JPS58174808A - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JPS58174808A
JPS58174808A JP5771982A JP5771982A JPS58174808A JP S58174808 A JPS58174808 A JP S58174808A JP 5771982 A JP5771982 A JP 5771982A JP 5771982 A JP5771982 A JP 5771982A JP S58174808 A JPS58174808 A JP S58174808A
Authority
JP
Japan
Prior art keywords
light
lens
light receiving
receiving element
light projecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5771982A
Other languages
Japanese (ja)
Inventor
Masamichi Toyama
当山 正道
Naoya Kaneda
直也 金田
Kazuo Fujibayashi
和夫 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5771982A priority Critical patent/JPS58174808A/en
Priority to DE3310601A priority patent/DE3310601C2/en
Priority to GB08308099A priority patent/GB2122448B/en
Publication of JPS58174808A publication Critical patent/JPS58174808A/en
Priority to US06/898,864 priority patent/US4682886A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To improve detecting accuracy, by arranging the direction of the minimum length of a noncircular light receiving lens along the direction perpendicular to a boundary plane of two regions, which are obtained by dividing an output. CONSTITUTION:The device comprises, e.g. an infrared ray light emitting diode, a laser diode, or the like. A light projecting element 1 forms a light projecting spot image through a light projecting lens 2 constituting a image forming optical system. When luminous flux projected form the light projecting element 1 hits an object, diffused reflection occurs. The light projecting spot image on the object is formed on a light receiving element 3 through the light receiving lens 4. the light receiving element 3 is devided into the two regions, and the outputs are taken out of the two regions. The image forming positions are changed when the distances to the object changes to l1, l2, or l3. Information indicating the distance to the object is obtained from the position, where the light projecting spot image on the object is formed on the light receiving element.

Description

【発明の詳細な説明】 この発明は測距装置、とくに自動焦点調節装置における
測距装置に関し、受光素子における検出精度を高める手
段に%徴を有する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distance measuring device, particularly a distance measuring device in an automatic focusing device, and features a means for increasing detection accuracy in a light receiving element.

カメラ用の自動焦点調節装置における測距装置について
は、従来多数の提案がなされているが、その多くは三角
測距法の原理によるものである。その−例を挙げれば、
投光光学系と受光(1) 光学系とを、それらのyt、@を互に基線長だけ隔てて
設ける。投光光学系中の投光素子から発射された光束は
、被測距物体に当たると乱反射し、受光素子上に被測距
物体上の投光スポット像が結像される。この結11位置
は、被測距物体までの距離が変化するにつれて変化する
ので、この結像位置によって被測距物体までの距離を示
す情報が与えられる。撮影装置の場合には、撮影光学系
のうち合焦動作を行うレンズ群と上記の受光素子(さら
には投光素子)とが、カム機構等により連動されていて
、これにより被測距物体(被写体)までの距離検出と撮
影光学系の自動焦点調節とが可能となる。そして上記の
受光素子が2つの領域に分けて出力をとり出すことがで
きる構成のものであると、2つの領域の出力の差により
合焦状態を検出するので、受光素子におけるビークf直
を検出するものより検出精度を高めることができる1、 この発明は、上記の受光素子が2つの領域に分けて出力
をとね出すことができる型の測距装(2) 置において、受光素子に対する結像光学系の構成及び配
置により、距離検出精度を一層向上させることを目的と
する。
Many proposals have been made regarding distance measuring devices for automatic focusing devices for cameras, and most of them are based on the principle of triangulation. For example,
Light projection optical system and light reception (1) Optical systems are provided with their yt and @ separated from each other by the baseline length. When the light beam emitted from the light projecting element in the light projecting optical system hits the object to be measured, it is diffusely reflected, and a projected spot image on the object to be measured is formed on the light receiving element. Since this position 11 changes as the distance to the object to be measured changes, this imaging position provides information indicating the distance to the object to be measured. In the case of a photographic device, the lens group that performs the focusing operation in the photographic optical system and the above-mentioned light receiving element (and also the light emitting element) are linked by a cam mechanism etc. This makes it possible to detect the distance to the subject (object) and automatically adjust the focus of the photographic optical system. If the above-mentioned light-receiving element is configured to be able to extract the output by dividing it into two regions, the in-focus state is detected based on the difference in the output of the two regions, so the peak f-direction in the light-receiving element is detected. 1. The present invention provides a distance measuring device (2) in which the light receiving element described above is capable of outputting output in two areas. The purpose is to further improve distance detection accuracy by the configuration and arrangement of the image optical system.

