JP2649574B2 - Optical system for distance measurement - Google Patents

Optical system for distance measurement

Info

Publication number
JP2649574B2
JP2649574B2 JP6287489A JP6287489A JP2649574B2 JP 2649574 B2 JP2649574 B2 JP 2649574B2 JP 6287489 A JP6287489 A JP 6287489A JP 6287489 A JP6287489 A JP 6287489A JP 2649574 B2 JP2649574 B2 JP 2649574B2
Authority
JP
Japan
Prior art keywords
light
light receiving
optical system
distance
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6287489A
Other languages
Japanese (ja)
Other versions
JPH02242212A (en
Inventor
茂孝 弓木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAMURON KK
Original Assignee
TAMURON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAMURON KK filed Critical TAMURON KK
Priority to JP6287489A priority Critical patent/JP2649574B2/en
Publication of JPH02242212A publication Critical patent/JPH02242212A/en
Application granted granted Critical
Publication of JP2649574B2 publication Critical patent/JP2649574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、携帯カメラ、ビデオカメラなどに用いて好
適な測距用光学系に関する。
The present invention relates to a distance measuring optical system suitable for use in a portable camera, a video camera, and the like.

〔従来の技術と発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

従来、測距手段を有するカメラには、操作性を高める
ため、被写体の測定距離に応じて焦点を自動的に調節す
る手段が設けられている。かかる手段は種々提案されて
いるが、例えば特公昭46−28500号公報に開示されてい
るように、カメラから被写体に向けて投射した光束のう
ち、被写体で反射されて戻る光を受光して測距を行い、
この測距した被写体に合焦させるように、撮影レンズの
繰り出し量を調整する技術が知られている。この種の方
式では、三角測量の原理を使用しているのが一般的であ
る。従って、被写体に向って光束を発する発光光学系
(以下発光側レンズと呼する)と発光素子とからなる発
光部と、被写体での反射光を受光する受光光学系(以下
受光側レンズと称する)と、受光素子とからなる受光部
とを、独立にし、両者を間隔をおいて配置していた。即
ち、受光素子に入射する、被写体からの反射光束の角度
から測距するためある程度の間隔が必要であった。
2. Description of the Related Art Conventionally, a camera having a distance measuring means is provided with a means for automatically adjusting a focus according to a measured distance of a subject in order to enhance operability. Various means have been proposed. For example, as disclosed in Japanese Patent Publication No. 46-28500, of the light beams projected from the camera toward the subject, the light reflected by the subject and returned is received and measured. Do the distance,
There is known a technique for adjusting the amount of extension of a photographic lens so as to focus on the subject whose distance has been measured. This type of system generally uses the principle of triangulation. Accordingly, a light-emitting unit including a light-emitting optical system (hereinafter, referred to as a light-emitting lens) that emits a light beam toward a subject and a light-emitting element, and a light-receiving optical system (hereinafter, referred to as a light-receiving lens) that receives light reflected by the subject. And a light-receiving unit composed of a light-receiving element are made independent, and both are arranged at an interval. In other words, a certain distance is required to measure the distance from the angle of the reflected light beam from the subject that enters the light receiving element.

以下、第3図により、かかる従来の自動測距装置を具
体的に説明する。第3図において、1は発光側レンズ、
2は発光素子、3は受光側レンズ、4は受光素子、5は
フオーカス環、6はカム、そして7はリンク機構、8は
リンク機構7の支点である。
Hereinafter, such a conventional automatic distance measuring apparatus will be specifically described with reference to FIG. In FIG. 3, 1 is a light emitting side lens,
Reference numeral 2 denotes a light emitting element, 3 denotes a light receiving side lens, 4 denotes a light receiving element, 5 denotes a focus ring, 6 denotes a cam, 7 denotes a link mechanism, and 8 denotes a fulcrum of the link mechanism 7.

この自動測距装置は、発光側レンズ1と発光素子2と
からなる発光部と、受光側レンズ3と2分割受光センサ
ーを備えた受光素子4とからなる受光部と、フオーカス
カム6を有するフオーカス環5とリンク機構7とからな
る受光素子駆動部とで構成される。発光部と受光部と
は、発光側レンズ1と受光側レンズ3との光軸が所定の
間隔Lで、且つ互に平行となるように配置されている。
フォーカス環5は図示されていないモーターによって回
転駆動され、このフォーカス環5の回転が受光素子4に
伝達され、これが矢印y方向に移動できるように、フォ
ーカス環5と受光素子4との間にリンク機構7が設けら
れている。このリンク機構7は長さp1のレバーと長さp2
のレバーを支点8を介して連結してなり、長さp1のレバ
ーの端部はフォーカス環5に設けられたカム6に、又長
さp2のレバーの端部は受光素子4の一部に当接してい
る。受光素子4は図示されてない弾性体によって付勢さ
れ、これによってリンク機構7の長さp2のレバーの端部
が受光素子4の一部に当接している。
This automatic distance measuring device includes a light emitting section including a light emitting side lens 1 and a light emitting element 2, a light receiving section including a light receiving side lens 3 and a light receiving element 4 having a two-divided light receiving sensor, and a focus ring having a focus cam 6. 5 and a light-receiving-element drive unit including a link mechanism 7. The light emitting section and the light receiving section are arranged such that the optical axes of the light emitting side lens 1 and the light receiving side lens 3 are at a predetermined interval L and are parallel to each other.
The focus ring 5 is driven to rotate by a motor (not shown), and the rotation of the focus ring 5 is transmitted to the light receiving element 4 and is linked between the focus ring 5 and the light receiving element 4 so that the focus ring 5 can move in the direction of arrow y. A mechanism 7 is provided. The link mechanism 7 is of length p 1 lever and length p 2
Lever becomes linked via the fulcrum 8 of the end portion of the lever length p 1 to the cam 6 provided on the focus ring 5, the end portion of the lever of Matanaga of p 2 one of the light receiving element 4 Contacting the department. Light-receiving element 4 is urged by an elastic member not shown, whereby the ends of the lever length p 2 of the link mechanism 7 is in contact with a portion of the light receiving element 4.

