JPS6243610A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPS6243610A
JPS6243610A JP18174785A JP18174785A JPS6243610A JP S6243610 A JPS6243610 A JP S6243610A JP 18174785 A JP18174785 A JP 18174785A JP 18174785 A JP18174785 A JP 18174785A JP S6243610 A JPS6243610 A JP S6243610A
Authority
JP
Japan
Prior art keywords
light
lens
plane mirror
light receiving
photodetecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18174785A
Other languages
Japanese (ja)
Inventor
Hironobu Sato
裕信 佐藤
Takesuke Maruyama
竹介 丸山
Kenji Sano
賢治 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18174785A priority Critical patent/JPS6243610A/en
Publication of JPS6243610A publication Critical patent/JPS6243610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To simplify a device, to reduce its size, and to improve the reliability by providing a plane mirror which has its axis of rotation at right angles to the plane containing the optical axes of a photodetecting lens and a photodetecting element and associating its rotation with the quantity of extension of a photographic lens. CONSTITUTION:The light of a light emitting element 2 is projected on an object 12 through a lens 1 and its reflected light is passed through a lens 3 and reflected by the plane mirror 8 to reach the photodetecting element 4. At this time, when the light is not incident on photodetecting surfaces of the two- division photodetecting element 4, a focus can 5 is rotated and the plane mirror 8 contacting its can surface 6 rotates until the light is incident on the element 4 uniformly. Thus, the plane mirror 8 is provided between the lens 3 and element 4, so as complex mechanism for moving the element 4 is not necessary and the device is reduced in size; and the photodetecting element 4 is fixed, so the reliability is improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、カメラの自動焦点調節装置に係り、特に、小
形化に有利な測距機構に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an automatic focus adjustment device for a camera, and particularly to a distance measuring mechanism that is advantageous for miniaturization.

〔発明の背景〕[Background of the invention]

従来の装置を第6図に示す。発光レンズ1と発光素子2
からなる発光器と、受光レンズ5と撮影レンズのフを一
カスカン5の繰り出し量と連動し、受光レンズ光軸と直
角方向に移動する2分割受光センサ4からなる受光器と
、フォーカスカン移動量を拡大しセンサ位置決め精度を
向上させるためのカム6と、カム6の変位量を2分割受
光センサ4の変位量に変換するためK、一端はカム6と
接し、他端は2分割センサの一部と接し、スキマなく接
触させるために弾性体9で付勢されているリンク機構7
から構成される。
A conventional device is shown in FIG. Light-emitting lens 1 and light-emitting element 2
a light receiver consisting of a two-split light receiving sensor 4 that moves in a direction perpendicular to the optical axis of the light receiving lens in conjunction with the amount of extension of the light receiving lens 5 and the photographing lens in conjunction with the amount of extension of the light receiving lens 5; and a focus can movement amount. A cam 6 is used to enlarge the cam 6 and improve sensor positioning accuracy, and a K is used to convert the displacement amount of the cam 6 into the displacement amount of the two-split light receiving sensor 4. One end is in contact with the cam 6, and the other end is connected to one of the two split sensor sensors. The link mechanism 7 is biased by an elastic body 9 in order to make contact with the part without any gaps.
It consists of

発光素子2から投射された光線は、発光レンズ1を経て
、距離7にある被写体に照射される。
The light beam projected from the light emitting element 2 passes through the light emitting lens 1 and is irradiated onto a subject at a distance 7.

被写体からの反射光は、受光レンズを経て、2分割受光
センサ4上に結儂する。このとき、2分割センサ4の各
分割面に均等に反射光が入射しないときには、各分割面
に均等に反射光が入射する方向に2分割センサ4を移動
するため、7f−カスカン5をモータ(図示せず)で回
動させ、反射光が各分割面に均等になったところで、モ
ータの回転を停止させるよう罠なっている。
The reflected light from the subject passes through the light receiving lens and is focused on the two-split light receiving sensor 4. At this time, if the reflected light is not evenly incident on each divided surface of the two-divided sensor 4, the 7f-cascan 5 is moved by a motor ( (not shown), and when the reflected light is evenly distributed on each divided surface, the rotation of the motor is stopped.