要約すれば、この発明は、投光素子と、2つの領域に分
割して出力をと如出すことができる受光素子と、前記の
投光素子と受光素子とを用いて被測距物体までの距離を
示す情報を与える手段と、受光素子に対するレンズとを
具え;この受光素子に対するレンズは非円形であって、
その最小の長さの方向が前記の2つの領域の境界面に対
し垂直彦方向に沿って配置されている測距装置を特徴と
する。
In summary, the present invention provides a light emitting element, a light receiving element that can be divided into two areas and outputting an output, and a distance measuring device that uses the above light emitting element and light receiving element to reach an object to be measured. comprising means for providing information indicating distance and a lens for the light receiving element; the lens for the light receiving element is non-circular;
The distance measuring device is characterized in that the direction of its minimum length is arranged along a direction perpendicular to the boundary surface of the two regions.

上記の2つの領域に分割E7て出力をとり出すことがで
きる受光率子は、2つの領域に分割され、それぞれの領
域から出力をとり出すことができるもの、又は2つの受
光素子を近接して配置したもの′4種々の実施態様があ
夛うる。
The light-receiving element can be divided into two regions E7 and output can be taken out, or the light-receiving element can be divided into two regions and output can be taken out from each region, or the two light-receiving elements can be placed close to each other. Various embodiments of the arrangement are possible.

−またこの発明を実施するに当圧つでは、前記の受光素
子の2つの領域も、それらの境界間に対し垂直な方向が
、前記のレンズの最小の長さく5) の方向と平行するよう配置するを可とする。
- Also, in carrying out the present invention, the two regions of the light receiving element are arranged such that the direction perpendicular to the boundary between them is parallel to the direction of the minimum length of the lens. It is possible to place

昼下図面を裟照してこの発明を具体化した具体例につい
て説明する。下記の説明において、この発明のtf!j
倣は、王として第1図ないし第4図及び第8図に関連し
て説明する。  。
A specific example embodying the present invention will be described with reference to daytime drawings. In the following description, the tf! j
The imitation will be described in conjunction with FIGS. 1-4 and 8 as a king. .

第1図はこの発明が適用される自動焦点調節装置の一例
を示す。図において、1は投光素子であって例えば赤外
線発光ダイオード(IRKD )又はレーザダイオード
(LD )等よりなる。2は結像光学系を構成する投光
レンズであって、投光素子1はこのレンズによプ、この
例では被写界側に、一般的には被測距物体側に投光スポ
ット像を形成する。投光素子1よす発射された光束が被
写体に当圧ると乱反射し、被写体面上の投光スポット像
は受光レンズ4により受光素子6上に結像される。受光
索子6は、例えば2つの領域に分割され、それぞn、の
領域から出力をとヤ出すことができるフォトダイオード
、あるいは2つの受光素子を近接し、て配置したもの等
捕々の実施態様があシうる。上記の結像位置は、(4) 被写体距離が第1図に示すようにl4,12.l、と変
化するにつれて、変化するので、被写体上の投光スポッ
ト像が受光素子上に結像する位置により被写体゛までの
距離を示す情報が与えられる。
FIG. 1 shows an example of an automatic focus adjustment device to which the present invention is applied. In the figure, reference numeral 1 denotes a light projecting element, which is comprised of, for example, an infrared light emitting diode (IRKD) or a laser diode (LD). Reference numeral 2 denotes a light projection lens constituting the imaging optical system, and the light projection element 1 is projected by this lens, and in this example, a light spot image is projected toward the object side, and generally toward the object to be measured. form. When the light beam emitted from the light projecting element 1 hits the subject, it is diffusely reflected, and a projected light spot image on the subject surface is formed on the light receiving element 6 by the light receiving lens 4. The light receiving element 6 may be, for example, a photodiode which is divided into two regions and can output an output from each region n, or a photodiode having two light receiving elements arranged close to each other. There are various aspects. The above image forming position is (4) when the subject distance is l4, 12, . 1, the distance to the subject is given by the position where the projected spot image on the subject is formed on the light-receiving element.