かかる構成により、フォーカス環5の回転運動はカム
6、リンク機構7によって矢印x方向の直線運動に変換
され、これによって受光素子4は矢印y方向に直線運動
する。また、フォーカス環5の回転はカム6によって拡
大され、これによって受光素子の位置決め精度を高めて
いる。
With this configuration, the rotational movement of the focus ring 5 is converted into a linear movement in the direction of the arrow x by the cam 6 and the link mechanism 7, whereby the light receiving element 4 linearly moves in the direction of the arrow y. In addition, the rotation of the focus ring 5 is expanded by the cam 6, thereby improving the positioning accuracy of the light receiving element.

次に、この従来技術の動作を説明すると、発光素子2
から発した光は、発光側レンズ1を経て、距離lの距離
にある被写体(図示せず)に投射される。この被写体か
らの反射光は、受光側レンズ3を経て、受光素子4上の
2分割受光センサー上に結像する。このとき、2分割受
光センサーの各分画面に均等に反射光が入射しないとき
は、各分画面に均等に反射光が入射するようにするた
め、モーターによってフォーカス環が回転し、受光素子
4は矢印y方向に移動する。そして、反射光が各分画面
に均等に入射するようになったところで、モーターの回
転を停止させるようになっている。フォーカス環5の上
記回転に伴ってカメラの光学系の撮影レンズ(図示せ
ず)が光軸方向に移動し、受光素子4の2分割受光セン
サーの夫々の分画面に均等に反射光が入射した状態で、
カメラは正しく測距、合焦された状態となる。
Next, the operation of this prior art will be described.
Is emitted to the subject (not shown) located at the distance l via the light emitting side lens 1. The reflected light from the subject passes through the light receiving side lens 3 and forms an image on a two-divided light receiving sensor on the light receiving element 4. At this time, when the reflected light is not uniformly incident on each of the divided screens of the two-divided light receiving sensor, the focus ring is rotated by the motor so that the reflected light is uniformly incident on each of the divided screens. Move in the direction of arrow y. Then, when the reflected light is evenly incident on the screen for each minute, the rotation of the motor is stopped. With the rotation of the focus ring 5, the taking lens (not shown) of the optical system of the camera moves in the direction of the optical axis, and the reflected light is evenly incident on the respective divided screens of the two-part light receiving sensor of the light receiving element 4. In the state,
The camera will be in the correct range and focus state.

一般に、三角測量に基づいて測距を行う場合、発光素
子、もしくは受光素子をカメラの撮影レンズの光軸に対
し直角な方向へ移動させる。受光素子を移動させる方式
について、三角測量の原理を第4図により説明する。
Generally, when performing distance measurement based on triangulation, a light emitting element or a light receiving element is moved in a direction perpendicular to the optical axis of a photographic lens of a camera. Regarding the method of moving the light receiving element, the principle of triangulation will be described with reference to FIG.

第4図において、発光側レンズを、その焦点距離を
f、受光側レンズを3、その焦点距離を、被写体を
B、受光素子をC(第3図では4とした)、発光側レン
ズ1の光軸と受光側レンズ3の光軸との間隔、つまり基
線長をL、発光側レンズ1から被写体Bまでの距離を
l、受光素子Cの測距に伴う移動量をy、被写体Bから
受光側レンズ3の前側主点に向い入射する光の入射角を
θ、後側主点より射出する射出角をθ′とする。
In FIG. 4, the light emitting side lens has a focal length f, the light receiving side lens 3 has a focal length of B, the light receiving element C has a focal length of 4 (in FIG. 3, 4). The distance between the optical axis and the optical axis of the light-receiving side lens 3, that is, the base line length is L, the distance from the light-emitting side lens 1 to the subject B is l, the moving amount accompanying the distance measurement of the light receiving element C is y, and the light is received from the subject B The incident angle of light incident on the front principal point of the side lens 3 is θ 1 , and the exit angle of light emitted from the rear principal point is θ 1 ′.

いま、被写体Bの受光側レンズによる結像位置を受光
側レンズから距離l′、発光側レンズの焦点距離fと受
光側レンズの焦点距離がほぼ等しいものとすると、発
光側レンズ1から被写体Bまでの距離lが受光側レンズ
1の焦点距離fに比して充分に大きいときは、l′は
と見做すことができて、次の式が成立する。
Now, assuming that the image forming position of the subject B by the light-receiving lens is a distance l 'from the light-receiving lens, and that the focal length f of the light-emitting lens is substantially equal to the focal length of the light-receiving lens, from the light-emitting lens 1 to the subject B When the distance l is sufficiently larger than the focal length f of the light-receiving side lens 1, l 'can be regarded as and the following equation is established.

