して30
〜50℃まで冷えたところで、わずかに残つている
内圧をガス放出バルブを開放して除いたのち、チ
ツ素ガスなどの不活性ガスを系内に導入してバブ
リングする方法や系を減圧にする方法なども採用
される。ガスバブリング法は除去方法として必ず
しも充分でなく、熱時放出法あるいは減圧法の補
助的手段と考えるのが適当であろう。 たとえばアンモニアを重量%で8.89%含むホル
ムアミド300gにチツ素ガスを内径8mmのガラス
管を用いて500ml/分の速度で1時間28℃でバブ
リングしたばあい、残存するアンモニアの量は
3.20%であつた。 続いて一般式()を有するピリミジン中間体
はまつたく系外に取り出すことなくアデニンを形
成させる2段目の接触還元条件下の反応が行なわ
れる。ここにいう接触還元条件とは、たとえば水
素−還元触媒、水素−ラネーニツケル触媒、水素
パラジウム触媒などを用いる接触還元条件であ
る。反応温度は120〜180℃が望ましく、この温度
に保つて1〜10時間、好適には3〜7時間反応さ
せることによつて高収率かつ高純度のアデニンを
製造することができる。 以上の2つの反応を連続して行なう方法はアデ
ニンの工業的製造法としてきわめて有利である。 また原料である一般式()を有する化合物ア
リールアゾマロノニトリルは、マロノニトリルに
芳香族アミンのジアゾニウム塩をアゾカツプリン
グすることによつて容易にえられる。かかる芳香
族アミンとしてはアニリンが一般的であるが、そ
の他核置換基を有する種々の芳香族第1アミンを
用いることができる。 つぎに実施例および比較例をあげて本発明を詳
細に説明する。 なお、純度の測定は0.1N−HClの5×10-4%溶
液の波長262nmの吸光度を標品と比較すること
によつて行なつた。 また不純物の測定はカチオン交換樹脂カラムに
よる高速液体クロマトグラムで行ない、そのクロ
マトグラムより相対面積比較法によつて不純物含
量を計算した。 反応系に残存するアンモニアの量は、反応液を
直接測定する適当な方法が見あたらなかつたた
め、つぎの組立てサンプルを測定することによつ
て求めた。 すなわち、ホルムアミドを外部から氷水で冷却
し、それにアンモニアガスを吹込み飽和させた。
この液を出発試料として用い、所定の処理方法に
付したのち、浮ばかり法によつて比重を求め、第
1図に示すような検量線を作成し、それにより残
存アンモニアの濃度(重量%)を求めた。 常圧、機械的攪拌下における熱時放出法による
アンモニアの除去結果を第1表に、また温度30
℃、機械的攪拌下における減圧法によるアンモニ
アの除去結果を第2表にそれぞれ示す。
The present invention relates to a novel method for producing adenine. More specifically, the general formula (): (In the formula, Ar represents an aryl group) The production of adenine is characterized in that a malononitrile derivative represented by the formula (Ar represents an aryl group) is heated and reacted with formic acid or a formic acid derivative in the presence of ammonia, and then the coexistence of ammonia is prevented during the catalytic reduction reaction. Regarding the law. Conventionally, methods for producing adenine using arylazomalononitrile as a starting material have been disclosed in Japanese Patent Publication No. 51-23516, Japanese Patent Application Laid-open No. 81394-1973, and Japanese Patent Application Laid-open No. 1987-8139.
Publication No. 137975 is already known. The method disclosed in Japanese Patent Publication No. 51-23516 is a method for producing adenine in a one-stage reaction by reacting arylazomalononitrile with a formic acid derivative under catalytic reduction conditions in the presence of ammonia. JP-A-49-81394
The method disclosed in Japanese Patent Publication No. 53-137975 is as follows:
First, arylazomalononitrile is heated and reacted with a formic acid derivative in the presence of ammonia, and the general formula (): Adenine is produced by a two-step reaction in which a pyrimidine intermediate represented by (wherein Ar is the same as above) is produced, and the intermediate is subsequently reacted with a formic acid derivative under catalytic reduction conditions, with or without isolation. This is the way to do it. Although these methods for producing adenine are superior to previous methods, they are not necessarily satisfactory as an industrial method for producing adenine in terms of yield, purity of the crude adenine, etc. In other words, in the one-stage production method, the operation is simple, but the yield and purity are insufficient, and in the two-stage production method, the pyrimidine intermediate having the general formula () is isolated, and then the pyrimidine intermediate is newly contacted. If the reaction is carried out under reducing conditions, the yield and purity are good, but it is difficult to take the pyrimidine intermediate having the general formula () out of the system because it is a very complicated operation, so it is difficult to adopt it industrially. . In the two-stage method in which the pyrimidine intermediate having the general formula () is reacted sequentially without being taken out of the system, the yield and purity of the adenine produced are still insufficient. However, as a result of extensive research in order to overcome the above-mentioned problems, the inventors of the present invention have conducted an operation to prevent the coexistence of ammonia as much as possible in the subsequent reaction of catalytic reduction when carrying out the two-stage method. By this method, adenine can be produced in a higher yield and purity than the conventional production method, which is almost comparable to the case where the compound of general formula () is isolated without isolation. The present invention was completed based on the discovery that the present invention can be achieved. During the catalytic reduction reaction, it is most preferable that the amount of ammonia coexisting is 0% based on the liquid component of the system, but in practice it is 2% or less and at most 5%.
The object of the present invention can be sufficiently achieved if it is below, but it is limited within the above range depending on the ammonia removal method of the present invention that is actually employed. This effect of ammonia is due to the fact that the pyrimidine intermediate having the general formula () is gradually transformed into an amorphous substance by ammonia under the reaction conditions, which directly affects the yield of the catalytic reduction reaction and the product. It not only reduces purity but also acts to interfere with catalytic reduction reactions. Therefore, in order to reduce the influence of coexisting ammonia, it is desirable to increase the catalytic reduction reaction rate and lower the reaction temperature as much as possible. That is, by increasing the hydrogen pressure and performing sufficient stirring,
The rate of the catalytic reduction reaction is increased by making the reaction system as homogeneous as possible (the pyrimidine intermediate having the general formula () is poorly soluble in solvents such as formamide), and the reaction temperature is preferably 120-120°C.
Although the temperature is 160°C, the influence of ammonia can be prevented to some extent by maintaining the temperature at 120-140°C during catalytic reduction. However, these conditions depend on the equipment and all have limitations, and these methods alone cannot achieve the high yield and high purity that are the objectives of the present invention, therefore further removal of ammonia is essential. . The method for removing ammonia does not need to be particularly limited, but any method may be used as long as it can be carried out efficiently before performing the catalytic reduction reaction. For example, the reaction to form a pyrimidine intermediate having the general formula () is generally carried out at 120 to 160°C in a closed reactor. There are several methods for removing carbon dioxide, a method for temporarily cooling and reducing the pressure, a method for bubbling nitrogen gas, etc., and a method for using these in combination. In actual industrial implementation, the method for preventing the coexistence of ammonia is preferably a combination of ammonia release during heating and bubbling of a gas such as nitrogen gas. That is, the operation of releasing gas during heating is simple, and gas bubbling is convenient because it can also be used to replace nitrogen in the reactor for catalytic reduction in the next step. The present invention will be explained in more detail. General formula ()
