JPS58171025A - Photographing device - Google Patents

Photographing device

Info

Publication number
JPS58171025A
JPS58171025A JP5301482A JP5301482A JPS58171025A JP S58171025 A JPS58171025 A JP S58171025A JP 5301482 A JP5301482 A JP 5301482A JP 5301482 A JP5301482 A JP 5301482A JP S58171025 A JPS58171025 A JP S58171025A
Authority
JP
Japan
Prior art keywords
lens
center
focal length
light
range finding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5301482A
Other languages
Japanese (ja)
Inventor
Masamichi Toyama
当山 正道
Naoya Kaneda
直也 金田
Kazuo Fujibayashi
和夫 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5301482A priority Critical patent/JPS58171025A/en
Priority to DE3310601A priority patent/DE3310601C2/en
Priority to GB08308099A priority patent/GB2122448B/en
Publication of JPS58171025A publication Critical patent/JPS58171025A/en
Priority to US06/898,864 priority patent/US4682886A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing

Abstract

PURPOSE:To simplify range finding visual-field display in a viewfinder and to improve the precision f range finding, by allowing a means for focus adjustment to include a means which hold a range finding visual field in the center of a viewfinder image plane. CONSTITUTION:Light from a projecting element 1 is caused to strike an object and its reflected light is image-formed on a photodetecting element 3 to perform the focusing of a photographic lens system 5. In this case, the rotating shafts 16 and 18 of a projecting element holder 15 and a photodetecting element holder 17 are arranged at right angles to the straight line connecting the center of the projecting element 1 and that of the photodetecting element 3 to each other and a scan on both elements is made toward the center of a photographic lens 5, so the range finding visual field is positioned in the center of the image plane all the time. Therefore, nearly accurate range finding visual-field information is obtained by only two range finding visual-field marks in the viewfinder corresponding to the longest focal length and shortest focal length.

Description

【発明の詳細な説明】 この発明は、カメラ等の撮影装置KfllL、とくに自
動焦点調節41置を有する撮影装置においてファインダ
ー内表示を簡1雪にしたことを特徴とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that the display in the finder of a photographing device KfllL such as a camera, particularly a photographing device having 41 automatic focus adjustment positions, is made simple.

ビデオカメラ、8ンリカメラ及びスチールカメラを含む
カメラ用の自動焦点調節装置については、従来多数の提
案がなされているが、これらの多く社三角測距法の原理
による本のである。
Many proposals have been made regarding automatic focusing devices for cameras including video cameras, 8-inch cameras, and still cameras, and most of these are based on the principle of triangulation.

ところでこの三角橢距法による自動焦点調節装置は、5
5建リスチールカメラ等に用いる場合には、基線長を十
分にとったときでも、ファインダー画面内の測距位曾の
移動は環視できる寝度であるが、主として8ミリカメラ
やビデオカメラのような高倍率のレンズを臭えるカメラ
に用いる場合には、レンズ0高倍率と、高倍率レンズを
使用する丸め基線長が長くなることとの2つの原因で視
差の影響が大きく1伽フアインダ一画面内の投光スポッ
ト像06會が無視できない程屍とな)、測距精ばを低下
させる。さらに実際の8ミリカメラ又はビデオカメラ等
にこの種の一動焦点調節装曹を組みζむ場合には。
By the way, this automatic focusing device using the trigonometric distance method has 5
When used with a 5-point resteal camera, etc., even when the baseline length is sufficient, the movement of the distance measurement position on the viewfinder screen is at a level that allows for a complete view, but mainly when used with an 8 mm camera or video camera. When using a high-magnification lens on a camera that smells, the effect of parallax is large due to two reasons: the zero-high magnification of the lens and the long rounding baseline length when using a high-magnification lens. (The projected light spot image 06 inside is so dead that it cannot be ignored), which reduces the accuracy of distance measurement. Furthermore, when installing this type of dynamic focusing system into an actual 8mm camera or video camera, etc.

測距の九めの、例えば投光レンズ員び受光レンズの光軸
を撮影レンズの中心からずらしてオフセット配置をする
ことが多いが、この九めにファインダー画面内で橢距位
置毀光スポット儂)が変位する方向が垂直方向からある
角tiiI斜し先方向とな、〉、これt九−距精度を低
下させる原因となる。
The ninth step in distance measurement, for example, is often done by shifting the optical axes of the light emitting and receiving lenses from the center of the photographing lens and arranging them in an offset manner. ) is displaced from the vertical direction to a certain angle tiii diagonal direction, 〉, which causes a decrease in distance accuracy.

こtLK反して、測距視野なつねにファインダー画面中
心に保持することが可能であれば、測距精度を11@h
できるの与ならず、ファインダーKかける測距視野表示
を簡111にすることがで龜る。
On the other hand, if it is possible to keep the distance measurement field at the center of the finder screen, the distance measurement accuracy can be reduced to 11@h.
However, it is difficult to make the distance measurement field display on the finder K simple to 111.

し九がって、この発明の目的は、三角測距法による自動
焦点調節装置を有する撮影装置において測距視野をっね
にファインダー画面中心に保持する手段を具えるととも
に1これと組与合わせてファインダーにおける測距夜舒
表示を簡潔化し、さらKm距精度を向上させ、必要最小
限の大きさに構成することができる撮影装置を提供する
にある。
Therefore, it is an object of the present invention to provide a photographing device having an automatic focus adjustment device using triangulation distance measurement, and to provide a means for always maintaining the distance measurement field at the center of the finder screen, and 1. To provide a photographing device which can simplify the distance measurement range display in a finder, further improve the Km distance accuracy, and can be configured to the minimum necessary size.

要約すれは、この発明は、撮影光学系(後記の具体例で
は撮影レンズ系)と、第1及び第2の素子(同じく投光
素子及び受光素子)と、これら第1及びli2の素子を
用すて撮影光学系の被写体に対する焦点調節を行う手段
と、前記操影光学系を長い焦点距離で使用する場合の1
11m視野の表示(同じく測距視野マーク)とI[%A
焦点距離で使用する場合0測距視野の表示とを具えるこ
とを特徴とする。
To summarize, the present invention uses a photographic optical system (a photographic lens system in a specific example described later), a first and second element (also a light emitting element and a light receiving element), and the first and li2 elements. Means for adjusting the focus of a shooting optical system on a subject; and 1 when using the image manipulation optical system at a long focal length.
Display of 11m field of view (also distance measurement field mark) and I[%A
When used at focal length, it is characterized by displaying 0 distance measurement field of view.

以下図面を参照してこの発明を具体化し九具体列につい
て説明する。第1図はこの発明が適用される自動焦点調
節装置を示す0図において、1は投光素子であって例え
ば赤外線発光ダイオード(IRVD)又はレーずダイオ
ード等よ〉なる。
Hereinafter, the present invention will be described with reference to the drawings, and nine concrete sequences will be described. FIG. 1 shows an automatic focusing device to which the present invention is applied, and numeral 1 represents a light projecting element, such as an infrared light emitting diode (IRVD) or a laser diode.

2は投光レンズであって投光素子1はこのレンズによ)
被写界側に投光スポラ)Imを形成する。
2 is a light projecting lens, and the light projecting element 1 is based on this lens)
A projection spora) Im is formed on the side of the object.

投光素子1よ)発射され九光束が被写体に轟えると乱反
射し、被写体面上の投光スポラ)Imは受光レンズ4に
よ)受光素子S上に結像される。
When nine beams of light are emitted from the light projecting element 1) and hit the subject, they are diffusely reflected, and the light projecting spora (Im) on the subject surface is imaged onto the light receiving element S by the light receiving lens 4).

受光素子5は、例えば2つの領域に分@堪れ、それぞれ
の領域からの出力をと)出すことができるフォトダイオ
ード、あるいは2つの螢光素子を近接して配置し丸もの
であればよい、上記の結儂位置は、被写体距離が第11
1に示すようにs /1 m12.1Bと変化するにつ
れて、変化するので、被写体上O投光スポット偉O受光
素子上の結倫位置によ珈被写体までの距離を示す情報が
与えられる。餉1図の例では、受光素+3の2つの領域
をム領域及びB領域とよぶとすると、それヤれの出力の
差ム−B−Qとなるよう受光素子の位置を変化させるよ
う構成されている。811中5は撮影レンズ系のうち合
焦動作を行わせるレンズ群、4は撮倫管であって、投光
素子1及び受光素子5とレンズ群5とは、図示のように
、例えばカム機構によに連動されている。このようKし
て被写体までの距離の測距及び自動焦点調節が可能とな
j%また投光素子を連続しであるいは短い周期をもって
パルス状に発光させるととKより移llIh普写体につ
いて亀連続的に焦点合わせをすることが可能となる。
The light-receiving element 5 may be, for example, a photodiode that can be divided into two areas and output an output from each area, or a round element that has two fluorescent elements arranged close to each other. The final position above is when the subject distance is 11th.
As shown in Fig. 1, the light emitting spot on the subject changes as it changes to s/1 m12.1B, so information indicating the distance to the subject is given by the position of the light emitting spot on the subject and the position on the light receiving element. In the example shown in Figure 1, if the two regions of the photodetector +3 are called the mu region and the B region, then the position of the photodetector is changed so that the difference in output between the regions is mu -B-Q. ing. 811, 5 is a lens group that performs a focusing operation in the photographing lens system, 4 is a camera tube, and the light emitting element 1, the light receiving element 5, and the lens group 5 are, for example, a cam mechanism as shown in the figure. It is linked to. In this way, it is possible to measure the distance to the subject and automatically adjust the focus.Furthermore, if the light emitting element is emitted continuously or in pulses at short intervals, it is possible to easily adjust the distance to the object. Continuous focusing becomes possible.

第1図において、撮影レンズ5、投光レンズ2及び受光
レンズ4のそれぞれの光軸が同一平面上にあ夛、かつ投
光レンズと受光レンズの焦点距離が同一である場合は、
上記の平面内で投光素子1と受光素子5を反対方向へ同
じ距−だけ移動さぜることにより、測距視野の位置紘、
第2図に示すように、っねにファインダー−面の中心に
保つことができる4のである。#!2図において実4[
i19は、撮影レンズの焦点距離がWlい場合の、二点
鎖線2oはこれが憂い場合の測距位置をそれぞれ示して
いる。撮影レンズがズームレンズである場合も、もとよ
)同様であって、測距位置゛はズームレンズの焦点距離
が最も短い場合と最も長い場合との間で連続的に変化す
る。
In FIG. 1, when the optical axes of the photographing lens 5, the light emitting lens 2, and the light receiving lens 4 are on the same plane, and the focal lengths of the light emitting lens and the light receiving lens are the same,
By moving the light emitting element 1 and the light receiving element 5 by the same distance in opposite directions within the above plane, the position of the distance measuring field can be changed.
As shown in Figure 2, the lens can be kept at the center of the viewfinder plane at all times. #! In figure 2, fruit 4 [
i19 indicates the distance measurement position when the focal length of the photographing lens is W1, and the chain double-dashed line 2o indicates the distance measurement position when this is a problem. Similarly, when the photographic lens is a zoom lens, the distance measurement position continuously changes between the shortest focal length and the longest focal length of the zoom lens.

この発明においては、しえがって、第3図に示すように
、ファインダー内の測距撓骨マークは、撮影レンズの焦
点距離がIIIkも長い場合に対応する表示21と、こ
れが最4Miい場合に対応する表示22とを設けること
とする。これによ抄、これら2種の表示だけでほぼ正確
な測距視野情報を得ることができる。
In this invention, however, as shown in FIG. A display 22 corresponding to the case will be provided. As a result, almost accurate ranging field information can be obtained using only these two types of displays.