第3図に戻って、受光素子4の移動量yと、フォーカ
ス環5のカム6の移動量xと、リンク機構7の各レバー
の長さp1,p2との間には、次の関係式が成立する。
Returning to FIG. 3, the following distances are set between the movement amount y of the light receiving element 4, the movement amount x of the cam 6 of the focus ring 5, and the lengths p 1 and p 2 of the levers of the link mechanism 7. The relational expression holds.

ところで、カメラを小形にするためには、発光部と受
光部の小型化を計る必要があり、このためには、基線長
Lを小さくする必要があるが、この基線長Lを小さくす
ると、式(1)より受光素子4の移動量yも小さくな
る。このため、式(2)におけるレバーの長さp2、もし
くはカム6の移動量xを小さくするか、あるいはレバー
の長さp1を大きくする必要がある。しかし、カム6の移
動量xは光学設計により定められる量であり、レバーの
長さp2も小さくするには限界がある。又、レバーの長さ
p1を大きくすると、受光部が撮影レンズからますます離
れることになり、カメラが全体として大きくなるという
欠点を有している。
By the way, in order to reduce the size of the camera, it is necessary to reduce the size of the light-emitting unit and the light-receiving unit. To this end, it is necessary to reduce the base line length L. The movement amount y of the light receiving element 4 is also smaller than in (1). For this reason, it is necessary to reduce the lever length p 2 or the moving amount x of the cam 6 in the equation (2) or increase the lever length p 1 . However, the moving amount x of the cam 6 is a quantity determined by the optical design, to smaller lengths p 2 of the lever is limited. Also the length of the lever
Increasing the p 1, will be receiving unit increasingly away from the taking lens has the disadvantage that the camera is increased as a whole.

さらに、受光素子4の移動量yを小さくすると、移動
量yの誤差発生要因となる部品の精度を高くする必要が
ある。
Further, when the movement amount y of the light receiving element 4 is reduced, it is necessary to increase the accuracy of a component that causes an error in the movement amount y.

ところで、上記構造ではカムの移動に伴いリンク機構
7の支点8のガタツキを生じ、このガタツキが受光素子
4の円滑な運動を妨げる。それ故、支点8のガタツキを
除去するためばね等の弾性体によって受光素子4を付勢
してリンク機構7の長さp2のレバーの端部に当接させる
ようにしている。しかし、その結果は充分ではなく、そ
のために受光素子4の移動精度は高いものが要求される
ことになる。即ち、部品の精度を一定とすれば、基線長
を短くするため受光素子4の移動量をyを小さくする
程、移動量のyの誤差が大きくなり、測距精度を低下さ
せる。従って、測距精度を一定に維持するためには部品
の精度を高めなければならなくなる。従って、部品製作
が難しくなると共に、価格が高くなるという問題点を有
していた。
By the way, in the above-mentioned structure, rattling of the fulcrum 8 of the link mechanism 7 occurs due to movement of the cam, and this rattling prevents the light receiving element 4 from moving smoothly. Therefore, and so as to contact with the end portion of the length p 2 lever of the link mechanism 7 to urge the light receiving element 4 by an elastic member such as a spring to eliminate backlash of the fulcrum 8. However, the result is not sufficient, and therefore, a high moving accuracy of the light receiving element 4 is required. That is, assuming that the accuracy of the components is constant, the smaller the amount of movement of the light receiving element 4 is, the smaller the amount of movement y of the light receiving element 4 is in order to shorten the base line length. Therefore, in order to keep the distance measurement accuracy constant, the accuracy of the components must be increased. Accordingly, there has been a problem that it is difficult to manufacture parts and the price increases.

本発明は、従来技術の有するこのような問題点に鑑み
てなされたものであり、その目的とするところは、小型
で、しかも精度の高い測距用光学系を提供することにあ
る。他の目的は、信頼性が高く、しかも低価格な測距用
光学系を提供することにある。
The present invention has been made in view of the above-mentioned problems of the related art, and an object of the present invention is to provide a compact and highly accurate distance measuring optical system. Another object is to provide a highly reliable and inexpensive distance measuring optical system.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため、本発明の測距用光学系にあ
っては、測距用光束を物体へ向けて投射する発行部と、
該物体からの反射光束を受ける受光部とから成り、三角
測量の原理に基づいて上記物体の距離を測定する測距用
光学系において、発光部は発光光学系と発光素子とから
成り、受光部は受光光学系、受光素子、及び該受光光学
系と該受光素子との間に配置した偏角プリズムから成
り、該プリズムはその頂角をαとしたとき 15゜≧α≧4゜ なる条件を満足するものとし、測距に際して、物体の遠
距離から近距離への移動に伴い、上記偏角プリズムを受
光光学系の光軸に沿って受光光学系に接近する方向に移
動させるようにすればよい。
In order to achieve the above object, in the distance measuring optical system of the present invention, an issuer that projects a distance measuring light beam toward an object,
A light receiving unit for receiving a reflected light beam from the object; a distance measuring optical system for measuring the distance to the object based on the principle of triangulation; a light emitting unit includes a light emitting optical system and a light emitting element; Is composed of a light receiving optical system, a light receiving element, and a deflection prism disposed between the light receiving optical system and the light receiving element, and the prism has a condition that 15 ° ≧ α ≧ 4 ° when its apex angle is α. When measuring the distance, the deflection prism is moved along the optical axis of the light receiving optical system in a direction approaching the light receiving optical system as the object moves from a long distance to a short distance. Good.