M1図の例では、受光素子6の2つの領域を表領域及び
B領域とよぶとすると、それぞれの出力の差ム−B=Q
となるよう受光素子の位置を変化させるよう構成されて
いる。図中5は撮影レンズ系のうち合焦動作を行わせる
レンズ群、6は撮像管であって投光素子1及び受光素子
3とレンズ群5とは、図示のように、例えば力^機構に
より連動されている。このようにして被写体までの距離
の検出及び自動焦点調節が可能となり、また投光素子を
連続しであるい・は短い周期をもってパルス状に発光さ
せることによ)移動被写体についても連続的に焦点合わ
せをすることが可能となる。
In the example of diagram M1, if the two areas of the light-receiving element 6 are called the front area and the B area, the difference between the respective outputs M - B = Q
The structure is such that the position of the light receiving element is changed so that the following occurs. In the figure, 5 is a lens group that performs a focusing operation in the photographic lens system, 6 is an image pickup tube, and the light emitting element 1, the light receiving element 3, and the lens group 5 are connected by a force^ mechanism, for example, as shown in the figure. It is linked. In this way, it is possible to detect the distance to the subject and automatically adjust the focus.Also, by emitting light from the light emitting element continuously or in pulses at short intervals, even moving subjects can be continuously focused. It becomes possible to make adjustments.

この種の装置において検出精度を左右する要因には槙々
のものがあるが、これらのうち受光光学系に関する手段
について考えてみると、受(5) 元素子3でとり出すA−B 01号の精度を高めるため
には、前記の表領域及びB領域が並ぶ方向で像のボケが
小さく、像が鮮鋭であることが滋ましい。受光素子が曲
面である場合も含めて、一般的にいうと、受光素子の前
記の表領域及びB領域の境界面に対し垂直な方向で像の
ボケが小さく、像が鮮鋭であることが望ましい。したが
ってこの発明では、受光レンズ4の形状及び配置を第2
図に示す態様とする。すなわち受光電は縦方向すを投受
光素子を結ぶ線(この例では基線)と平行に配置する。
There are many factors that affect the detection accuracy in this type of device, but among these, if we consider the means related to the light receiving optical system, In order to improve the accuracy, it is desirable that the blur of the image be small and the image be sharp in the direction in which the surface area and the B area are lined up. Generally speaking, including when the light receiving element has a curved surface, it is desirable that the image be sharp with little blur in the direction perpendicular to the boundary surface between the surface area and the B area of the light receiving element. . Therefore, in this invention, the shape and arrangement of the light receiving lens 4 are
The mode shown in the figure is used. That is, the photodetector is arranged vertically parallel to a line (baseline in this example) connecting the light emitting and receiving elements.

またこの場合受光索子6は、第8図で示すように、表領
域とB領域が基線方向に並ぶように(一般的には表領域
及びB領域の境界面が基線と垂直になるようVC)配置
することが望ましい。
In this case, as shown in FIG. ) is desirable.

その理由は、次のとおりである。第3図(ム)及び(E
)に示すように、受光レンズに番の長さく横方向)で入
射する光束はδaの僅でボケるのに対(6) し、bの長さく縦方向)で入射する光束社、同じ距離に
おいて、abの径でボケる。すなわちスポットの拡が9
を小さくする必要があるから、δa>ab  であるの
で、受光素子6でとり出すムーB偵号を精度高く得るた
めには、五Bの方向で像のボケが小さく、像が鮮鋭であ
る必要がある。
The reason is as follows. Figure 3 (M) and (E)
), the light beam that enters the receiving lens in the long horizontal direction) is blurred by a small amount of δa, whereas the light beam that enters the receiving lens in the long vertical direction (b) is blurred at the same distance. The image is blurred by the diameter of ab. In other words, the spot spread is 9
Since δa>ab, it is necessary to reduce the blurring of the image in the direction of 5B and the image must be sharp in order to obtain a highly accurate MuB reconnaissance signal taken out by the light-receiving element 6. There is.