しかしながら、第4図に示tように、実際のカメラにあ
っては、他の操作部材、例えij −r =二アルズー
ミングの操作部材の配置尋のために、撮影レンズ5、投
光レンズ2及び受光レンズ4三者の光軸が同一平面上に
存在する場合はむしろ少く、例えば図示のように投光レ
ンズ2及び受光レンズ4は撮影レンズ5の中心に対して
オフセット配置をせざるを丸ない、すなわち11N4図
(ム)及び(Iは、実際の8々リカメラ又はビデオカメ
ラに三角側圧法による自動焦点調節装置を組みこんだ例
であって、ここで14はマニュアルズーミングを行うた
めの操作バーであり、aはその回転領域を示す。使用者
は、例えば右手でグリップ12を握り、トリガーゼタン
13を操作するとと−に、左手でマニュアルズーミング
の操作を行うこととなるので、投光レンズ2と受光レン
ズ4は、その前方を左手で覆うことを避ける九めに、第
4図(ム)K示すように撮影レンズ5の中心からずらし
て配置することが・1tしい。しかしこのよろな配置の
もとて投受光光学系のうちの一方1例えば受光系のみの
走査によ)焦点合わせをする場合のファインダ画面内の
測距位置、すなわち投光スポット像の位置の変位は、第
5図に示す如くである。すなわち全画面7に対しある距
離で測距位置(投光スポット像)が8−1であるとする
と、例えば被写体が8−1に相当する距離より至近距1
1にあるときは?−IK、遠距峻にあるときは10−1
にというように測距位置が変化する。もとよ拳土泥の関
係は投受光素子の配置によって変るものである。さらK
この撮影レンズ系がズームレンズの場合には、焦点距1
1に応じて画面内の投光スポットの大きさが変化し、例
えば長焦点側では第4図の8−2.9−2及び10−2
0ように大きくなる。さらに第5図から判るように投光
スボツ[1の位置の変化は!方向又は!方向のいずれで
−なく、I軸からある角度だけ傾斜し九B方向に沿って
生ずる。この現象は発明者の解析によれば、前述O投受
光光学系を撮影レンズの中心からずらせて配置するとと
によ)I軸方向の変位成分が発生し、壕九一方の光学系
のみを走査するととKよ)!軸方向の変位成分が発生し
、両者の合成によ)図示on方向に変位するものである
。第4図のようなオフセット配置においても、投受光光
学系を対称的wc−JIIIl査すれば、測距位置の変
位はY軸方向の4に購われる。
However, as shown in FIG. 4, in an actual camera, due to the arrangement of other operating members, for example, the operating member for zooming, the photographic lens 5 and the light emitting lens 2 are It is rather rare that the optical axes of the three lenses exist on the same plane; for example, as shown in the figure, the light projecting lens 2 and the light receiving lens 4 must be offset from the center of the photographing lens 5. In other words, Figures 11N4 (M) and (I) are examples in which an automatic focus adjustment device using the triangular lateral pressure method is incorporated into an actual 8-zoom camera or video camera, and 14 is an operation for performing manual zooming. The bar is a bar, and a indicates its rotation range.For example, when the user grips the grip 12 with his right hand and operates the trigger lens 13, he also performs manual zooming with his left hand. In order to avoid covering the front part of the light receiving lens 4 with the left hand, it is recommended that the light receiving lens 4 be placed offset from the center of the photographing lens 5 as shown in FIG. Figure 5 shows the distance measurement position in the finder screen, that is, the displacement of the position of the projected light spot image when focusing is performed by scanning only one of the light emitting and receiving optical systems (for example, by scanning only the light receiving system). As shown. In other words, if the distance measurement position (projection spot image) is 8-1 at a certain distance with respect to the entire screen 7, for example, the subject is closer than the distance corresponding to 8-1.
What if it's at 1? -IK, 10-1 when in long distance
The distance measurement position changes as follows. The relationship between motoyo, clay, and clay changes depending on the arrangement of the light emitting and receiving elements. Sara K
If this photographic lens system is a zoom lens, the focal length is 1
1, the size of the projected light spot within the screen changes according to 8-2, 9-2 and 10-2 in FIG.
It becomes large like 0. Furthermore, as can be seen from Figure 5, the change in the position of the light emitting slot [1! Direction or! It occurs along the 9B direction, not in either direction, but at a certain angle from the I axis. According to the inventor's analysis, this phenomenon is caused by a displacement component in the I-axis direction (if the O-projection/reception optical system is placed offset from the center of the photographic lens), and only the optical system on one side of the trench is disposed. When you scan it, it's K)! A displacement component in the axial direction is generated, and the combination of both causes displacement in the ON direction shown in the figure. Even in the offset arrangement as shown in FIG. 4, if the light emitting/receiving optical system is scanned symmetrically, the distance measurement position will be displaced by 4 in the Y-axis direction.

この発明の望ましい実IIIAIl!様では、上記のよ
うに撮影レンズ、投光レンズ及び受光レンズ三者の光軸
が同一平面にない場合でも、測距視野のずれをなくし、
その位置をつねに画面の中心に保つことができるように
するものであって、その要点は投光光学系及び受光光学
系それぞれの光軸を、該各党軸と撮影光学系の光軸とを
結ぶ直dK対し垂直な方向の1転軸を中心として同動可
能とするKある。以下投光光学系のうちの投光素子及び
受光光学系のうちの受光素子をともに回動させる例につ
いて具体的に説明する。
Desirable embodiment of this inventionIIIAIl! As mentioned above, even when the optical axes of the photographing lens, light emitting lens, and light receiving lens are not on the same plane, the distance measurement field of view is prevented from shifting.
This allows the position to be always maintained at the center of the screen, and the key point is to connect the optical axes of the light emitting optical system and the light receiving optical system to the optical axis of the photographing optical system and the respective optical axes. There is a K that allows simultaneous movement around one axis of rotation in a direction perpendicular to the direct dK. An example in which both the light projecting element of the light projecting optical system and the light receiving element of the light receiving optical system are rotated will be specifically described below.

第6図は、この発明に係る投受光系の走査方向を示し、
投光素子ホルダー15の回転軸14の方向は、投光素子
1の中心、すなわち投光レンズの中心と撮影レンズの中
心を結んだ直線に喬直な方向に配置されている。なお一
般的には回転軸16の方向は、投光レンズの嚢−と鋒影
し/ズの光軸とを結ぶ直線に垂直な方向であれば、上記
の目的を達成するものである。同様に受光素子ホルダー
17の回転軸18の方向は受光し/ズの光軸と撮影レン
ズの光軸とを結ぶ直線に垂直な方向に配置されている。
FIG. 6 shows the scanning direction of the light projecting and receiving system according to the present invention,
The direction of the rotation axis 14 of the light projecting element holder 15 is arranged perpendicular to the center of the light projecting element 1, that is, the straight line connecting the center of the light projecting lens and the center of the photographing lens. In general, the above objective can be achieved as long as the direction of the rotation axis 16 is perpendicular to the straight line connecting the lens cap of the projecting lens and the optical axis of the projection lens. Similarly, the direction of the rotation axis 18 of the light receiving element holder 17 is arranged perpendicular to the straight line connecting the optical axis of the light receiving element and the optical axis of the photographing lens.

そして投光素子展び受光素子は、それぞれ1転輪14及
び11を中心として回動され、第6図でいえば紙面に垂
直な方向で走査が行われる。この構成によれば、上記の
ように、投光素子及び受光素子の滝壷の方向を撮影レン
ズ中心に向けているので、撮影レンズ、投光レンズ及び
受光レンズ王者の光軸が同一平面に1にい場合であって
も、測距視野をつねに画面の中心に位置させることを可
能とする。この場合におけるファインダー画面の状況は
、第2図に示すよう[fk)、前記sつの光学系の光軸
が同一の平面上にない配置であっても、測距撓骨をつね
に画面中心に置くことができる。し九がって、この場合
も、前記第5図と同じく、ファインダー内の測距視野マ
ークは、撮影レンズの焦点距離が最も長い場合に対応・
する表示21と、これが最も短い場合に対応する表示2
2とを設けるだけで、纜ぼ正確な測距視野情報を得るこ
とができる。なお撮影レンズ系が交換レンズ系である場
合には、憂い無点距離のレンズ系に対して表示21を対
応場せ、一方短い無点距離のレンズ系に対して表示22
を対応させれば、同様の効果を奏することができる。
The light emitting element and the light receiving element are rotated about one wheel 14 and 11, respectively, and scanning is performed in a direction perpendicular to the plane of the paper in FIG. 6. According to this configuration, as described above, since the direction of the basin of the light emitting element and the light receiving element is directed toward the center of the photographing lens, the optical axes of the photographing lens, the light emitting lens, and the light receiving lens are aligned on the same plane. To make it possible to always position a distance measurement field of view at the center of a screen even when the distance measurement is difficult. In this case, the condition of the finder screen is as shown in Figure 2 [fk], even if the optical axes of the s optical systems are not on the same plane, the distance measuring radius is always placed at the center of the screen. be able to. Therefore, in this case as well, as in Figure 5 above, the distance measurement field mark in the finder corresponds to the longest focal length of the photographing lens.
Display 21 that corresponds to the shortest time, and Display 2 that corresponds to the shortest time.
By simply providing 2, it is possible to obtain highly accurate ranging field information. When the photographic lens system is an interchangeable lens system, display 21 is set for a lens system with a short zero point distance, while display 22 is set for a lens system with a short zero point distance.
A similar effect can be achieved by making them correspond.

前述の具体例では投光レンズ及び受光レンズの焦点距離
が同一であるとして説明し九が、これが異る場合には投
光素子及び受光素子にそれ(れ焦点距離に合つ九軌跡を
描かせるようKすれば、同様な効果を奏することができ
る。を九土泥の具体例は投受光系ともに結倫レンズを含
む40に′)いて説明し九が、投光素子又は受光素子が
鮮鍛なスポット像を発射し又は受光できるものであれi
f、 *偉しンズは必ずしも不可欠ではない。
In the above specific example, it is assumed that the focal lengths of the light emitting lens and the light receiving lens are the same, but if they are different, the light emitting element and the light receiving element are made to draw a trajectory that matches the focal length. A similar effect can be achieved if the light emitting element or the light receiving element is sharpened. Any device that can emit or receive a spot image
f, *Great people are not necessarily essential.

なお前述の説明は受光素子が2つの領域に分割され、前
記の(ム−B)の出力によ)被写体までの距離を示す情
報を与える差動−の−のについて行つ九が、この発明祉
、受光素子からのピーク出力を利用する型の4のにも適
用することができ、さらKこの発明は前述の能動ll0
III距@*に限らず、受動型の測距装ftKも適用す
ることができるものである。
The above explanation is based on the present invention, in which the light receiving element is divided into two regions, and the differential sensor which provides information indicating the distance to the subject (by the output of the module B) is used. In addition, this invention can also be applied to a type 4 type that utilizes the peak output from a light-receiving element.
Not only the III distance@*, but also a passive distance measuring device ftK can be applied.

を九この発明における前述O第1及び嬉20素子はそれ
ぞれ複数の素子群であって−よい。
Each of the first and second elements in this invention may be a plurality of element groups.

こ■発明は、上述の構成及び作用を有するので、これに
基づき、撮影光学系と測距の丸め02つの光学系の光軸
が同一平面上に存在しない場合も含めて、測距撓骨をつ
ねにファインダー画面中心に保持することができ、これ
によ〉一距視野の表示を撮影レンズの焦点距離が長い場
合の表示と、短い場合の表示とを験けるだけでほぼ正確
なIll距視舒撓骨を得ることができる。
This invention has the above-mentioned structure and operation, and based on this, the distance measuring radial bone can be rounded even when the optical axes of the two optical systems are not on the same plane. You can always keep the viewfinder at the center of the screen, and this allows you to see almost accurate distance viewing by simply experiencing the display when the focal length of the photographic lens is long and the display when it is short. Radius can be obtained.

そしてこれらによ)m距精度を向上させ、撮影装置を必
要最小限の大きさに構成することができる。
By these means, it is possible to improve m distance accuracy and configure the photographing device to the minimum necessary size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は゛この発明が適用される自動焦点調節装置の一
例を示す模式図、第2図は第11F)装置を用いる場合
の測距視野位置を示す図、第墨図祉同じくファインダー
内表示を示す図、第4!Fa(ム)はカメラに自動焦点
調節装置を組みこむ一例を示す正面図、第4図(B)は
第4図(ム)の側面図、t!45図は第4図(ム)及び
(B)の装置を用いる場合の測距視野位置を示す図、第
6図は投受光光学系の走査方向を示す図である。 図中1は投光素子、2は投光レンズ、Sは受光素子、4
は受光レンズ、5け撮影レンズのうちフォーカシング動
作をするレンズ群、15は投光素子ホルダー、16は投
光素子の回転軸、17紘受光素子ホルダー、18は受光
素子の回転軸、21及び22は測距視野マークである。 ¥30 X 入 ¥4[7(A)   男47(8)
Figure 1 is a schematic diagram showing an example of an automatic focus adjustment device to which this invention is applied, Figure 2 is a diagram showing the rangefinding field position when using the 11F) device, and Figure 1 is a diagram showing the distance measurement field position when using the device. Figure shown, No. 4! Fa (mu) is a front view showing an example of incorporating an automatic focus adjustment device into a camera, FIG. 4 (B) is a side view of FIG. 4 (mu), and t! FIG. 45 is a diagram showing the distance measuring field of view position when using the apparatus of FIGS. In the figure, 1 is a light emitting element, 2 is a light emitting lens, S is a light receiving element, 4
1 is a light-receiving lens; 15 is a light-emitting element holder; 16 is a rotation axis of the light-emitting element; 17 is a light-receiving element holder; 18 is a rotation axis of the light-receiving element; 21 and 22 is the distance measurement field mark. ¥30 x ¥4 [7 (A) Male 47 (8)

Claims (1)

【特許請求の範囲】 (1)撮影光学系と。 111117!ILび第2の素子と、 これら1111及び第20素子を用いて前記撮影光学系
の被写体に対する焦点調節を行う手段と、 前記操影光学系を長い焦点距離で使用する場合0@距視
舒の表示と短い焦点距離で使用する場合0I11距視野
の表示とを設は九ファインダーと を具え為撮影装置。 (2)  前記焦点調節を行う手段はsg@**をファ
イングー画画中心に保持する手段を含む特許請求の範囲
(1)記載oais装置。 (S)  前記撮影光学系が可蜜焦点距離のレンズ系で
あ)、前記ファインダーにはζOしyズ系を最も長い侭
点原−で使用する場合0Ilili視舒O1!示と量%
411/%焦点距離で使用する場合の測距撓骨の表示と
を設は九特許請求の範囲(1)記載の撮影装置。 (4)  前記撮影光学系が交換レンズ系であ〉、前記
ファインダーには長い熱点距離のレンズ系に対応すゐ測
距撓骨の表示と短い焦点距離のし/ズ系に対応する測距
撓骨の表示とを設けた特許請求の範囲(1)記載の撮影
装置。
[Claims] (1) A photographing optical system. 111117! an IL and a second element; means for adjusting the focus of the imaging optical system on a subject using these 1111 and 20th elements; The photographing device is equipped with a display and a viewfinder with a 0I11 distance field when used with a short focal length. (2) The OAIS device according to claim (1), wherein the means for adjusting the focus includes means for holding sg@** at the center of the fine image. (S) When the photographing optical system is a lens system with a narrow focal length, and the viewfinder uses a ζO and y-axis system at the longest point of view, the viewing angle is 0Ilili O1! Indication and amount%
9. The imaging device according to claim (1), further comprising a display of a distance measuring radius when used at a focal length of 411/%. (4) The photographing optical system is an interchangeable lens system, and the finder has a distance measuring radial display corresponding to a lens system with a long hot spot distance and a distance measuring radius corresponding to a lens system with a short focal length. The imaging device according to claim (1), further comprising a radius bone display.
JP5301482A 1982-03-24 1982-03-31 Photographing device Pending JPS58171025A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5301482A JPS58171025A (en) 1982-03-31 1982-03-31 Photographing device
DE3310601A DE3310601C2 (en) 1982-03-24 1983-03-23 Distance measuring device
GB08308099A GB2122448B (en) 1982-03-24 1983-03-24 Distance determining device
US06/898,864 US4682886A (en) 1982-03-24 1986-08-20 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5301482A JPS58171025A (en) 1982-03-31 1982-03-31 Photographing device

Publications (1)

Publication Number Publication Date
JPS58171025A true JPS58171025A (en) 1983-10-07

Family

ID=12931042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5301482A Pending JPS58171025A (en) 1982-03-24 1982-03-31 Photographing device

Country Status (1)

Country Link
JP (1) JPS58171025A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204247A (en) * 1986-03-05 1987-09-08 Canon Inc Finder device camera or the like
JPS62223734A (en) * 1986-03-26 1987-10-01 Chinon Kk Range finder
JP2009061461A (en) * 2007-09-05 2009-03-26 Nippon Steel & Sumikin Welding Co Ltd Cleaning machine for backing copper plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204247A (en) * 1986-03-05 1987-09-08 Canon Inc Finder device camera or the like
JPH06105335B2 (en) * 1986-03-05 1994-12-21 キヤノン株式会社 Finder devices such as cameras
JPS62223734A (en) * 1986-03-26 1987-10-01 Chinon Kk Range finder
JP2009061461A (en) * 2007-09-05 2009-03-26 Nippon Steel & Sumikin Welding Co Ltd Cleaning machine for backing copper plate

Similar Documents

Publication Publication Date Title
EP3457080B1 (en) Surveying instrument
US6487011B2 (en) Telescope for geodetic instruments, particularly for video tachymeters
US10715711B2 (en) Adaptive three-dimensional imaging system and methods and uses thereof
US4371261A (en) Range finder
US6307636B1 (en) Method for telemeasuring and telemeter
KR19990068886A (en) Stereo Camera System by Prism
JP2886865B2 (en) Focus state detection device
US5305047A (en) Pattern projector having a multi-portion projection lens and camera comprising the same
US7315358B2 (en) Evaluation apparatus and method of optical parts
US5572368A (en) Light projecting device with cylindrical lens
GB2122448A (en) Distance determining device
US20030234869A1 (en) Camera for measuring distance to object
JPS58171025A (en) Photographing device
US4963984A (en) Optical projection camera alignment system and method
EP1202074B1 (en) Distance measuring apparatus and distance measuring method
JP2007333525A (en) Distance measurement device
JP3119081B2 (en) Color separation prism optical path length measurement device and color separation prism bonding device
JP2883193B2 (en) Rangefinder system
US11754827B2 (en) Insertion apparatus
JP2001033236A (en) Stereoscopic image measuring device and stereoscopic image measuring method
JPS63229439A (en) Automatic focusing device
JPH0471165B2 (en)
JPS58174808A (en) Distance measuring device
JPS58162807A (en) Distance measuring device
JPH07117643B2 (en) Projection system for focus detection