〔作 用〕(Operation)

偏角プリズムは、被写体の距離に応じて被写体からの
反射光の入射角度が変化しても、光軸に沿って移動する
ことによって、受光素子上の入射光線の位置を同一位置
に形成させることができ、しかも、測距に際し、移動す
る偏角プリズム移動量を、従来の受光素子を移動させる
方式の受光素子移動量に比較し格段に大きくできる。
Even if the angle of incidence of reflected light from the subject changes according to the distance to the subject, the deflection prism moves along the optical axis to form the position of the incident light on the light receiving element at the same position. In addition, the moving amount of the deflected prism to be moved at the time of distance measurement can be much larger than the moving amount of the light receiving element in the conventional method of moving the light receiving element.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第2図は、本発明による測距光学系を組込んだ自動測
距装置の一実施例における要部概略断面構成図である。
1は発光光学系、2は発光素子、3は受光光学系、4は
受光素子、5は偏角プリズム、6は偏角プリズム5の側
面に取付けられた支軸、7は偏角プリズム摺動溝、8は
撮影レンズのフォーカス環、そして9はフォーカス環8
のカムである。
FIG. 2 is a schematic sectional view of a main part of an embodiment of an automatic distance measuring apparatus incorporating a distance measuring optical system according to the present invention.
1 is a light-emitting optical system, 2 is a light-emitting element, 3 is a light-receiving optical system, 4 is a light-receiving element, 5 is a deflection prism, 6 is a spindle mounted on the side surface of the deflection prism 5, and 7 is a deflection prism sliding. The groove, 8 is the focus ring of the taking lens, and 9 is the focus ring 8.
The cam.

第2図において、発光光学系1と発光素子(例えば赤
外発光ダイオード)2とで発光部が構成され、受光光学
系3と受光素子(例えば、2分割ピンフォトダイオー
ド)4と、光軸に対し直交するように配置された支軸6
により支持されて光軸方向に移動可能な偏角プリズム
(ガラス、又はプラスチック製)5と、この偏角プリズ
ム5を撮影レンズを移動させるフォーカス環8のカム9
に接触させるための弾性部材(図示せず)とで受光部が
構成される。又、支軸6は偏角プリズム摺動溝7に嵌装
されているので、撮影レンズの移動につれてフォーカス
環8が回転すると、支軸6は偏角プリズム摺動溝7に沿
って光軸方向に移動し、これに伴って偏角プリズム5も
光軸方向に移動する。
In FIG. 2, a light emitting section is constituted by a light emitting optical system 1 and a light emitting element (for example, an infrared light emitting diode) 2, and a light receiving optical system 3, a light receiving element (for example, a two-part pin photodiode) 4, and an optical axis. A support shaft 6 arranged to be orthogonal to the other
Deflector prism (made of glass or plastic) 5 supported by the lens and movable in the optical axis direction, and a cam 9 of a focus ring 8 for moving the deflector prism 5 for moving the taking lens
An elastic member (not shown) for contacting the light-receiving portion constitutes a light-receiving portion. Further, since the support shaft 6 is fitted in the deflection prism sliding groove 7, when the focus ring 8 rotates as the photographing lens moves, the support shaft 6 moves along the deflection prism sliding groove 7 in the optical axis direction. The deflection prism 5 also moves in the optical axis direction.

発光素子2よりの光は、発光光学系1を経て、被写体
(図示せず)に投射され、この被写体からの反射光は、
発光光学系3と偏角プリズム5を経て、受光素子4に到
達する。このとき、反射光が受光素子4の2分割受光セ
ンサーの各分画面に均等に入射しないとき、即ち非合焦
時は、フォーカス環8がモーター(図示せず)により回
動され、それに伴いフォーカス環8のカム9に支軸6を
介して接する偏角プリズム5は、上記支軸6が嵌装され
ている偏角プリズム摺動溝7により案内されて、反射光
が2分割受光センサーの各分画面に均等に入射するに至
るまで、光軸に沿って移動する。これによって、カメラ
の測距は完了し、カメラは合焦された状態になる。
The light from the light emitting element 2 is projected on a subject (not shown) through the light emitting optical system 1, and reflected light from the subject is
The light reaches the light receiving element 4 via the light emitting optical system 3 and the deflection prism 5. At this time, when the reflected light is not uniformly incident on each screen of the two-divided light receiving sensor of the light receiving element 4, that is, at the time of out-of-focus, the focus ring 8 is rotated by a motor (not shown), and the focus The deflection prism 5 in contact with the cam 9 of the ring 8 via the support shaft 6 is guided by the deflection prism sliding groove 7 in which the support shaft 6 is fitted, and the reflected light is divided into two parts of the two-part light receiving sensor. It moves along the optical axis until it evenly enters the minute screen. Thereby, the distance measurement of the camera is completed, and the camera is brought into a focused state.