したがって第2図の構成を採用することとする。Therefore, the configuration shown in FIG. 2 will be adopted.

なお投光レンズ2についても、これと同様に、第2図及
び第6図に示すように、横方向aが縦方向すより長い形
状とし、レンズの配置は縦方向すを投受光素子を結ぶ線
(基M1)と平行に配置する。
Similarly, the light projecting lens 2 has a shape in which the horizontal direction a is longer than the vertical direction, as shown in FIGS. It is arranged parallel to the line (base M1).

次に受光素子6の前記の2領域を前記の基線方向に並べ
て配置する理由について説明する。
Next, the reason why the two regions of the light receiving element 6 are arranged side by side in the base line direction will be explained.

第4図(ム)及び(B)に示すように、受光素子3上で
の投光スポット像の移動量をaとすると、検出精度を高
めるだめにはムB方向に移動する(同図(ム))のが最
も好ましい。これに反し同図(B)のようであると、実
質的にはbで(b<a)検出しており、検出精度をそれ
だけ低下させる。した(7) かって同図(ム)のような移動関係を得るためには、受
光素子の配置は、基線の方向にA領域とB領域とを並べ
る、一般的には両領域の境が面を基線の方向と垂直にす
ることが望ましい。
As shown in FIGS. 4(M) and 4(B), if the amount of movement of the projected spot image on the light receiving element 3 is a, in order to improve the detection accuracy, it must be moved in the direction of 4(B) (FIG. 4(B)). m)) is most preferred. On the other hand, in the case shown in FIG. 3B, detection is essentially performed at b (b<a), which reduces the detection accuracy accordingly. (7) In order to obtain the movement relationship shown in the same figure (m), the arrangement of the light-receiving elements was such that area A and area B were lined up in the direction of the baseline, and the boundaries between the two areas were generally plane. It is desirable to make it perpendicular to the direction of the baseline.

ここでこの発明と併せて実施することを町とする投受光
光学系の走査方向について説明する。
The scanning direction of the light emitting/receiving optical system that is intended to be implemented in conjunction with the present invention will now be described.

第1図に戻って、撮影レンズ5、投光レンズ2及び受光
レンズ4三者のそれぞれの光軸が同−半面上にあり、か
つ投光レンズと受光レンズの焦点距離が同一である場合
は、上記の半面内で投光素子1と受光素子6を反対方向
へ同じ距離だけ移動させることにより、測距視野の位置
は、第5図に示すように、つねに画面の中心に保つこと
ができる。第5図において、実線19は、撮影レンズの
焦点距離が短い場合の、二点鎖峠20はこれが長い場合
の位If、tl−それぞれ示している。
Returning to Fig. 1, if the optical axes of the photographing lens 5, the light emitting lens 2, and the light receiving lens 4 are on the same half plane, and the focal lengths of the light emitting lens and the light receiving lens are the same, then By moving the light emitting element 1 and the light receiving element 6 by the same distance in opposite directions within the above half plane, the position of the ranging field of view can always be maintained at the center of the screen, as shown in Fig. 5. . In FIG. 5, a solid line 19 indicates positions If and tl-, respectively, when the focal length of the photographing lens is short, and a double-dotted chain pass 20 indicates positions when it is long.