The first stage reaction for producing a pyrimidine intermediate having the following formula is carried out in a closed container in the presence of ammonia. As formic acid derivatives, for example, formamide, formic acid esters such as ethyl formate, orthoformic acid esters such as methyl orthoformate, formamidine salts such as formamidine acetate, etc. are used, but ease of handling, price, availability, etc. For these reasons, formamide is most preferably used. In addition, when formamide, ethyl formate, etc. are used in the reaction, a solvent is not particularly required, but as a diluent, for example, lower alcohols having 1 to 4 carbon atoms, ethers such as tetrahydrofuran and dioxane, cellosolve, butyl cellosolve, etc. There is no problem in using ethylene glycol ethers, etc. When a formamidine salt is used, it is preferable to use the alcohols and ethers mentioned above as solvents. The theoretical amount of the formic acid derivative to be used is equimolar to the arylazomalononitrile.
Actually, 2 to 50 times the molar amount is used. This is because the produced pyrimidine intermediate having the general formula () is poorly soluble, so if the diluent is used, a low molar amount is sufficient, but if it is not used, the function of the diluent is also required. be. Next, the theoretical amount of ammonia to be used is an equimolar amount to the arylazomalononitrile having the general formula (), but it is actually preferably 1.5 to 10 times the molar amount. Of course, even if more ammonia is used, a pyrimidine intermediate having the general formula () will be produced, but this is not preferred because the yield and purity will decrease. The reaction temperature is preferably 120 to 160°C, and the reaction is maintained at that temperature for 1 to 10 hours. In this way, pyrimidine intermediates with general formula () can be prepared from 90 to 97
% reaction rate. Then, ammonia remaining in the system is removed.
For example, arylazomalononitrile having the general formula () is reacted with 10 parts by weight of formamide and 6 times the mole of ammonia at 150 to 155°C for 2 to 5 hours, and then the gauge pressure is 8 to 9 Kg/cm 2 There is a residual pressure of Gradually open the gas release valve on the closed container to release volatile gases. In this case, be careful as opening the valve too quickly may cause the contents to blow out. Although it is naturally preferable to operate at a higher temperature for the ammonia removal effect, it is practical and convenient to carry out the operation at the reaction temperature. This method removes most of the ammonia and, depending on the composition of the reaction system and the processing temperature, the amount of ammonia can be less than 2% based on the liquid components. In order to further improve the removal rate, an inert gas such as nitrogen gas may be introduced into the system, the pressure in the system may be gradually reduced, or an inert gas may be bubbled under reduced pressure. good. In addition to the method of removing ammonia by releasing it when hot, the container can be cooled from the outside after the reaction is completed.
When the temperature has cooled to ~50°C, remove the slight remaining internal pressure by opening the gas release valve, and then introduce an inert gas such as nitrogen gas into the system to bubble it or reduce the pressure in the system. methods will also be adopted. The gas bubbling method is not necessarily sufficient as a removal method, and should be considered as an auxiliary means to the hot release method or depressurization method. For example, when nitrogen gas is bubbled into 300 g of formamide containing 8.89% ammonia by weight using a glass tube with an inner diameter of 8 mm at a rate of 500 ml/min at 28°C for 1 hour, the amount of ammonia remaining is
It was 3.20%. Subsequently, the pyrimidine intermediate having the general formula () undergoes a second reaction under catalytic reduction conditions to form adenine without being taken out of the system. The catalytic reduction conditions referred to herein are, for example, catalytic reduction conditions using a hydrogen-reduction catalyst, a hydrogen-Raney nickel catalyst, a hydrogen-palladium catalyst, or the like. The reaction temperature is preferably 120 to 180°C, and adenine can be produced in high yield and purity by maintaining the reaction temperature at this temperature for 1 to 10 hours, preferably 3 to 7 hours. The method of carrying out the above two reactions consecutively is extremely advantageous as an industrial method for producing adenine. Further, the compound arylazomalononitrile having the general formula (), which is a raw material, can be easily obtained by azo coupling malononitrile with a diazonium salt of an aromatic amine. Aniline is commonly used as such an aromatic amine, but various other aromatic primary amines having nuclear substituents can also be used. Next, the present invention will be explained in detail with reference to Examples and Comparative Examples. The purity was measured by comparing the absorbance of a 5 x 10 -4 % solution of 0.1N HCl at a wavelength of 262 nm with that of a standard product. Further, impurities were measured using a high performance liquid chromatogram using a cation exchange resin column, and the impurity content was calculated from the chromatogram by a relative area comparison method. Since no suitable method for directly measuring the reaction solution was found, the amount of ammonia remaining in the reaction system was determined by measuring the following assembled sample. That is, formamide was externally cooled with ice water, and ammonia gas was blown into it to saturate it.
After using this liquid as a starting sample and subjecting it to a prescribed treatment method, the specific gravity was determined by the floating method, and a calibration curve as shown in Figure 1 was created. I asked for Table 1 shows the results of removing ammonia by the thermal release method under normal pressure and mechanical stirring.
Table 2 shows the results of ammonia removal by the reduced pressure method at 0.degree. C. and under mechanical stirring.

【表】【table】

【表】 ここで接触還元反応に及ぼすアンモニアの影響
を示す参考例を述べる。 参考例 一般式()のアリール基がフエニール基であ
るピリミジン中間体14.0gをそれぞれ第3表に示
す所定量のアンモニアを含むホルムアミド112g
に加え、ラネーニツケル触媒1.3gを添加し、オ
ートクレーブ中、水素初圧50Kg/m2の下、130〜
135℃で1時間接触還元を行ない、ついで温度を
上昇させて150〜155℃で4時間反応を行なつた。
冷却後余剰のホルムアミドを減圧下で回収し、残
渣に水280mlを加え、これに芒硝2gおよび活性
炭0.7gを添加し、1時間加熱還流後、熱時不溶
物を去し、液を冷却してアデニンを析出させ
た。結晶を別し乾燥してアデニンをえた。収量
収率を第3表に示す。
[Table] Here, a reference example showing the influence of ammonia on the catalytic reduction reaction is described. Reference example: 14.0 g of a pyrimidine intermediate in which the aryl group in general formula () is a phenyl group, and 112 g of formamide containing the specified amount of ammonia shown in Table 3.
In addition to this, 1.3 g of Raney nickel catalyst was added, and in an autoclave under an initial hydrogen pressure of 50 kg/ m2 , the temperature was 130~
Catalytic reduction was carried out at 135°C for 1 hour, then the temperature was raised and reaction was carried out at 150-155°C for 4 hours.
After cooling, excess formamide was collected under reduced pressure, 280 ml of water was added to the residue, 2 g of Glauber's salt and 0.7 g of activated carbon were added, and after heating under reflux for 1 hour, the hot insoluble matter was removed, and the liquid was cooled. Adenine was precipitated. The crystals were separated and dried to obtain adenine. The yields are shown in Table 3.