次に、本発明の測距用光学系の作用を説明する。この
光学系は、三角測量の原理を説明した第4図の光学配置
において、受光光学系3と受光素子4との間に光軸に沿
って移動可能な偏角プリズムを配置してなるものであ
る。これを第1図に示す。第1図において、 3:受光光学系、 5:偏角プリズム、 4:受光素子、 :受光光学系3の焦点距離、 S1:遠距離測距時における、受光光学系3から偏角プリ
ズム5までの距離、 1:近距離測距時における、受光光学系3から偏角プリ
ズム5までの距離、 α:偏角プリズム5の頂角、 ε:偏角プリズム5による光線偏角 とする。
Next, the operation of the distance measuring optical system of the present invention will be described. In this optical system, a deflection prism movable along the optical axis is arranged between the light receiving optical system 3 and the light receiving element 4 in the optical arrangement shown in FIG. 4 for explaining the principle of triangulation. is there. This is shown in FIG. In FIG. 1, 3: light receiving optical system, 5: deflecting prism, 4: light receiving elements, a focal length of the light receiving optical system 3, S 1: at a long distance ranging, angle-deviating prism from the light-receiving optical system 35 Distance to, 1 : the distance from the light receiving optical system 3 to the deflection prism 5 during short-distance ranging, α: apex angle of deflection prism 5, ε: ray deflection angle by deflection prism 5

以下、本発明の効果を明解に説明するため、レンズは
薄肉サンズであり、偏角プリズムは稜角の小さなプリズ
ムであるとする。
Hereinafter, in order to clearly explain the effects of the present invention, it is assumed that the lens is a thin-walled lens and the deflection prism is a prism having a small ridge angle.

上に列挙した諸パラメータのうち、まずθ′を求め
る。第4図を参照して、発光光学系1から出射した光は
被写体Bにおいて反射される。反射光の一部は受光光学
系3に入射し、これから出射する。いま、入射光とし
て、受光光学系3の主点を通るものをとれば、該受光光
学系の出射角θ′は入射角θに等しく、次式で与え
られる。
First, θ 1 ′ is determined from the parameters listed above. Referring to FIG. 4, light emitted from light emitting optical system 1 is reflected at subject B. Part of the reflected light enters the light receiving optical system 3 and exits therefrom. Now, assuming that the incident light passes through the principal point of the light receiving optical system 3, the output angle θ 1 ′ of the light receiving optical system is equal to the incident angle θ 1 and is given by the following equation.

上式(3)は、第1図において、受光光学系3から出
射する光が光軸となす角度はθ′、被写体Bの距離l
に応じて変わるということを示している。
In the above equation (3), in FIG. 1, the angle between the light emitted from the light receiving optical system 3 and the optical axis is θ 1 ′, and the distance l of the subject B is
It is shown that it changes according to.

次に、光線偏角εであるが、通常の測距条件では被写
体距離l(第4図参照)は基線長Lに比べ充分大きいか
ら、偏角プリズム5の頂角が小さければ、文献、幾何光
学(上巻)山田幸五郎著、p126の「稜角の小さいプリズ
ム」の項で明らかなように、プリズム5の頂角をα、屈
折率をNとしたとき光線偏角εは(N−1)αで与えら
れる。
Next, regarding the light beam deflection angle ε, the subject distance l (see FIG. 4) is sufficiently larger than the base line length L under normal distance measurement conditions. Optics (1st volume), written by Kogoro Yamada, p126, “Prism with Small Edge Angle”, when the vertex angle of the prism 5 is α and the refractive index is N, the ray deflection angle ε is (N−1). It is given by α.

第1図に戻り、遠距離の被写体(図示せず)で反射さ
れた光は、受光光学系3の光軸に対しθ′の角度で出
射する。この光は、偏角プリズム5に入射し、屈折され
た後受光光学系3の焦点面に置かれた受光素子4上の、
高さΔy1と記した位置に達する。Δy1は図から、簡単に
求められて、 Δy1=S1tanθ′−(−S1)tan(ε−θ′)
(4) 被写体距離が変わり、受光光学系3から出射する光の出
射角が となったとする。この場合、受光光学系3と受光素子4
との間に用いた偏角プリズム5の位置を不変とすると、
受光素子4上の結像位置Δは(4)式において、θ
′を と置換すれば求まり、 となる。
Returning to FIG. 1, the light reflected by a long-distance subject (not shown) is emitted at an angle θ i ′ with respect to the optical axis of the light receiving optical system 3. This light enters the deflection prism 5, and after being refracted, on the light receiving element 4 placed on the focal plane of the light receiving optical system 3.
Reaches a height [Delta] y 1 and marked position. Δy 1 is easily obtained from the figure, and Δy 1 = S 1 tan θ 1 ′ − (− S 1 ) tan (ε−θ 1 ′)
(4) The subject distance changes, and the emission angle of the light emitted from the light receiving optical system 3 becomes Let's say In this case, the light receiving optical system 3 and the light receiving element 4
Assuming that the position of the deflection prism 5 used between
The imaging position delta 1 on the light receiving element 4 in (4), theta
1 ' Is obtained by replacing Becomes