しかしながら、第6図に示すように、実際のカメラにあ
っては、他の操作部材、例えばマニュアルズーミングの
操作部材の配置等のために、(8) 撮影レンズ5、投光レンズ2及び受光レンズ4三者の光
軸が同一平面上に存在する場合はむしろ少く、例えば図
示のように投光レンズ2及び受光レンズ4は撮影レンズ
5の中心に対してオフセット配置をせざるをえない。す
なわち第6図(ム)及び(B)は、実際の8ミリカメラ
又はビデオカメラに三角測距法による自動焦点調節装置
を組みこんだ例であって、ここで14はマニュアルズー
ミングを行うための操作バーであり、”はその回転領域
を示す。使用者は、例えば右手でグリップ12を握り、
トリガーボタン13を操作するとともに、左手でマニュ
アルズーミングの操作を行うこととなるので、投光レン
ズ2と受光レンズ4は、その前方を左手で覆うことを避
けるために、第6図(勾に示すように撮影レンズ5の中
心からずらして配置することが望ましい。しかしこのよ
うな配置のもとて投受光光学系のうちの一方、例えは受
光系のみの走査によp焦点合わせをする場合のファイン
ダー画面内の測距位置、すなわち投光スポット像の位置
(9) のf位は、第7図に示す如<C1hる。すなわち全画面
7に対しある距離で測距位[1(投光スポット像)が8
−1であるとすると、例えば被写体が8〜1に相当する
距離上り主近紺離におるときは9−1に、遠距離にある
ときは10−1にというように測距位置が変化する。も
とより上記の関係は投受光素子の配置によって変るもの
である。さらにこの撮影レンズ糸がズームレンズの場合
には、焦点距離に応じて画面内の投光スポットの大きさ
が叢化し1例えば長焦点側では第7図の8−2.9−2
及び10−2のように大匙くなる。さらに第7図から判
るように投光スボツ) 11の位置の変化はX方向又は
X方向のいずれでもなく、X軸からある角度0だけ傾斜
した日方向に沿って生ずる。この現順は発明者の解析に
よれば、前述の投受光光学系を撮影レンズの中心からず
らせて配置することIICよりY軸方向の変位成分が発
生し、′tfc一方の光学系のみを走査することによシ
χ軸方向の変位成分が発生し、両者の合成により図示の
6方向00) VC変位するものである。第6図(ム)のようなオフセ
ット配置においても、投受光光学系を対称的に走査すれ
は、測距位置の変位はY軸方向のみVC現われる。
However, as shown in FIG. 6, in an actual camera, due to the arrangement of other operating members, such as manual zooming operating members, (8) the photographing lens 5, the light emitting lens 2, and the light receiving lens. It is rather rare that the optical axes of the three lenses exist on the same plane, and for example, as shown in the figure, the light projecting lens 2 and the light receiving lens 4 must be arranged offset from the center of the photographing lens 5. In other words, FIGS. 6(M) and 6(B) show an example in which an automatic focus adjustment device using triangulation is incorporated into an actual 8 mm camera or video camera, where 14 is for manual zooming. It is an operation bar, and "" indicates its rotation range.The user, for example, grips the grip 12 with his right hand,
Since the trigger button 13 is operated and the manual zooming operation is performed with the left hand, the light emitting lens 2 and the light receiving lens 4 are placed in the position shown in FIG. It is desirable to arrange the camera lens 5 so that it is offset from the center of the photographic lens 5.However, with this arrangement, it is difficult to perform p focusing by scanning only one of the light emitting and receiving optical systems, for example, the light receiving system. The distance measurement position in the finder screen, that is, position f of the projected light spot image position (9) is as shown in Fig. 7.In other words, at a certain distance from the entire screen 7, the distance measurement position spot image) is 8
-1, for example, when the subject is at a distance corresponding to 8 to 1, the distance measurement position changes to 9-1, and when the subject is far away, it changes to 10-1. . Of course, the above relationship changes depending on the arrangement of the light emitting and receiving elements. Furthermore, if this photographing lens thread is a zoom lens, the size of the projected light spot within the screen will become multiple depending on the focal length.
and 10-2 tablespoons. Further, as can be seen from FIG. 7, the change in the position of the light projection slit 11 occurs not in the X direction or in the X direction, but along the sun direction tilted at a certain angle 0 from the X axis. According to the inventor's analysis, this current order is caused by arranging the above-mentioned light transmitting and receiving optical system offset from the center of the photographing lens. As a result, a displacement component in the χ axis direction is generated, and the combination of the two causes a displacement in the six directions shown in the figure. Even in the offset arrangement as shown in FIG. 6(m), if the light emitting/receiving optical system is scanned symmetrically, the displacement of the distance measurement position will appear VC only in the Y-axis direction.