【表】 以上の結果から一般式()を有するピリミジ
ン中間体を接触還元する際、アンモニアの量は系
の液体成分に対して5%以下、好ましくは2%以
下であるとアデニンが高収率でえられることがわ
かる。 実施例 1 フエニルアゾマロノニトリル68.1gを6%アン
モニアを含むホルムアミド680gに溶解し、オー
トクレーブ中150〜155℃で2時間攪拌反応させ
た。反応終了後攪拌速度を遅くして、直ちにアン
モニアガスを放出させた。残圧が0Kg/cm2になつ
てから加熱を止め放冷した。残存アンモニアは1
%以下の微量であつた。冷却後ラネーニツケル10
gを加え、水素初圧50Kg/cm2下、130〜135℃で接
触還元を行なつた。水素の吸収は約1時間で理論
値の90%を吸収した。ついで温度を上昇させて
150〜155℃で4時間加熱した。冷却後オートクレ
ーブから反応物を取り出し、減圧蒸留によりホル
ムアミドを回収した。残渣に水2.5を加え、加
熱環流して大部分を溶解させたのち、熱時不溶物
を去し、液に活性炭を加え、1時間加熱脱色
した。活性炭を別後冷却してアデニンを析出さ
せた。結晶を取、乾燥してアデニン41.2gをえ
た(収率76.2%)。えられたアデニンの純度は
98.5%、不純物含量は0.76%であつた。 比較例 1 熱時アンモニアを除去しなかつたほかは実施例
1と同様の条件で実験を行なつた結果、アデニン
33.5gをえた(収率62.0%)。えられたアデニン
の純度は95.0%、不純物含量は4.76%であつた。 実施例 2 熱時アンモニアを放出除去する操作に代えて、
冷却後系内を徐々に30Torrまで減圧したほか
は、実施例1と同様の条件で実験を行なつた結
果、アデニン41.5gをえた(収率76.8%)。接触
還元反応前のアンモニア残存量は約1%であつ
た。えられたアデニンの純度は98%、不純物含量
は1.10%であつた。 実施例 3 フエニルアゾマロノニトリル68.1gを3%アン
モニアを含むホルムアミド680gに溶解し、オー
トクレーブ中140〜145℃で5時間攪拌反応させ
た。反応終了後攪拌速度を遅くして、直ちにアン
モニアガスを放出させ、ついでチツ素ガスでバブ
リングしてアンモニアをさらに除去した。アンモ
ニア残存量は痕跡量であつた。冷却後5%パラジ
ウム炭5.0gを加え、水素初圧20Kg/cm2下、150〜
155℃で接触還元を行なつた。水素の吸収は約1
時間15分で理論値の85%を吸収した。ついで4時
間加熱反応を行なつた。冷却後反応物をオートク
レーブから取り出し、減圧蒸留によりホルムアミ
ドを回収した。残渣に水2.5を加え加熱還流し
た。熱時不溶物を去し、液に活性炭を加え1
時間加熱脱色した。活性炭を別したのち冷却し
てアデニンを析出させた。結晶を取、乾燥して
アデニン43.7gをえた(収率80.8%)。えられた
アデニンの純度は98.5%、不純物含量は0.77%で
あつた。 実施例 4 フエニルアゾマロノニトリル8.5gを10%メタ
ノール性アンモニア50gに溶解させ、オルソ蟻酸
エチル74.1gを加えてオートクレーブ中150〜155
℃で5時間加熱攪拌反応させた。空冷して120℃
まで冷却したところでアンモニアを放出除去し
た。アンモニア残存量は約1%であつた。冷却後
ラネーニツケル1.5gを加え、水素初圧80Kg/cm2
下、140〜145℃で5時間接触還元反応を行なつ
た。冷却後反応物をオートクレーブから取り出
し、減圧濃縮残渣に水300mlを加え加熱還流し大
部分を溶解させたのち、熱時不溶物を去し、
液に活性炭を加え1時間加熱脱色した。活性炭を
別後冷却してアデニンを析出させた。結晶を
取、乾燥してアデニン4.7gをえた(収率69.6
%)。えられたアデニンの純度は98.3%、不純物
含量は1.11%であつた。 実施例 5 フエニルアゾマロノニトリル8.5gを5%アン
モニア性エチルセロソルブ100gに加え、ホルム
アミジンアセテート31.2gを添加し、オートクレ
ーブ中130〜135℃で5時間反応させた。冷却後系
内を減圧しながらチツ素ガスでバブリングさせて
アンモニアを除去した。ついで5%パラジウム炭
1.0gを加えて、水素初圧40Kg/cm2下、130〜135
℃で5時間還元反応を行なつた。冷却後反応物を
オートクレーブから取り出し、反応物を実施例4
と同様に処理してアデニン5.1gをえた(収率
75.6%)。えられたアデニンの純度は98.9%、不
純物含量は0.63%であつた。 実施例 6 フエニルアゾマロノニトリル68.1gを6%アン
モニアを含むホルムアミド680gに溶解し、5%
パラジウム炭10gを添加し、オートクレーブ中
150〜155℃で2時間加熱攪拌反応させた。反応終
了後攪拌速度を遅くして直ちにアンモニアを放出
除去した。ついで系内にチツ素ガスをゲージ圧2
Kg/cm2まで導入してからチツ素ガスを放出させ
た。この操作を3回繰り返した。アンモニア残存
量はほとんど0%であつた。ついで水素ガスを導
入して初圧50Kg/cm2、130〜135℃で1時間、つい
で155〜160℃で5時間接触還元反応を行なつた。
反応物を実施例1と同様に処理してアデニン42.0
gをえた(収率77.7%)。えられたアデニンの純
度は99.3%、不純物含量は0.52%であつた。 比較例 2 反応系に塩化アンモニウム6.8gを加え、かつ
アンモニアの除去操作をまつたく実施しなかつた
ほかは実施例6と同様の条件で実験を行なつた結
果、アデニン34.8gをえた(収率64.2%)。えら
れたアデニンの純度は96.1%、不純物含量は3.8
%であつた。 以上から、本発明の製造法はきわめて高純度か
つ高収率のアデニンをうるすぐれた方法であるこ
とがわかる。
[Table] From the above results, when the pyrimidine intermediate having the general formula () is catalytically reduced, adenine can be produced in high yield when the amount of ammonia is 5% or less, preferably 2% or less based on the liquid component of the system. I know what I can do. Example 1 68.1 g of phenyl azomalononitrile was dissolved in 680 g of formamide containing 6% ammonia, and the mixture was stirred and reacted in an autoclave at 150 to 155° C. for 2 hours. After the reaction was completed, the stirring speed was reduced to immediately release ammonia gas. After the residual pressure reached 0 kg/cm 2 , heating was stopped and the mixture was allowed to cool. Residual ammonia is 1