いま、偏角プリズム5を位置S1からへ移動させる
ことによって、Δの結像点をΔy1の結像点に一致さ
せることができたとすれば、その時の偏角プリズムPの
位置は上記(4)式と(4)′式を等置して得た方
程式を、について解けば求まり、 となる。このときの偏角プリズム5は破線で図示されて
いる。
Now, if the deviation prism 5 from the position S 1 by moving to 1, that can be matched delta 1 of the image forming point on the image forming point of [Delta] y 1, the position of the deflecting prism P at that time 1 Is obtained by solving the equation obtained by equalizing the above equations (4) and (4) ′ with respect to 1 , and Becomes The deflection prism 5 at this time is shown by a broken line.

(5)式は、受光光学系3を出射する光の出射角 の変化、つまり被写体距離lの変化に応じて、受光光学
系3と受光素子4との間に設けた偏角プリズム5の位置
を変えることによって、受光光学系3を出射する光の受
光素子4上の結像位置を一定の高さ(Δy1)に維持する
ことが可能であることを示している。
Equation (5) is an emission angle of light exiting the light receiving optical system 3. The position of the deflection prism 5 provided between the light receiving optical system 3 and the light receiving element 4 is changed in accordance with the change of the object distance l, so that the light receiving element 4 of the light emitted from the light receiving optical system 3 is changed. This shows that the upper imaging position can be maintained at a constant height (Δy 1 ).

(5)式は近距離にある被写体Bの測距時におけ
る、受光光学系3から偏角プリズム5までの距離
与える。(5)式において、 であり、Lは基線長、ε=(N−1)αであり、は受
光光学系3の焦点距離、そしてΔy1は一定に維持される
から、これを定数Δyに等しく置いてΔy1=Δy。従っ
て、近距離測距時の偏角プリズムPの位置は、α,
;L,N,,Δyの関数として=S(α,;L,N,
,Δy)で与えられる。
Equation (5) gives the distance 1 from the light receiving optical system 3 to the deflection prism 5 when measuring the distance of the subject B at a short distance. In equation (5), And L is the base line length, ε = (N−1) α, is the focal length of the light receiving optical system 3, and Δy 1 is kept constant. Therefore, by setting this equal to the constant Δy, Δy 1 = Δy. Therefore, the position 1 of the deflection prism P at the time of short distance measurement is α,
; L, N ,, 1 = S (α,; L, N,
, Δy).

次に遠距離lにある被写体Bの測距時における、受光
光学系3から偏角プリズム5までの距離S1で与えられる。(9)′式において、 で、Lは基線長、ε=(N−1)α、は受光光学系3
の焦点距離、そしてΔy1=Δy。従って、遠距離測距時
の偏角プリズム5の位置S1は、α,l;L,N,,Δyの関
数としてS1=S(α,l;L,N,,Δy)で与えられる。
Next, the distance S 1 from the light receiving optical system 3 to the deflection prism 5 at the time of distance measurement of the subject B at a long distance l is Given by In equation (9) ', Where L is the base line length, ε = (N−1) α, and the light receiving optical system 3
Focal length, and Δy 1 = Δy. Therefore, the position S 1 of the angle-deviating prism 5 at the time of long distance range finding, alpha, l; is given by; (L, N ,, Δy α , l) L, as a function of N ,, Δy S 1 = S .

遠距離測距から近距離測距への切換えに伴って偏角プ
リズム5が移動した距離をΔSとすると ΔS=−S1=(α,;L,N,,Δy) −S(α,l;L,N,,Δy) (6) となる。(6)式において、ΔS,,l,L,N,,Δyは
測距光学系の設計時に決定すべきパラメーターである。
これらパラメーターを決定すれば、偏角プリズム5の頂
角αの値も定まる。経験的に得られた許容すべきαの値
は次に記す範囲内にある。
Assuming that the distance the deflector prism 5 has moved along with the switching from the long distance measurement to the short distance measurement is ΔS, ΔS = 1− S 1 = (α,; L, N ,, Δy) −S (α, l; L, N ,, Δy) (6) In the equation (6), ΔS ,, l, L, N ,, Δy are parameters to be determined when designing the distance measuring optical system.
If these parameters are determined, the value of the vertex angle α of the deflection prism 5 is also determined. The empirically obtained acceptable values of α are in the following ranges.

15゜≧α≧4゜ (7) すなわち、偏角プリズム5の頂角αが上限(15゜)を
超えると、被写体距離の変化に応じて移動さすべき偏角
プリズム5の移動量は小さくなるが、このときの移動は
作動の不安定を生じるので好ましくない。一方、偏角プ
リズム5の頂角αが下限(4゜)を下廻ると、被写体距
離の変化に応じて、移動さすべき偏角プリズム5の移動
量が大きくなり、その範囲は受光光学系3と受光素子4
の距離を超えることになり、これは実現不可能である。
15 ° ≧ α ≧ 4 ° (7) That is, when the apex angle α of the deflection prism 5 exceeds the upper limit (15 °), the moving amount of the deflection prism 5 to be moved according to the change in the subject distance becomes small. However, the movement at this time is not preferable because the operation becomes unstable. On the other hand, when the apex angle α of the deflection prism 5 falls below the lower limit (4 °), the amount of movement of the deflection prism 5 to be moved increases in accordance with the change in the subject distance, and the range is within the light receiving optical system 3. And light receiving element 4
Which is not feasible.