ここにおいて上記のように撮影レンズ5、投光レンズ2
及び受光レンズ4三者の光軸が同一平面上にない場合て
も、測距視野のずれをなくし、さらにその位fili′
Jfrつねに1ilii面の中心に保つようにすること
が望ましい。この丸めには、投光光学系又は受光光学系
の光軸のいずれか一方又は双方を、該光軸と撮影光学系
の光軸とを結ぶ直線に対し垂直な方向を回転軸として同
動可回動させる例について具体的に説明する。第8図は
、この目的を達成するだめの投受光素子の走査方向を示
し、投光素子ホルダー15の回転軸16の方向は、投光
素子1の中心、すなわち投光レンズの中心と撮影レンズ
の中心を結んだ直線に垂直な方向に配置されている。ガ
お一般(11) 的には回転41111乙の方向は、投光レンズの光軸と
撮影レンズの光軸とを結ぶ直線に垂直な方向であれば、
上記の目的を達成するものである。
Here, as described above, the photographing lens 5, the light emitting lens 2
Even if the optical axes of the three lenses and the light receiving lens 4 are not on the same plane, it eliminates the deviation of the distance measurement field of view, and furthermore, it
It is desirable to keep Jfr always at the center of the 1illii plane. This rounding can be done by simultaneously moving one or both of the optical axes of the light emitting optical system or the light receiving optical system with the axis of rotation perpendicular to the straight line connecting the optical axis and the optical axis of the photographing optical system. An example of rotation will be specifically explained. FIG. 8 shows the scanning direction of the light emitting/receiving element to achieve this purpose. are arranged in a direction perpendicular to a straight line connecting the centers of Generally speaking (11), if the direction of rotation 41111B is perpendicular to the straight line connecting the optical axis of the light emitting lens and the optical axis of the photographing lens, then
This achieves the above objectives.

同様に受光素子ホルダー17の回転l11111Bの方
向は受光レンズの光軸と撮影レンズの光軸とを結ぶ直線
に垂直な方向VC配置されている。そして投光素子及び
受光素子は、それぞれ回転軸16及び17を中心として
回動され、第8図でいえば紙面に垂直な方向で走査が行
われる。このような構成によれば、上記のよりに、投光
素子及び受光素子の走査の方向を撮影レンズ中心に向け
ているので、撮影レンズ、投光レンズ及び受光レンズ王
者の光軸が同一平面にない場合であっても、測距視野を
つねに画面の中心に位置させることを可能とする。この
場合におけるファインダー画面の状況は、第5図に示す
ようになり、前記3つの光学系の光軸が同一の平面上に
ない配置であっても、測距視野をつねに画面中心に置く
ことができる。投光素子又は受光素子のいずれか一方の
みを前記と同様に回動させる(12) 場合には、測距視野の変位は、第7図においてX軸の方
向のみに生じ、前記6つの光学系の光軸のずれ、すなわ
ちオフセット配置の影響は生じない。しかも第7図にお
ける変位の方向SのX@となす角をθとすれば、この場
合の変位の倉は第7図における変位の1をDとするとき
D OOaθ に減少する。
Similarly, the direction of rotation l11111B of the light receiving element holder 17 is arranged in the direction VC perpendicular to the straight line connecting the optical axis of the light receiving lens and the optical axis of the photographing lens. The light projecting element and the light receiving element are rotated about rotational axes 16 and 17, respectively, and scanning is performed in a direction perpendicular to the plane of the paper in FIG. 8. According to this configuration, since the scanning direction of the light emitting element and the light receiving element is directed toward the center of the photographing lens, the optical axes of the photographing lens, the light emitting lens, and the light receiving lens are on the same plane. To make it possible to always position a distance measurement field of view at the center of a screen even when there is no field of view. The condition of the finder screen in this case is as shown in Figure 5, and even if the optical axes of the three optical systems are not on the same plane, the distance measurement field of view can always be placed at the center of the screen. can. In the case where only either the light emitting element or the light receiving element is rotated in the same manner as described above (12), the distance measurement field of view is displaced only in the direction of the X axis in FIG. There is no effect of deviation of the optical axis, that is, offset arrangement. Moreover, if the angle between the direction of displacement S and X@ in FIG. 7 is θ, then the displacement capacity in this case is reduced to D OOaθ when 1 of the displacement in FIG. 7 is D.