一方、受光センサの移動量は、投光器光軸と受光器光軸
の間隔である基線長tと、受光レンズの焦点距離fと、
被写体距l11!νで定まり、次式で示される。
On the other hand, the amount of movement of the light receiving sensor is determined by the base line length t, which is the distance between the optical axis of the emitter and the optical axis of the receiver, and the focal length f of the light receiving lens.
Subject distance l11! It is determined by ν and is expressed by the following formula.

fL        、、、 、、、 、、、 、、、
 (1)ν また、受光センサの移動量Xと、フを一カスカン移動量
Zと長さl+ 、 t2のレバーから成るリンク機構と
の関係は、次式で示される。
fL , , , , , , , , , ,
(1) ν Furthermore, the relationship between the amount of movement X of the light receiving sensor, the amount of movement Z of the light receiving sensor, and the link mechanism consisting of a lever having a length l+ and t2 is expressed by the following equation.

X=−乞−Z       ・・・・・・・・・・・・
(2)投光器と受光器の小形化をはかるためには、基線
長tを小さくする必要があり、tを小さくすると、式(
1)よりセンサ移動量Xも小さくなる。
X=-beggar-Z ・・・・・・・・・・・・
(2) In order to downsize the emitter and receiver, it is necessary to reduce the base line length t, and when t is made smaller, the formula (
1), the sensor movement amount X also becomes smaller.

このため、式(2)におけるt!または2を小さくする
か、tlを大きくする必要がある。しかし、2は光学設
計より定められる値であり、t2も小さくするKは構造
上限界がある。
Therefore, t! in equation (2)! Alternatively, it is necessary to decrease 2 or increase tl. However, 2 is a value determined by optical design, and there is a structural limit to K, which also reduces t2.

また、tlを大きくすると受光器が撮影レンズより離れ
る方向なので、全体として大きくなったり、被写体から
の反射光が、被写体距離によって、画面内で太きくずれ
たりする不具合が生じるという欠点を有していた。この
ように、リンク機構ではセンサ移動量を小さくすること
は、困難であった。
In addition, when tl is increased, the light receiver is moved away from the photographic lens, which has the disadvantage that the overall size becomes larger, and that the reflected light from the subject may become distorted within the screen depending on the distance to the subject. Ta. As described above, it has been difficult to reduce the amount of sensor movement using the link mechanism.

また、基線長を小さくすることにより、高精度が要求さ
れ、従来のリンク機構では、構造が複雑であるため、要
求を満足させるのは困難であった。
Furthermore, by reducing the baseline length, high precision is required, and it has been difficult to satisfy this requirement with conventional link mechanisms due to their complicated structures.

なお、この種の装置として関連するものは、例えば、特
公昭46−28500号が挙げられる。
A related device of this type is, for example, Japanese Patent Publication No. 46-28500.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、能動型自動焦点装置において、小形化
に有利な測距機構を提供することKある。
An object of the present invention is to provide a distance measuring mechanism that is advantageous for downsizing in an active automatic focusing device.

〔発明の概要〕[Summary of the invention]

従来の方式では、フォーカスカンの直進運動をリンク機
構で回転運動にし、さらに受光センサを受光レンズ光軸
に直角方向く直進運動していたので、構造が複雑になり
、小形化するのが困難であった。そこで、本発明は、受
光レンズと受光センサの間に受光レンズ光軸と発光レン
ズ光軸で形成される平面に直角方向に回転中心をもつ平
面鏡または、同様の回転中心に凹面鏡を設け、受光セン
サを固定し、平面鏡または凹面鏡は被写体距離に応じて
光軸となす角度を変化させ、この角度とフを一カスカン
移動量を対応させるようにカムを形成することにした。
In the conventional method, the linear movement of the focus can was converted into rotational movement using a link mechanism, and the light receiving sensor was moved linearly in a direction perpendicular to the optical axis of the light receiving lens, making the structure complex and making it difficult to downsize. there were. Therefore, the present invention provides a plane mirror having a rotation center perpendicular to the plane formed by the light receiving lens optical axis and a light emitting lens optical axis between the light receiving lens and the light receiving sensor, or a concave mirror having a similar rotation center, and the light receiving lens We decided to form a cam so that the plane mirror or the concave mirror changes the angle it makes with the optical axis depending on the subject distance, and this angle corresponds to the amount of movement of one cascade.

この結果従来の移動メカが不要になり、容易に精度が得
られるようKなりた。
As a result, the conventional moving mechanism is no longer necessary, and accuracy can be easily achieved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図〜第4図より説明する
。第1図は、カメラグリップにおさめた自動焦点調節装
置の構造を説明するために。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. Figure 1 is for explaining the structure of the automatic focus adjustment device housed in the camera grip.