次に、具体例を2つ挙げる。 Next, two specific examples will be given.

具体例1. 基線長 L=30mm 受光光学系3の焦点距離 =26mm 偏角プリズムの頂角 α=10゜ 偏角プリズムの屈折率 N=1.51633 被写体距離 l=1.2m〜20m 上記条件で、被写体を20mの遠距離に置き、偏角プリ
ズム5を受光光学系3から21mm離れた位置に配置したと
き、受光素子4の面上に結像する光の高さはΔy1=−0.
42mmであった。つぎに、被写体が20mから1.2mの近距離
へ移動したとき、偏角プリズム5を上記位置からΔS=
5.30mm移動させることによって、受光素子4の面上の上
記同一位置に光を結像させることができ、こうして被写
体の近距離測距を行い、この測距距離に撮影レンズを合
焦させることができた。
Specific Example 1. Base line length L = 30 mm Focal length of light receiving optical system 3 = 26 mm Apex angle of deflected prism α = 10 ゜ Refractive index of deflected prism N = 1.51633 Subject distance l = 1.2 m to 20 m Subject under the above conditions Is placed at a distance of 20 m, and the deflection prism 5 is arranged at a position 21 mm away from the light receiving optical system 3, the height of the light imaged on the surface of the light receiving element 4 is Δy 1 = −0.
42 mm. Next, when the subject moves from 20 m to a short distance of 1.2 m, the deflection prism 5 is moved from the above position by ΔS =
By moving 5.30 mm, light can be focused on the same position on the surface of the light receiving element 4. Thus, the subject can be measured in a short distance, and the photographing lens can be focused on this distance. did it.

具体例2. 基線長 L30mm 受光光学系3の焦点距離 =26mm 偏角プリズムの頂角 α=6゜ 偏角プリズムの屈折率 N=1.51633 被写体距離 l=1.2m〜20m 上記条件で、被写体を20mの遠距離に置き、偏角プリ
ズム5を受光光学系3から21mm離れた位置に配置したと
き、受光素子4の面上に結像する光の高さはΔy1=−0.
24mmであった。つぎに、被写体が20mから1.2mの近距離
へ移動したとき、偏角プリズム5を上記位置からΔS=
9.01mm移動させることによって、受光素子4の面上の上
記同一位置に光を結像させることができ、こうして被写
体の近距離測距を行い、この測距距離に撮影レンズを合
焦させることができた。
Specific example 2. Base line length L30mm Focal length of light receiving optical system 3 = 26mm Apex angle of deflected prism α = 6 ゜ Refractive index of deflected prism N = 1.51633 Subject distance l = 1.2m to 20m Under the above conditions, subject is 20m When the deflection prism 5 is disposed at a position 21 mm away from the light receiving optical system 3, the height of the light imaged on the surface of the light receiving element 4 is Δy 1 = −0.
It was 24 mm. Next, when the subject moves from 20 m to a short distance of 1.2 m, the deflection prism 5 is moved from the above position by ΔS =
By moving the lens by 9.01 mm, light can be imaged at the same position on the surface of the light receiving element 4. Thus, the subject can be measured in a short distance, and the photographing lens can be focused on this distance. did it.

ところで、従来方式で測距光学系を構成した場合に、
受光素子を被写体距離に応じて移動させる方式について
該受光素子の移動量を(1)式により求めると0.57mmと
なる。本発明により測距光学系を構成した場合、偏角プ
リズム5の移動量は、具体例1で5.30mm、又具体例2で
9.01mmであって、従来方式の場合に比して移動量が格段
に大きい。従って、本発明の場合は、移動精度を高くす
ることなく所定の測距精度を得ることができる。
By the way, when the distance measuring optical system is configured by the conventional method,
When the amount of movement of the light receiving element is determined by the equation (1) in the method of moving the light receiving element according to the subject distance, it is 0.57 mm. When the distance measuring optical system is configured according to the present invention, the moving amount of the deflection prism 5 is 5.30 mm in the first embodiment, and the movement amount of the second embodiment is 5.30 mm.
9.01 mm, which is much larger than the conventional method. Therefore, in the case of the present invention, a predetermined distance measurement accuracy can be obtained without increasing the movement accuracy.

〔発明の効果〕〔The invention's effect〕

本発明は、上述のように構成されているので、次に記
載する効果を奏する。
The present invention is configured as described above, and has the following effects.

受光光学系と受光素子との間に偏角プリズムを設け、
測距に伴う移動量を従来方式に比して格段に大きくする
ことができるため、偏角プリズムの移動精度をそれ程高
くすることなく測距精度の向上が計れる。
A deflection prism is provided between the light receiving optical system and the light receiving element,
Since the amount of movement involved in the distance measurement can be significantly increased as compared with the conventional method, the distance measurement accuracy can be improved without significantly increasing the movement accuracy of the deflection prism.