第1図及び第8図の具体例では、投光レンズ及び受光レ
ンズの焦点距離が同一であるとして説明したが、これが
異る場合には、投光素子及び受光素子にそれぞれ焦点距
離に合った軌跡を描かせるようにすれば、同様な効果を
奏することができる。
In the specific examples shown in Figures 1 and 8, the focal lengths of the emitter lens and the receiver lens are the same, but if they are different, the focal lengths of the emitter element and the receiver element may be adjusted to match the respective focal lengths. A similar effect can be achieved by drawing a trajectory.

なお先に説明した受光素子の配置は、第8図に示すよう
に、受光素子を撮影レンズの光軸に向けて回動させる場
合でも、前述のムB方向を。
As shown in FIG. 8, the arrangement of the light-receiving element described above is arranged in the direction B even when the light-receiving element is rotated toward the optical axis of the photographic lens.

受光レンズの光軸と撮影レンズの光軸とを結ぶ方向では
なく、受光レンズの光軸と投光レンズの光軸とを結ぶ方
向、すなわち基線の方向に配置するものである。
It is arranged not in the direction that connects the optical axis of the light-receiving lens and the optical axis of the photographic lens, but in the direction that connects the optical axis of the light-receiving lens and the optical axis of the light-emitting lens, that is, in the direction of the base line.

(16) この発明は、前述の構成及び作用を有するので、受光素
子に対するレンズが非円形であってその最小の長さの方
向が受光素子の2つの領域の境界面に対し垂直な方向に
沿って配置されていることに基づき、この方向において
像のボケを最も小さくすることができ、前記2つの領域
よりとり出す差信号の精度を高め、距離検出精度を向上
させることができる。
(16) Since the present invention has the above-described configuration and operation, the lens for the light receiving element is non-circular, and the direction of its minimum length is along the direction perpendicular to the boundary surface between the two areas of the light receiving element. Based on the arrangement, image blurring can be minimized in this direction, and the precision of the difference signal extracted from the two regions can be improved, and the distance detection precision can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明が適用される自動焦点調節装置の一例
を示す模式図、第2図はこの発明に係る投光レンズ及び
受光レンズ並びにそれらの配置を示す図、第3図(ム)
及び伊)は第2図の装置の作用の説明図、第4図(ム)
及び(B)は受光素子の2領域の配置を示す正面図、第
5図は第1図の装置を用いる場合の測距視野位置を示す
図、第6図(ム)はカメラに自動焦点調節装置を組みこ
む一例を示す正面図、M6図(B)は第6図(勾の1I
il向図、第7図は第6図(ム)及び(B)の装置を用
いる場合の測距視野位置を示す図、第8図は投受光系(
14) の走査方向を示す模式図である。 図中 1・・・投光素子 2・・・投光レンズ 6・・・受光素子 4・・・受光レンズ 5 ・・・撮影レンズのうちフォーカシング動作をする
レンズ群 15・・・投光素子ホルダー 16・・・投光素子の同転軸 17・・・受光素子ホルダー 18・・・受光素子の回転軸 ム、B・・・それぞれ受光素子の2つに分割された領域
(15) 馬?2 rOn 箔7聞 X 筋B曙 48−
FIG. 1 is a schematic diagram showing an example of an automatic focus adjustment device to which the present invention is applied, FIG. 2 is a diagram showing a light projecting lens and a light receiving lens and their arrangement according to the present invention, and FIG.
and (I) are explanatory diagrams of the action of the device in Fig. 2, and Fig. 4 (M)
and (B) is a front view showing the arrangement of the two areas of the light receiving element, Fig. 5 is a diagram showing the distance measurement field of view position when using the device in Fig. 1, and Fig. 6 (M) is a diagram showing the automatic focus adjustment of the camera. A front view showing an example of how the device is assembled, M6 (B), is a front view showing an example of incorporating the device.
Fig. 7 is a diagram showing the distance measurement field of view position when using the devices in Figs.
14) is a schematic diagram showing the scanning direction. In the figure 1...Light emitting element 2...Light emitting lens 6...Light receiving element 4...Light receiving lens 5...Lens group that performs focusing operation among the photographic lenses 15...Light emitting element holder 16... Co-rotation axis of the light emitting element 17... Light receiving element holder 18... Rotation axis of the light receiving element, B... Area divided into two parts of the light receiving element (15) Horse? 2 rOn Haku7mon X Suji B Akebono 48-