グリップの一部を破断したものである。第2図は、カメ
ラを正面から見たもので、自動焦点調節装置を向って左
側に設けたものである。第5図は、平面鏡に代わって、
凹面鏡を用い受光レンズを不用にした場合の別の実施例
の側面図である。
A part of the grip is broken. FIG. 2 shows the camera viewed from the front, with the automatic focus adjustment device installed on the left side when facing the camera. Figure 5 shows that instead of a plane mirror,
FIG. 7 is a side view of another embodiment in which a concave mirror is used and a light receiving lens is not required.

第1図において、発光レンズ1と発光素子(例えば赤外
発光ダイオード)2より発光部がなり、受光レンズSと
2分割受光素子(例えば、2分割ピンフtトダイオード
)4と受光レンズ光軸A1と受光センサ中心軸A2と直
角方向に回転のための軸8αを有する平面鏡8および平
面@!8を撮影レンズのフォーカスカン5のカム6にす
きまなく接触させる弾性部材(例えば、引張コイルバネ
やネジリバネ)9より受光部が構成される。
In FIG. 1, a light emitting part consists of a light emitting lens 1 and a light emitting element (for example, an infrared light emitting diode) 2, a light receiving lens S, a two-split light receiving element (for example, a two split pin-foot diode) 4, and a light receiving lens optical axis A1. and a plane mirror 8 having an axis 8α for rotation perpendicular to the light receiving sensor central axis A2 and a plane @! A light receiving section is constituted by an elastic member (for example, a tension coil spring or a torsion spring) 9 that brings the cam 8 into contact with the cam 6 of the focusing can 5 of the photographic lens without a gap.

発光素子2よりの光線は、発光レンズ1を経て被写体1
2に投射され、被写体12からの反射光は、受光レンズ
5を経て、平面鏡8で反射し、受光センサ4に到達する
。このとき、反射光が2分割受光センサ4の各受光面に
均等に入射しないとき、即ち、非合焦時は、フを一カス
カン5がモータ(図示せず)で回動され、それに伴ない
フォーカスカン5のカム面6に接する平面鏡8も回転中
心軸8αを中心として、反射光が2分割受光センサ4に
均等に入射するまで回転する。
The light beam from the light emitting element 2 passes through the light emitting lens 1 and reaches the subject 1.
The reflected light from the subject 12 passes through the light-receiving lens 5, is reflected by the plane mirror 8, and reaches the light-receiving sensor 4. At this time, when the reflected light is not equally incident on each light-receiving surface of the two-split light-receiving sensor 4, that is, when it is out of focus, the camera 5 is rotated by a motor (not shown), and the The plane mirror 8 in contact with the cam surface 6 of the focus can 5 also rotates about the rotation center axis 8α until the reflected light evenly enters the two-split light receiving sensor 4.

第5図は、受光レンズ5にθなる角度で入射する光線と
、その光線を受光センサ4の中央部に反射させるための
平面鏡8の角度aの関係を説明するためのものである。
FIG. 5 is for explaining the relationship between a light beam that enters the light-receiving lens 5 at an angle θ and an angle a of the plane mirror 8 for reflecting the light beam to the center of the light-receiving sensor 4.

Lは、受光レンズ5の主点位置5αから、平面fip、
8までの光路長、loは、平面鏡8から、受光センサ4
までの光路長である。
L is from the principal point position 5α of the light receiving lens 5 to the plane fip,
8, the optical path length lo is from the plane mirror 8 to the light receiving sensor 4.
is the optical path length up to.

θは、受光レンズ5に入射する光線の角度、αは、平面
鏡8の光軸に対する角度、βは、平面鏡8への光線の入
射角である。これらの間にjま、次式が成立する。
θ is the angle of the light beam incident on the light receiving lens 5, α is the angle with respect to the optical axis of the plane mirror 8, and β is the angle of incidence of the light beam on the plane mirror 8. Between these, the following equation holds true.

また、θは、被写体距離νと基線長tから次式で求まる
Further, θ is determined from the subject distance ν and the base line length t using the following equation.

θ= jAx−’ l−・・・・・・・・・・・・・・
・(4)式(5)1式(4)を用い被写体距myに対す
る平面鏡80回転角4が求まる。
θ= jAx-' l-・・・・・・・・・・・・・・・
- (4) Equation (5) 1 Using Equation (4), the rotation angle 4 of the plane mirror 80 with respect to the object distance my is determined.

一例を示すと、被写体距離が無限遠の場合は、平面鏡の
角度αは45度になる。また、被写体距離yが至近距離
で1mとし、L =lOswa 、 t6= 5鱈、基
線長tを25■とじたときのnは、42.85度になる
For example, when the subject distance is infinite, the angle α of the plane mirror is 45 degrees. Further, when the subject distance y is 1 m at close range, L = lOswa, t6 = 5 cod, and the base line length t is 25 cm, n becomes 42.85 degrees.

この例では、平面鏡を至近距離から無限距離まで合焦さ
せるための角度は、Z15度である。
In this example, the angle for focusing the plane mirror from close range to infinity is Z15 degrees.

第4図は1、平面鏡取付部の正面図である。平面鏡取付
部は、平面鏡8と回転中心軸8aとレバー14とピン1
5から構成される。
FIG. 4 is a front view of the plane mirror mounting portion. The plane mirror mounting part includes the plane mirror 8, the rotation center shaft 8a, the lever 14, and the pin 1.
Consists of 5.

ピン15は、フォーカスカン5のカム6に接触しており
、フォーカスカン5が移動することkよって、平面鏡8
aは、回転中心軸8aを中心として回転する構造になっ
ている。
The pin 15 is in contact with the cam 6 of the focus can 5, and as the focus can 5 moves, the plane mirror 8
a has a structure that rotates around a rotation center axis 8a.

このように平面鏡を受光レンズと受光センサの間に設定
すると、従来のように受光センサを移動させるための複
雑な機構が必要でなく、平面鏡を回転させるだけでよい
ので、コンパクト化するために基線長を短縮し、高精度
が要求された場合に有利な構造である。
When a plane mirror is set between the light-receiving lens and the light-receiving sensor in this way, there is no need for a complicated mechanism to move the light-receiving sensor as in the past, and all you have to do is rotate the plane mirror. This structure is advantageous when shortened length and high precision are required.

第5図は、受光レンズ5と平面f!!、8の代わりに凹
面鏡15を設けた場合の別の実施例である。
FIG. 5 shows the light receiving lens 5 and the plane f! ! , 8 is replaced by a concave mirror 15.

凹面鏡15を用いた場合は、受光レンズ5が不用であり
、平面9Bを用いた場合にくらべ部品点数が低減でき、
平面鏡を用いた場合と同じ効果を得ろことができる。
When the concave mirror 15 is used, the light receiving lens 5 is unnecessary, and the number of parts can be reduced compared to when the flat surface 9B is used.
The same effect as using a plane mirror can be obtained.

凹面鏡を用いた場合の一例を計算すると、入射軸B1を
無限遠からの光線とすると凹面鏡の鏡軸B2j!入射軸
B1に対し45度に設定し、光線を受光センサ4の中心
部に入射させると、至近距離ν=1rnで、基線長1 
=25mの時、鏡軸は、式(4)のθの2分1回転させ
ればよい。即ち、約0.7度となり、平面便を用いた場
合にくらべ、小さな角度で測距することができる。
Calculating an example using a concave mirror, if the incident axis B1 is a ray from infinity, then the mirror axis B2j of the concave mirror! When the angle is set at 45 degrees with respect to the incident axis B1 and the light beam is incident on the center of the light receiving sensor 4, the close distance ν=1rn and the base line length 1
= 25 m, the mirror axis only needs to be rotated by 1/2 of θ in equation (4). That is, the angle is approximately 0.7 degrees, and distance measurement can be performed at a smaller angle than when using a flat surface.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来のリンク機構をなりシ。 According to the present invention, the conventional link mechanism can be replaced.

平面佼または凹面鏡を回転させて測距するので、装置全
体をコンパクトにすることができる。
Since the distance is measured by rotating a flat mirror or a concave mirror, the entire device can be made compact.

また、受光素子を固定することができるので、結線部に
くり返し荷重がかかることなく、断線や接触不良をおこ
すことがないので、信頼性が向上する。
Furthermore, since the light receiving element can be fixed, repeated loads are not applied to the connection portion, and there is no possibility of wire breakage or contact failure, thereby improving reliability.

さらに、精度を押える箇所が従来罠比べ少なくなり、小
形化による機構部の高精度化も実現が容易化なった。
Furthermore, there are fewer parts that affect accuracy compared to conventional traps, making it easier to achieve high precision in the mechanism due to miniaturization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の側面図、第2図は正面図1
.第5図は原理説明図、第4図は平面鏡取付部の正面図
、第5図は他の実施例の説明図、第6図は従来例の説明
図である。 1・・・発光レンズ、    2・・・発光素子、S・
・・受光レンズ、    4・・・受光素子、5・・・
フォーカスカン、  6・・・カム、7・・・リンク機
構、    8・・・平面鏡、9・・・弾性部材、  
  10・・・カメラ、11・・・撮影レンズ、   
12・・・被写体、15・・・ピン、14・・・レバー
、 15・・・凹面鏡◇ 、ζ°−\
Fig. 1 is a side view of one embodiment of the present invention, and Fig. 2 is a front view.
.. FIG. 5 is an explanatory diagram of the principle, FIG. 4 is a front view of a plane mirror mounting portion, FIG. 5 is an explanatory diagram of another embodiment, and FIG. 6 is an explanatory diagram of a conventional example. 1... Light-emitting lens, 2... Light-emitting element, S.
... Light receiving lens, 4... Light receiving element, 5...
Focus can, 6... cam, 7... link mechanism, 8... plane mirror, 9... elastic member,
10...Camera, 11...Photographing lens,
12...Subject, 15...Pin, 14...Lever, 15...Concave mirror◇, ζ°-\

Claims (1)

【特許請求の範囲】[Claims] 1、発光光学系と発光素子から成る発光器と、受光光学
系と受光素子からなる受光器と、撮影レンズの繰り出し
動作に連動し、該受光素子への入射光線を制御する機構
部より構成された自動焦点調節装置において、受光光学
系と2分割受光素子の間に、平面鏡を配置し、該平面鏡
は、発光光学系と受光光学系の光軸で形成される平面に
直角方向の軸上に回転中心をもち、撮影レンズの繰り出
し動作に連動して回転するようにしたことを特徴とする
自動焦点装置。
1. Consists of a light emitter consisting of a light emitting optical system and a light emitting element, a light receiver consisting of a light receiving optical system and a light receiving element, and a mechanism that controls the incident light beam to the light receiving element in conjunction with the extending operation of the photographic lens. In the automatic focusing device, a plane mirror is arranged between the light-receiving optical system and the two-split light-receiving element, and the plane mirror is arranged on an axis perpendicular to the plane formed by the optical axes of the light-emitting optical system and the light-receiving optical system. An automatic focusing device characterized by having a rotation center and rotating in conjunction with the extending operation of a photographic lens.
JP18174785A 1985-08-21 1985-08-21 Automatic focusing device Pending JPS6243610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18174785A JPS6243610A (en) 1985-08-21 1985-08-21 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18174785A JPS6243610A (en) 1985-08-21 1985-08-21 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPS6243610A true JPS6243610A (en) 1987-02-25

Family

ID=16106173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18174785A Pending JPS6243610A (en) 1985-08-21 1985-08-21 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPS6243610A (en)

Similar Documents

Publication Publication Date Title
US20050225646A1 (en) Camera incorporating a lens barrel
US4728785A (en) Focus detecting device using adjustable inclined sensing means
JPS61251809A (en) Automatic focus adjusting device
JPS6243610A (en) Automatic focusing device
US4566773A (en) Focus detecting device
JPS6120808A (en) Range measuring instrument
JPS6234113A (en) Automatic focus adjusting device
JP2649574B2 (en) Optical system for distance measurement
JPH0216339Y2 (en)
JPS60125812A (en) Focusing detector
JPH05248860A (en) Automatic focusing device
JPS6375717A (en) Automatic focusing device
JPS596457Y2 (en) light wave distance meter
KR920005038B1 (en) Auto focus controlling method and apparatus for a camera
JPH1065189A (en) Photodetector
JPS62160410A (en) Automatic focusing device
JPS61245773A (en) Video camera
JPH027035B2 (en)
JPH043287Y2 (en)
JPS63217333A (en) Automatic focusing device
JPH05240611A (en) Displacement sensor
JPH0731299B2 (en) Automatic focus adjustment device
JPS6247509A (en) Optical system for range finding
JPS61230109A (en) Automatic focusing device
JPH03119333A (en) Photographing device