The amount was less than %. Raney Nickel 10 after cooling
g was added thereto, and catalytic reduction was carried out at 130 to 135° C. under an initial hydrogen pressure of 50 kg/cm 2 . Hydrogen absorption reached 90% of the theoretical value in about 1 hour. Then raise the temperature
Heated at 150-155°C for 4 hours. After cooling, the reaction product was taken out from the autoclave, and formamide was recovered by distillation under reduced pressure. After adding 2.5 g of water to the residue and dissolving most of it by heating and refluxing, insoluble materials were removed when heated, activated carbon was added to the liquid, and the mixture was decolorized by heating for 1 hour. After separating the activated carbon, it was cooled to precipitate adenine. The crystals were collected and dried to obtain 41.2 g of adenine (yield 76.2%). The purity of the adenine obtained is
98.5%, and the impurity content was 0.76%. Comparative Example 1 An experiment was conducted under the same conditions as in Example 1 except that ammonia was not removed during heating.
33.5g was obtained (yield 62.0%). The purity of the adenine obtained was 95.0%, and the impurity content was 4.76%. Example 2 Instead of releasing and removing ammonia during heating,
An experiment was conducted under the same conditions as in Example 1, except that the pressure inside the system was gradually reduced to 30 Torr after cooling, and as a result, 41.5 g of adenine was obtained (yield: 76.8%). The amount of ammonia remaining before the catalytic reduction reaction was about 1%. The purity of the adenine obtained was 98%, and the impurity content was 1.10%. Example 3 68.1 g of phenyl azomalononitrile was dissolved in 680 g of formamide containing 3% ammonia, and the mixture was stirred and reacted in an autoclave at 140 to 145° C. for 5 hours. After the reaction was completed, the stirring speed was reduced to immediately release ammonia gas, and then nitrogen gas was bubbled to further remove ammonia. The amount of ammonia remaining was a trace amount. After cooling, add 5.0g of 5% palladium on charcoal and heat to 150~ under an initial hydrogen pressure of 20Kg/ cm2.
Catalytic reduction was carried out at 155°C. Hydrogen absorption is approximately 1
Absorbed 85% of the theoretical value in 15 minutes. Then, a heating reaction was carried out for 4 hours. After cooling, the reaction product was taken out from the autoclave, and formamide was recovered by distillation under reduced pressure. 2.5 g of water was added to the residue and heated to reflux. Remove the insoluble matter when heated, add activated carbon to the liquid, and add 1
Decolorization was performed by heating for a period of time. After separating the activated carbon, the mixture was cooled to precipitate adenine. The crystals were collected and dried to obtain 43.7 g of adenine (yield: 80.8%). The purity of the adenine obtained was 98.5%, and the impurity content was 0.77%. Example 4 8.5 g of phenyl azomalononitrile was dissolved in 50 g of 10% methanolic ammonia, and 74.1 g of ethyl orthoformate was added to the solution at 150-155 g in an autoclave.
The reaction was heated and stirred at ℃ for 5 hours. Air cooled to 120℃
When the mixture was cooled to a temperature of 100%, ammonia was released and removed. The residual amount of ammonia was about 1%. After cooling, add 1.5g of Raney nickel, and the initial pressure of hydrogen is 80Kg/cm 2
Below, a catalytic reduction reaction was carried out at 140 to 145°C for 5 hours. After cooling, the reaction product was taken out from the autoclave, concentrated under reduced pressure, 300 ml of water was added to the residue, and most of it was dissolved by heating under reflux.
Activated carbon was added to the liquid and the mixture was decolorized by heating for 1 hour. After separating the activated carbon, it was cooled to precipitate adenine. The crystals were collected and dried to obtain 4.7 g of adenine (yield: 69.6
%). The purity of the adenine obtained was 98.3%, and the impurity content was 1.11%. Example 5 8.5 g of phenyl azomalononitrile was added to 100 g of 5% ammoniacal ethyl cellosolve, 31.2 g of formamidine acetate was added, and the mixture was reacted in an autoclave at 130-135° C. for 5 hours. After cooling, ammonia was removed by bubbling nitrogen gas while reducing the pressure in the system. Then 5% palladium charcoal
Add 1.0g, hydrogen initial pressure 40Kg/ cm2 , 130~135
The reduction reaction was carried out at ℃ for 5 hours. After cooling, the reactant was taken out from the autoclave, and the reactant was transferred to Example 4.
5.1g of adenine was obtained in the same manner as above (yield:
75.6%). The purity of the adenine obtained was 98.9%, and the impurity content was 0.63%. Example 6 68.1 g of phenylazomalononitrile was dissolved in 680 g of formamide containing 6% ammonia.
Add 10g of palladium charcoal and autoclave
The reaction was heated and stirred at 150 to 155°C for 2 hours. After the reaction was completed, the stirring speed was slowed down and ammonia was immediately released and removed. Next, nitrogen gas was introduced into the system at a gauge pressure of 2
After introducing up to Kg/cm 2 , nitrogen gas was released. This operation was repeated three times. The residual amount of ammonia was almost 0%. Next, hydrogen gas was introduced and catalytic reduction reaction was carried out at an initial pressure of 50 Kg/cm 2 at 130 to 135°C for 1 hour, and then at 155 to 160°C for 5 hours.
The reaction product was treated as in Example 1 to obtain adenine 42.0
g (yield 77.7%). The purity of the adenine obtained was 99.3%, and the impurity content was 0.52%. Comparative Example 2 An experiment was conducted under the same conditions as in Example 6, except that 6.8 g of ammonium chloride was added to the reaction system and the ammonia removal operation was not carried out. As a result, 34.8 g of adenine was obtained (yield: 64.2%). The purity of the adenine obtained is 96.1%, and the impurity content is 3.8
It was %. From the above, it can be seen that the production method of the present invention is an excellent method for producing adenine with extremely high purity and high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は28℃におけるアンモニアーホルムアミ
ドの比重検量線のグラフである。
FIG. 1 is a graph of the specific gravity calibration curve of ammonia formamide at 28°C.

Claims (1)

【特許請求の範囲】 1 一般式(): (式中、Arはアリール基を表わす)で示されるマ
ロノニトリル誘導体をアンモニアの共存下に蟻酸
または蟻酸誘導体と加熱反応させ、ついで接触還
元条件下で反応させてアデニンを製造するに際
し、接触還元反応時にアンモニアの共存を防止す
ることを特徴とするアデニンの製造法。 2 接触還元反応時共存するアンモニアの量が系
の液体成分に対して0〜5重量%である特許請求
の範囲第1項記載の製造法。 3 アンモニアの共存防止方法が熱時アンモニア
を放出する方法である特許請求の範囲第1項記載
の製造法。 4 アンモニアの共存防止方法が減圧下にアンモ
ニアを除去する方法である特許請求の範囲第1項
記載の製造法。 5 アンモニアの共存防止方法がガスバブリング
法である特許請求の範囲第1項記載の製造法。
[Claims] 1 General formula (): (In the formula, Ar represents an aryl group) is heated to react with formic acid or a formic acid derivative in the presence of ammonia, and then reacted under catalytic reduction conditions to produce adenine. A method for producing adenine characterized by preventing the coexistence of ammonia. 2. The production method according to claim 1, wherein the amount of ammonia coexisting during the catalytic reduction reaction is 0 to 5% by weight based on the liquid component of the system. 3. The production method according to claim 1, wherein the method for preventing the coexistence of ammonia is a method of releasing ammonia during heating. 4. The production method according to claim 1, wherein the method for preventing the coexistence of ammonia is a method of removing ammonia under reduced pressure. 5. The production method according to claim 1, wherein the method for preventing the coexistence of ammonia is a gas bubbling method.
JP10804680A 1980-03-21 1980-08-05 Preparation of adenine Granted JPS5732284A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10804680A JPS5732284A (en) 1980-08-05 1980-08-05 Preparation of adenine
DE8383111170T DE3176085D1 (en) 1980-08-05 1981-08-01 Process for preparing adenine
DE8181106043T DE3167196D1 (en) 1980-08-05 1981-08-01 Process for preparing adenine
EP81106043A EP0045503B1 (en) 1980-08-05 1981-08-01 Process for preparing adenine
EP83111170A EP0118597B1 (en) 1980-08-05 1981-08-01 Process for preparing adenine
US06/571,150 US4861883A (en) 1980-08-05 1984-01-17 Process for preparing adenine
US07/323,709 US4997939A (en) 1980-03-21 1989-03-15 Process for preparing adenine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10804680A JPS5732284A (en) 1980-08-05 1980-08-05 Preparation of adenine

Publications (2)

Publication Number Publication Date
JPS5732284A JPS5732284A (en) 1982-02-20
JPS624392B2 true JPS624392B2 (en) 1987-01-30

Family

ID=14474552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10804680A Granted JPS5732284A (en) 1980-03-21 1980-08-05 Preparation of adenine

Country Status (1)

Country Link
JP (1) JPS5732284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200384U (en) * 1986-06-10 1987-12-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200384U (en) * 1986-06-10 1987-12-21

Also Published As

Publication number Publication date
JPS5732284A (en) 1982-02-20

Similar Documents

Publication Publication Date Title
CN111808034B (en) Method for synthesizing 1,2, 4-triazole-3-methyl carboxylate
US2811555A (en) Reduction of 2-nitroso-5-diethylaminotoluene
JPS6327462A (en) Manufacture of o-substituted hydroxylamine
EP0213850A2 (en) Decyanation of pergolide intermediate
JPS624392B2 (en)
JP2904038B2 (en) Process for producing 4,6-diaminoresorcinol and its precursor
JPS611654A (en) Manufacture of hydroazodicarbon amide
JP3318992B2 (en) Method for producing N- (α-alkoxyethyl) formamide
JPH0378856B2 (en)
CN113214193A (en) Preparation method of dinotefuran
EP0045503B1 (en) Process for preparing adenine
US5304677A (en) Method for producing 2,6-dihydroxybenzoic acid
US4997939A (en) Process for preparing adenine
EP0474334A2 (en) Process for preparing glycine in high yield
JPS597699B2 (en) Method for producing indolines
JPS63503063A (en) Method for producing methyl isocyanate
JPS5945668B2 (en) Novel method for producing (3-carbomethoxypropyl)-trimethylammonium chloride hydrate
EP0621260B1 (en) Process for producing N,N-disubstituted p-phenylenediamine derivative sulphate
JPH03157358A (en) Production of o-methylisourea salt
KR820000327B1 (en) Process for the preparation of methyl ephedrine hydrochloride
JPH0229672B2 (en) 11CHIKANN55MERUKAPUTOOTETORAZOORUNOSEIZOHO
US4391991A (en) Process for the preparation of para-fluoroaniline
JPS63246370A (en) Production of amine compound
CN115650983A (en) Synthesis method of entecavir intermediate N4
CN117069660A (en) O-phenylenediamine and supercritical CO are utilized 2 Method for green synthesis of benzimidazole and its derivative as raw material