Claims (1)

【特許請求の範囲】 投光素子と、2つの領域に分割して出力をとり出すこと
ができる受光素子と、前記の投光素子と受光素子とを用
いて被測距物体までの距離を示す情報を与える手段と、
受光素子に対するレンズとを具え、 その特′徴としてこの受光素子に対するレンズは非円形
であって、その最小の長さの方向が前記の2つの領域の
境界面に対し垂直な方向に沿って配置されている測距装
置。
[Claims] A light emitting element, a light receiving element whose output can be taken out by dividing it into two areas, and a distance to an object to be measured using the light emitting element and the light receiving element. means of giving information;
and a lens for the light-receiving element, and the lens for the light-receiving element is characterized by being non-circular, and the direction of its minimum length is arranged along a direction perpendicular to the interface between the two regions. distance measuring device.
JP5771982A 1982-03-24 1982-04-07 Distance measuring device Pending JPS58174808A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5771982A JPS58174808A (en) 1982-04-07 1982-04-07 Distance measuring device
DE3310601A DE3310601C2 (en) 1982-03-24 1983-03-23 Distance measuring device
GB08308099A GB2122448B (en) 1982-03-24 1983-03-24 Distance determining device
US06/898,864 US4682886A (en) 1982-03-24 1986-08-20 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5771982A JPS58174808A (en) 1982-04-07 1982-04-07 Distance measuring device

Publications (1)

Publication Number Publication Date
JPS58174808A true JPS58174808A (en) 1983-10-13

Family

ID=13063747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5771982A Pending JPS58174808A (en) 1982-03-24 1982-04-07 Distance measuring device

Country Status (1)

Country Link
JP (1) JPS58174808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122310A (en) * 1983-12-06 1985-06-29 Kubota Ltd Distance measuring device with monitor camera
JPS6270709A (en) * 1985-09-25 1987-04-01 Matsushita Electric Works Ltd Reflection type photoelectric switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122310A (en) * 1983-12-06 1985-06-29 Kubota Ltd Distance measuring device with monitor camera
JPS6270709A (en) * 1985-09-25 1987-04-01 Matsushita Electric Works Ltd Reflection type photoelectric switch

Similar Documents

Publication Publication Date Title
EP2846187B1 (en) Projection system with infrared monitoring
EP0283749B1 (en) Automatic visibility correction viewfinder system for optical devices
JPS6220522B2 (en)
US4682886A (en) Distance measuring device
US4494868A (en) Rangefinder device with focused elongated light source
US4429964A (en) Mirror-reflex camera with electronic rangefinder
JPH07120253A (en) Active autofocus device
GB1578367A (en) Camera incorporating focussing means
KR890001454B1 (en) Auto focus system
JPS58174808A (en) Distance measuring device
EP0113984B1 (en) Portable video camera with automatic focusing device
JPS6120808A (en) Range measuring instrument
JPH0473130B2 (en)
US4428653A (en) Mirror reflex camera with an electronic range finder
JPS63229439A (en) Automatic focusing device
JPS60125812A (en) Focusing detector
JPS59121011A (en) Focusing position detector
JPS58171025A (en) Photographing device
JPS58169019A (en) Distance measuring device
JPH0471165B2 (en)
JPS63169607A (en) Focus detector for camera
JPS63235906A (en) Focus detector
JPS63235908A (en) Focus detector
JPS63235907A (en) Focus detector
JPS62253130A (en) Automatic focus adjustor