また、撮影レンズのフォーカス環の回転運動を偏角プ
リズムに伝達する伝達機構も非常に簡単な構成にするこ
とができるため、測距光学系の信頼性向上と低価格化が
計れる。
Further, since a transmission mechanism for transmitting the rotational movement of the focus ring of the photographing lens to the deflection prism can have a very simple configuration, it is possible to improve the reliability and reduce the cost of the distance measuring optical system.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例の光学系部分配置図、第2図は
本発明の実施例の測距用光学系を組込んだ自動測距装置
の要部概略断面構成図、第3図は従来方式の測距装置の
概略説明図、第4図は三角測量の原理を説明する図であ
る。 1……発光光学系 2……発光素子 3……受光光学系 4……受光素子 5……偏角プリズム 6……偏角プリズム5の側面に取付けられた支軸 7……偏角プリズムの摺動溝 8……撮影レンズのフォーカス環 9……フォーカス環8のカム
FIG. 1 is a partial arrangement diagram of an optical system according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional configuration view of a main part of an automatic distance measuring device incorporating a distance measuring optical system according to an embodiment of the present invention. FIG. 4 is a schematic explanatory diagram of a conventional distance measuring device, and FIG. 4 is a diagram illustrating the principle of triangulation. DESCRIPTION OF SYMBOLS 1 ... Light-emitting optical system 2 ... Light-emitting element 3 ... Light-receiving optical system 4 ... Light-receiving element 5 ... Deflected prism 6 ... Support shaft attached to the side surface of deflected prism 5 7 ... Deflected prism Sliding groove 8: Focus ring of photographing lens 9: Cam of focus ring 8

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】測距用光束を物体へ向けて投射する発光部
と、該物体からの反射光束を受ける受光部とから成り、
三角測量の原理に基づいて上記物体の距離を測定する測
距光学系において、 発光部は発光光学系と発光素子とから成り、受光部は受
光光学系、受光素子、及び該受光光学系と該受光素子と
の間に配置した偏角プリズムから成り、該プリズムはそ
の頂角をαとしたとき 15゜≧α≧4゜ なる条件を満足するものとし、測距に際して、物体の遠
距離から近距離への移動に伴い、上記偏角プリズムを受
光光学系の光軸に沿って受光光学系に接近する方向に移
動させるようにしたことを特徴とする測距用光学系。
1. A light emitting unit for projecting a light beam for distance measurement toward an object, and a light receiving unit for receiving a light beam reflected from the object,
In a distance measuring optical system that measures the distance of the object based on the principle of triangulation, a light emitting unit includes a light emitting optical system and a light emitting element, and a light receiving unit includes a light receiving optical system, a light receiving element, and the light receiving optical system and the light receiving element. The prism consists of a deflector prism disposed between the light receiving element and the prism, which satisfies the condition of 15 ° ≧ α ≧ 4 ° when the apex angle is α. An optical system for distance measurement, wherein the deflection prism is moved in a direction approaching the light receiving optical system along the optical axis of the light receiving optical system with movement to a distance.
JP6287489A 1989-03-15 1989-03-15 Optical system for distance measurement Expired - Fee Related JP2649574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6287489A JP2649574B2 (en) 1989-03-15 1989-03-15 Optical system for distance measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6287489A JP2649574B2 (en) 1989-03-15 1989-03-15 Optical system for distance measurement

Publications (2)

Publication Number Publication Date
JPH02242212A JPH02242212A (en) 1990-09-26
JP2649574B2 true JP2649574B2 (en) 1997-09-03

Family

ID=13212851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6287489A Expired - Fee Related JP2649574B2 (en) 1989-03-15 1989-03-15 Optical system for distance measurement

Country Status (1)

Country Link
JP (1) JP2649574B2 (en)

Also Published As

Publication number Publication date
JPH02242212A (en) 1990-09-26

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
JPS58100840A (en) Finder of camera
KR20100119526A (en) Method and apparatus for measuring relative positions of a specular reflection surface
US4833497A (en) Apparatus for adjusting focus in the macro-photographing mode of an automatic focus camera
EP3812700B1 (en) Surveying instrument
EP0201036A2 (en) Automatic focusing apparatus
US6504611B2 (en) Two stage optical alignment device and method of aligning optical components
US4682886A (en) Distance measuring device
JP4694290B2 (en) Method and apparatus for measuring transmittance of finite optical element
US4279484A (en) Apparatus for measuring a range to a subject
JP3120885B2 (en) Mirror surface measuring device
JPS6248209B2 (en)
JP2649574B2 (en) Optical system for distance measurement
US6388738B1 (en) Rangefinder optical system
US4566773A (en) Focus detecting device
JPS6234113A (en) Automatic focus adjusting device
JP3222214B2 (en) Target surface position detection device
JPH08261734A (en) Shape measuring apparatus
JPS62160410A (en) Automatic focusing device
JP2826618B2 (en) Rangefinder inspection equipment
US3664749A (en) Contour projector having an optical system which moves in a vertical direction to determine the vertical dimensions of a specimen
JPS58174808A (en) Distance measuring device
KR930004432Y1 (en) Autofocusing apparatus for camera
US2180017A (en) Camera with range finder
JPS60175016A (en) Focus detector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees