JPS624340A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS624340A
JPS624340A JP14502285A JP14502285A JPS624340A JP S624340 A JPS624340 A JP S624340A JP 14502285 A JP14502285 A JP 14502285A JP 14502285 A JP14502285 A JP 14502285A JP S624340 A JPS624340 A JP S624340A
Authority
JP
Japan
Prior art keywords
conductivity type
diffusion layer
island
layer
type diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14502285A
Other languages
Japanese (ja)
Inventor
Teruo Kusaka
日下 輝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14502285A priority Critical patent/JPS624340A/en
Publication of JPS624340A publication Critical patent/JPS624340A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a thick epitaxial layer, by growing the epitaxial layer including its portion surrounding an island region, on the surface of a semiconductor substrate, in several separate processes. CONSTITUTION:A substrate having a first type conductivity 1 is provided with diffused layers 2a and 2b having the first type conductivity and with a diffused layer 3 having the second type conductivity. An epitaxial layer 4 having the second type conductivity is then deposited by means of the epitaxy technique. The layer 4 is then provided with diffused layers 5a and 5b having the first type conductivity by means of the boron diffusion technique. Subsequently, an epitaxial layer 6 having the second type conductivity is deposited by means of the epitaxy technique. This process is repeated until the thickness of the epitaxial layer 6 attains a predetermined value. After that, diffused layers 7a and 7b having the first type conductivity and a dielectric film 9 are provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、PN分離された島領域内に半導体素子を設け
た半導体集積回路の製造方法に係り、特に高耐圧半導体
集積回路に適した製造方法に関する〇 〔従来の技術〕 従来、高耐圧分野は半導体集積回路になじまない領域と
して、製品化が遅れていた。しかし、最近集積回路の応
用分野が拡大し、高耐圧分野の半導体回路の集積化の要
望かたかまってきた。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor integrated circuit in which a semiconductor element is provided in a PN isolated island region, and is particularly suitable for manufacturing a high voltage semiconductor integrated circuit. 〇〇〇〇Conventional technology regarding methods  Conventionally, the high-voltage field was not compatible with semiconductor integrated circuits, so commercialization of the field was delayed. However, recently, the field of application of integrated circuits has expanded, and there has been a growing demand for the integration of semiconductor circuits in the high voltage field.

ところで、半導体集積回路技術を高耐圧分野で利用しよ
うとすると、先ず紫子間分離が間趙になる。とくにパワ
ー用途に適するバイポーラIC系においてそうである。
By the way, when attempting to utilize semiconductor integrated circuit technology in the field of high breakdown voltages, the first problem is the separation between the two. This is especially true in bipolar IC systems suitable for power applications.

高耐圧集積回路の製作に用いる素子間分離法としては、
誘電体分離法が代表的なものとなっている。ult体分
離法として各種の方法が提案され【いるが、これまでの
ところ主要方法はいずれも(11400〜500μmの
厚い多結晶半導体を形成する能率の悪い高価な工程11
)300〜400μm を研磨除去し、かつ、デバイス
設計上要求される1〜2μm程度の高精度で仕上げる微
妙な加工工程、(叫つェーハ反り、加工精度の制約でウ
ェーハの大口径化に適さないこと、および(1v)単結
晶と多結晶がバイメタル的なパイマテリアル構造になっ
ているので、熱応力、ウェーハ反り、結晶欠陥等の生産
上の問題が頻発することなどの普及をさまたげる要因を
含んでいる。
The device isolation method used for manufacturing high-voltage integrated circuits is as follows:
A typical example is the dielectric separation method. Various methods have been proposed for ultimate body separation, but so far the main methods have all involved an inefficient and expensive process for forming a thick polycrystalline semiconductor of 11,400 to 500 μm.
) A delicate processing process that polishes away 300 to 400 μm and finishes with a high precision of 1 to 2 μm required for device design. (1v) Since the monocrystal and polycrystal have a bimetallic pi-material structure, there are factors that hinder its widespread use, such as frequent production problems such as thermal stress, wafer warpage, and crystal defects. I'm here.

通常のPN分離法は、80v程度以下の耐圧の集積回路
では上記誘電体分離法の欠点がなく極めて生産能率が高
いが、8ov以上の高耐圧では使用できないのが現状で
ある。
The normal PN separation method does not have the drawbacks of the dielectric separation method and has extremely high production efficiency for integrated circuits with a withstand voltage of about 80 V or less, but it cannot be used at high withstand voltages of 8 OV or more.

〔発明が一部しようとする問題点〕[Problems partially addressed by the invention]

PN分離法で高耐圧化を得ようとすると、厚いエピタキ
シアル層形成の際にウェーハ反すカ生ずること、表面か
らの距離が大きい深い島をつくるには円筒型にすること
が難しいため横断面が広くなること等の問題を解決する
ことを要する。さらに集積化の場合には、高耐圧半導体
素子と、それを制御する低耐圧半導体素子の組合わせが
通常であるが、同一基板では低耐圧半導体素子は縦断面
が構造上過剰設計になる難点がある。
When attempting to obtain high breakdown voltage using the PN separation method, wafer curling occurs when forming a thick epitaxial layer, and it is difficult to make a cylindrical shape to create deep islands with a large distance from the surface. It is necessary to solve problems such as the widening of the area. Furthermore, in the case of integration, it is common to combine a high-voltage semiconductor element with a low-voltage semiconductor element that controls it, but the problem with low-voltage semiconductor elements on the same substrate is that the vertical section of the element is over-designed. be.

したがって本発明の1つの目的は、エピタキシアル層の
厚膜化を、半導体ウェーハ反り、分離島の断面積の余分
な広がりがなく実現する製造方法を提供することにある
。他の目的は高耐圧半導体素子と低耐圧半導体素子とを
同一のウェーハ上に同一製造工程で実現させ、しかも低
耐圧半導体素子の縦断面積を必要な面積内にとどめる製
造方法を提供するととKある。
Therefore, one object of the present invention is to provide a manufacturing method that can increase the thickness of the epitaxial layer without warping the semiconductor wafer or excessively widening the cross-sectional area of the isolation island. Another objective is to provide a manufacturing method that allows high-voltage semiconductor devices and low-voltage semiconductor devices to be produced on the same wafer in the same manufacturing process, and to keep the vertical cross-sectional area of the low-voltage semiconductor devices within the required area. .

〔問題点(解決するための手段〕[Problem (Means to solve)]

本発明の製造方法は、第1導電形半導体基板の主面に第
1導電形拡散層Iを島の周縁として予定された部位に形
成し、該主面上に第2導電形エピタキシアル層Iを形成
する第1工程と。
In the manufacturing method of the present invention, a first conductivity type diffusion layer I is formed on the main surface of a first conductivity type semiconductor substrate at a portion planned as the periphery of an island, and a second conductivity type epitaxial layer I is formed on the main surface. A first step of forming.

該エピタキシアル層Iの主面に、前記拡散層■の直上方
に第1導電形拡散層IIを形成した後、さらに第2導電
形エピタキシアル層IIを形成する第2工程と、前記第
2工程を複数回繰り返し、最終にエピタキシアル層Nか
ら第1導電形拡散層Nを拡散することで各工程の第1導
電形領域を連結してPN分離島を形成し、該島内に半導
体素子を設けたものである。
a second step of forming a first conductivity type epitaxial layer II on the main surface of the epitaxial layer I directly above the diffusion layer (1), and then further forming a second conductivity type epitaxial layer II; By repeating the process multiple times and finally diffusing the first conductivity type diffusion layer N from the epitaxial layer N, the first conductivity type regions of each process are connected to form a PN isolation island, and a semiconductor element is placed within the island. It was established.

上記製造方法により、所要の厚みのPN分離層を含む厚
いエピタキシアル層を得ることができる。
By the above manufacturing method, it is possible to obtain a thick epitaxial layer including a PN separation layer of a required thickness.

さらに、実施例で詳細に説明するように、第1工程で形
成した第1導電形拡散層■の一部の面積をひろくとり、
この部分をあたかも半導体基板とみなして、この上に上
記製造方法を適用することによって、表面から底面まで
深い距離の主たる島gth距離の従たる島とを同時く形
成し、前者にパワー素子である高耐圧半導体素子を、後
者に制御素子である低耐圧半導体素子を組みこむと、と
ができる。
Furthermore, as will be explained in detail in the examples, a part of the area of the first conductivity type diffusion layer (2) formed in the first step is expanded,
By treating this part as a semiconductor substrate and applying the above manufacturing method on it, a main island with a deep distance from the surface to the bottom and a secondary island with a distance gth are simultaneously formed, and the former is a power element. By incorporating a high breakdown voltage semiconductor element into the latter and a low breakdown voltage semiconductor element serving as a control element, the following can be achieved.

〔作用〕[Effect]

本発明では、エピタキシアル層を高岡縁部の部分を含め
て半導体基板上に1数回にわけて成長させる。高岡縁部
は、あたかも積木状に、半導体基板上に連結されて形成
される。したがって、エピタキシアル層の厚さはいかく
厚くても高面積に影響しないから、その厚さを半導体素
子の耐圧設計からのみきめることができる。また、実施
例に説明するように、同じ工程で深い島と浅い島とを形
成し、パワー用の高耐圧半導体素子と制御用の低耐圧半
導体素子とを、6島に組込むことができる。
In the present invention, the epitaxial layer is grown on the semiconductor substrate including the Takaoka edge portion in several batches. The Takaoka edges are connected and formed on the semiconductor substrate as if they were building blocks. Therefore, no matter how thick the epitaxial layer is, it does not affect the large area, so the thickness can be determined only from the breakdown voltage design of the semiconductor element. In addition, as described in the embodiment, deep islands and shallow islands can be formed in the same process, and high breakdown voltage semiconductor elements for power and low breakdown voltage semiconductor elements for control can be incorporated into six islands.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照し−て説明する。第
1実施例であるPN分離形高耐圧半導体素子の形成を説
明するため、第1図に工程順に断面図を示している。
Embodiments of the present invention will be described below with reference to the drawings. In order to explain the formation of a PN isolated type high breakdown voltage semiconductor element according to the first embodiment, cross-sectional views are shown in the order of steps in FIG.

第1図(a)に、第1導電形基板IK選択拡散法により
所定の部分、すなわち高岡縁として予定された部位に第
1導電形拡散層2a、2bおよび第2導電形拡散層3を
設けた状態を示す。なお、拡散層2a、2bは高岡縁を
全部連結して形成する場合には同一拡散層の断面になる
。高岡縁が一部開いていて、拡散層2a、2bが別々に
形成される場合としてもよい。0本発明は、後述の場合
を誉め両方のいずれの場合をも含むものとする。実施例
においては、第1導電形をP形とし、第2導電形をN形
としP形部分はハツチで示しN形部分は白抜きで図示す
ることにする。半導体基板1は口径4IO9厚さ500
μm。
In FIG. 1(a), first conductivity type diffusion layers 2a, 2b and a second conductivity type diffusion layer 3 are provided at predetermined portions, that is, the portions planned as Takaoka edges, by the first conductivity type substrate IK selective diffusion method. Indicates the condition. Incidentally, when the diffusion layers 2a and 2b are formed by connecting all the Takaoka edges, they become cross sections of the same diffusion layer. It is also possible that the Takaoka edge is partially open and the diffusion layers 2a and 2b are formed separately. 0 The present invention includes both of the cases described below. In the embodiment, the first conductivity type is P type, the second conductivity type is N type, and the P type portion is shown as a hatch and the N type portion is shown as an outline. The semiconductor substrate 1 has a diameter of 4IO9 and a thickness of 500 mm.
μm.

抵抗率15Ω傷のP形シリコンウェーハを使用し、第1
導電形拡散層2a、2bはボロン拡散技術で、第2導電
形拡散層3はアンチモン拡散技術で形成した。該拡散層
3は埋込層となるものである。
A P-type silicon wafer with a resistivity of 15Ω was used, and the first
The conductivity type diffusion layers 2a and 2b were formed using boron diffusion technology, and the second conductivity type diffusion layer 3 was formed using antimony diffusion technology. The diffusion layer 3 becomes a buried layer.

第1図(b)にエピタキシアル技術により、第2導電形
エピタキシアル層4を形成した状態を示す。エピタキシ
アル成長は高温下で行なわれるために熱拡散により拡散
層2&、2b、3は、半導体基板1の側とエピタキシア
ル層4のIIIKそれぞれ図のように膨張する。以上第
1図(a) (b)が第1工程である。実施例において
は、エピタキシアル層4はモノシラン系と4塩化シラン
系とを組み合わせたCVD(ケミカルペーパーデポジシ
ョン)法で形成した・エピタキシアル層4はリンをドー
プしたN形で抵抗率2oΩ傭、厚さ30μmである。
FIG. 1(b) shows a state in which a second conductivity type epitaxial layer 4 is formed by epitaxial technology. Since the epitaxial growth is performed at high temperatures, the diffusion layers 2&, 2b, and 3 expand as shown in the figure on the semiconductor substrate 1 side and the epitaxial layer 4, respectively, due to thermal diffusion. Above, FIGS. 1(a) and 1(b) are the first step. In the example, the epitaxial layer 4 was formed by a CVD (chemical paper deposition) method using a combination of monosilane and tetrachlorosilane. The epitaxial layer 4 was N-type doped with phosphorus and had a resistivity of 20Ω. The thickness is 30 μm.

第1図(C)にエピタキシアル層4に選択拡散法により
、所定の部分に第1導電形拡散層5m。
In FIG. 1C, a first conductivity type diffusion layer 5m is formed in a predetermined portion of the epitaxial layer 4 by a selective diffusion method.

5bをボロン拡散技術で設けた状態を示す。5b is provided using boron diffusion technology.

第1図(d)は、エピタキシアル技術により、第2導電
形エピタキシアル層6ik形成したことを示す断面図で
ある。第1図(b) において説明した不純物の熱拡散
現象が起こり、図中に示したよう忙、拡散層5m、5b
は膨張する。また拡散層2a 、 2bおよび拡散層3
も同じ拡散現象により、量的には差があるが膨張する。
FIG. 1(d) is a cross-sectional view showing that the second conductivity type epitaxial layer 6ik is formed by epitaxial technology. The thermal diffusion phenomenon of impurities explained in Fig. 1(b) occurs, and as shown in the figure, the diffusion layers 5m and 5b
expands. Further, the diffusion layers 2a, 2b and the diffusion layer 3
also expands due to the same diffusion phenomenon, although there is a difference in quantity.

実施例におけるエピタキシアル層6は、具体的には、リ
ンをドープしたN形で抵抗率20Ω信、厚さ20μmで
ある。製造方法はエピタキシアル層4と同じく、モノシ
ラン系と4塩化シラン系とを組み合わせたCVD(ケミ
カルペーパーデポジション)法である。
Specifically, the epitaxial layer 6 in the example is of N type doped with phosphorus, has a resistivity of 20Ω, and a thickness of 20 μm. As with the epitaxial layer 4, the manufacturing method is a CVD (chemical paper deposition) method using a combination of monosilane and tetrachlorosilane.

以上、第1図(cl (d)が第2工程を示すもので蔦
る。この工程は、全体としてのエピタキシアル層の厚さ
、すなわち各工程のエピタキシアル層の厚さを加算した
値が所定の値になるまで繰り返す。こ〜では所定の厚さ
になったとして、第1図(e)に示すように、選択拡散
技術により、第1導電形拡散層7a 、7bを形成し、
さらに主表面に誘電体膜9を形成する。実施例では拡散
層7a、7bはポロン拡散により形成した。誘電体膜9
は熱酸化法による厚さ0.5〜1.5μmの5loz膜
である。拡散・熱酸化の際の熱処理により第1導電形領
域はすべて互いに交わり、第1導電形領域が島8を限る
周縁になる。半導体素子を島8内に拡散法で製作すれば
高耐圧半導体集積回路が得られる。
As mentioned above, Figure 1 (cl (d)) shows the second step. In this step, the thickness of the epitaxial layer as a whole, that is, the sum of the thicknesses of the epitaxial layer in each step, is This process is repeated until a predetermined value is reached.Assuming that a predetermined thickness is obtained, the first conductivity type diffusion layers 7a and 7b are formed by selective diffusion technology as shown in FIG. 1(e).
Furthermore, a dielectric film 9 is formed on the main surface. In the example, the diffusion layers 7a and 7b were formed by poron diffusion. Dielectric film 9
is a 5loz film with a thickness of 0.5 to 1.5 μm formed by thermal oxidation. Due to the heat treatment during diffusion and thermal oxidation, all the first conductivity type regions intersect with each other, and the first conductivity type regions form the periphery that limits the island 8. If a semiconductor element is manufactured within the island 8 by a diffusion method, a high voltage semiconductor integrated circuit can be obtained.

第2実施例は、高耐圧のパワー半導体零子を組みこむ深
い島(主島という)、低耐圧の制御半導体素子を組みこ
む浅い島(機高という)とがその分離周縁の一部を共用
するようにした実施例で、深い島形成工程中忙重畳的に
浅い島形成工程を含ませて構成する。第2図は、工程順
に、断面図で各工程の状態を示したものである。
In the second embodiment, a part of the separation periphery is shared by a deep island (referred to as the main island) into which a high-voltage power semiconductor element is installed and a shallow island (referred to as machine height) into which a low-voltage control semiconductor element is installed. In this embodiment, a shallow island forming step is superimposed on a deep island forming step. FIG. 2 is a sectional view showing the state of each step in the order of the steps.

第1工程において、第1実施例と異なる点は第1導電形
拡散層2bが幅広く拡散されることである。この広く拡
散された部位が全工程終了後は機高の底面になる。
In the first step, the difference from the first embodiment is that the first conductivity type diffusion layer 2b is diffused widely. This widely diffused area becomes the bottom of the machine height after the entire process is completed.

第2図(0)では、拡散層2b上に、機高な形成するよ
うに第1導電形拡散層5b、5cを拡散層5aと同時に
形成する0この場合、拡散層5bは主島および機高に共
通な周縁となる0なお第2導電形拡散層3′も同時に形
成するが、この拡散層3′は機高の埋込層になる。第2
図(C)(d)が第2工程を示す断面図で、第2導電形
エピタキシアル層6が主面に形成される゛。第2図(e
)は島形成最終工程で、第1導電形拡散層7a。
In FIG. 2(0), the first conductivity type diffusion layers 5b and 5c are formed on the diffusion layer 2b at the same time as the diffusion layer 5a so that they are formed at a high height. In this case, the diffusion layer 5b is formed on the main island and the A second conductivity type diffusion layer 3', which forms a common periphery at the height, is also formed at the same time, and this diffusion layer 3' becomes a buried layer at the machine height. Second
Figures (C) and (d) are cross-sectional views showing the second step, in which the second conductivity type epitaxial layer 6 is formed on the main surface. Figure 2 (e
) is the final step of island formation, and the first conductivity type diffusion layer 7a.

7b、7cを形成し、表面には誘電体膜9を形成する。7b and 7c are formed, and a dielectric film 9 is formed on the surface.

この工程で、第1導電形領域はすべて連結され、高耐圧
素子用の深い島10.低耐圧素子用の浅い島11が形成
される。
In this step, all the first conductivity type regions are connected, and the deep islands 10. A shallow island 11 for a low breakdown voltage element is formed.

次に、本発明により、形成された集積回路の一部である
深い島10の部分を第3図に示す。この部分の半導体素
子の組み込みは第2図(e)の後、第2導電形拡散層1
2を選択拡散技術により形成し、次に第1導電形拡散層
13を形成し、さらに高濃度な第2尋電形拡散層14 
mおよび14 bを形成する0ここで拡散層14 aは
拡散層13の中に、また拡散層14 bは拡散層12の
中にそれぞれ形成される。完成時、拡散層14 aはエ
ミッタ、拡散層13はベース、拡散層14 bおよび1
2は、コレクタ引き出し高濃度層である。第3図には、
拡散層12に接触する拡散層17が形成さnた状態を示
しているがこれはコレクタ直列抵抗を低減するために設
けるもので、浅い島11の埋込層3′形成のときに同時
に設けられる。
A portion of a deep island 10, which is part of an integrated circuit formed in accordance with the present invention, is now shown in FIG. As shown in FIG. 2(e), the semiconductor element in this part is assembled into the second conductivity type diffusion layer 1.
2 is formed by a selective diffusion technique, then a first conductivity type diffusion layer 13 is formed, and a second conductivity type diffusion layer 14 with a higher concentration is formed.
m and 14b, where the diffusion layer 14a is formed in the diffusion layer 13, and the diffusion layer 14b is formed in the diffusion layer 12, respectively. When completed, the diffusion layer 14a is the emitter, the diffusion layer 13 is the base, and the diffusion layers 14b and 1
2 is a high concentration layer drawn out from the collector. In Figure 3,
A state in which a diffusion layer 17 is formed in contact with the diffusion layer 12 is shown, but this is provided to reduce the collector series resistance, and is provided at the same time as the buried layer 3' of the shallow island 11 is formed. .

さらに誘電体[9の所定の位置に穴な設け、所定の拡散
層とオーミック接触する金属配線を形成する。それは、
二層配線となっており、一層用配線15は通常の素子間
接続機能の他に、特に高耐圧化の為のフィールドプレー
ト、表面チャンネルストッパーを構成する電界電極など
の用途に使用される。また二層用配線16は特に、電界
電極をオーバーラツプした引き出し等用途に使用するも
ので、完成時、配線16 aはエミッタ、配線16bは
、ペース、配線16 cはコレクタの電極配線になる〇 第3図から明らかなように、分離幅は拡散層7a、7b
の拡がりが小さく狭くてよい。第3図中に一点鎖線18
で表示しているのは、誘電体分離法の場合の島の形状を
示したものである。
Furthermore, holes are provided at predetermined positions in the dielectric material [9, and metal wirings are formed in ohmic contact with predetermined diffusion layers. it is,
It is a two-layer wiring, and the first-layer wiring 15 is used not only for the normal inter-element connection function, but also for fields such as a field plate for increasing voltage resistance, and an electric field electrode constituting a surface channel stopper. The two-layer wiring 16 is particularly used for drawing out overlapping electric field electrodes, and when completed, the wiring 16a will be the emitter electrode, the wiring 16b will be the paste electrode wiring, and the wiring 16c will be the collector electrode wiring. As is clear from Figure 3, the separation width is the same as that of the diffusion layers 7a and 7b.
It is good if the spread is small and narrow. One-dot chain line 18 in Figure 3
The figure shown in the figure shows the shape of the island in the case of the dielectric separation method.

拡散層7a、7bの横方内拡がりおよび分離PN接合の
空乏層伸長分だけサイズが大きくなることが分かる。
It can be seen that the size increases by the lateral inward expansion of the diffusion layers 7a and 7b and the extension of the depletion layer of the isolated PN junction.

こ工で高濃度のコレクタ埋込層として形成した第2図の
拡散層3,3′について説明する。高耐圧である主島1
0の絶縁分離耐圧は、高耐圧であることが要求されるの
で、拡散層3は分離PN接合の空乏層の伸長および目合
わせマージンなどを見込んで拡散層2aもしくは2bか
ら然るべき距離だけ離し【おく必要がある。実施例にお
いてはマスク上50 ttm離して設計することにより
、400V以上の絶縁分離耐圧な得ることが出来た。一
方低耐圧である機高11は拡散層5bもしくは拡散層5
Cと接触させ、絶縁耐圧を低下させてもよい。拡散層3
′を接触させることにより、低耐圧デバイス部分の集積
密度を向上させることができる。
The diffusion layers 3 and 3' shown in FIG. 2 formed as high-concentration collector buried layers in this process will be explained. Main island 1 with high pressure resistance
Since the dielectric isolation breakdown voltage of 0 is required to be a high breakdown voltage, the diffusion layer 3 is separated from the diffusion layer 2a or 2b by an appropriate distance in consideration of the extension of the depletion layer of the isolated PN junction and the alignment margin. There is a need. In the example, by designing a distance of 50 ttm on the mask, an insulation breakdown voltage of 400 V or more could be obtained. On the other hand, the machine height 11 with low withstand voltage is the diffusion layer 5b or the diffusion layer 5.
The dielectric strength may be lowered by contacting with C. Diffusion layer 3
By bringing 2' into contact with each other, it is possible to improve the integration density of the low voltage device portion.

〔発明の効果〕〔Effect of the invention〕

本発明な誘電体分離法と比較した具体事例を第1表に示
す。
Specific examples compared with the dielectric separation method of the present invention are shown in Table 1.

第  1  表 この例は耐圧300V、素子数約300ケ(高耐圧素子
はそのうち約50ケ)、ペレットサイズ10 X 3.
 Owm (本発明の場合のサイズ)の集積回路の場合
であって、総合コスト比の面で優れていることがわかる
。なお通常のPN分離法の場合も例示しである・ 以上のように、本発明では誘電体分離法のように1複雑
かつ高精度な工程、また単結晶・多結晶のバイメタル的
なパイマチリアに構造による熱応力、ウェーハ反りなど
による生産上の問題がない。工程は拡散技術・エピタキ
シアル技術の従来技術の延長上であり生産能率が高い〇
通常のPN分離法では、島を厚いエピタキシアル層に形
成するので、島の横断面が広くなる。
Table 1 This example has a breakdown voltage of 300V, a number of elements of approximately 300 (of which approximately 50 are high voltage elements), and a pellet size of 10 x 3.
It can be seen that this is the case of an integrated circuit with a size of Owm (the size in the case of the present invention), and is excellent in terms of total cost ratio. The case of the normal PN separation method is also an example. As mentioned above, in the present invention, the dielectric separation method requires a complicated and highly accurate process, and also has a structure in bimetallic pimateria of single crystals and polycrystals. There are no production problems due to thermal stress or wafer warping. The process is an extension of the conventional diffusion technology and epitaxial technology and has high production efficiency. In the normal PN separation method, the islands are formed in a thick epitaxial layer, so the cross section of the islands is wide.

これに対し、本発明では、高岡縁部の形成は段階的にエ
ピタキシアル層の形成および高岡縁部になる拡散層の形
成を繰返し、垂直方向に拡散層を連結してゆくので、高
岡縁部の位置は最初の工程からぎまる。したがって島の
横断面積を特性から要求される限度まで小さくとれるの
で、集積度を高くとれる。また、エビタキシアル工程を
数回にわけ、各工程で、高熱に保持される時間が短埴の
でり千−ノーが反もず、さらに制御用半導体素子を同時
に組込む場合、エピタキシアル層の全体の深さく高耐圧
半導体素子に要求される深さ)を利用せず、第2実施例
に示すように、深い島形成の中途から島形成することで
、例えばコレクタ領域の厚みを減少し高性能の特性を得
ることができる。
In contrast, in the present invention, the Takaoka edge is formed by repeating stepwise formation of the epitaxial layer and formation of the diffusion layer that will become the Takaoka edge, and connecting the diffusion layers in the vertical direction. The position of is limited from the first step. Therefore, the cross-sectional area of the island can be reduced to the limit required by the characteristics, so that the degree of integration can be increased. In addition, if the epitaxial process is divided into several steps, the time during which the epitaxial layer is held at a high temperature will be shortened and the time required for each process to be kept at high temperatures will be shortened, and furthermore, if a control semiconductor element is incorporated at the same time, the entire depth of the epitaxial layer will be reduced. As shown in the second embodiment, by forming an island from the middle of forming a deep island, for example, the thickness of the collector region can be reduced and high performance characteristics can be achieved. can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例に関し、第1図、第2図は島形
成の工程を示す断面図、第3図は組みこまれた高耐圧半
導体素子を示す図である。 l・・・第1導電形半導体基板、 2 a 、 2 b 、 5 a 、 5 b 、 5
 C−−−第1導電形拡散層11 3.3′・・・第2導電形拡散層、 4.6・・・第2導電形エピタキシアル層、7a、7b
、7c・・・第1導電形拡散層、8・・・(PN分離)
島、 9・・・誘電体膜、 lO・・・主島(深い島)、 11・・・機高(浅い島)。
The drawings relate to an embodiment of the present invention; FIGS. 1 and 2 are cross-sectional views showing the process of forming an island, and FIG. 3 is a view showing an assembled high-voltage semiconductor element. l...first conductivity type semiconductor substrate, 2 a , 2 b , 5 a , 5 b , 5
C---First conductivity type diffusion layer 11 3.3'... Second conductivity type diffusion layer, 4.6... Second conductivity type epitaxial layer, 7a, 7b
, 7c...first conductivity type diffusion layer, 8...(PN separation)
Island, 9...Dielectric film, lO... Main island (deep island), 11... Machine height (shallow island).

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電形半導体基板の主面に第1導電形拡散層
I を島の周縁として予定された部位に形成し、該主面
上に第2導電形エピタキシアル層 I を形成する第1工
程と、該エピタキシアル層 I の主面に、前記拡散層 I
の直上方に第1導電形拡散層IIを形成した後、さらに
第2導電形エピタキシアル層IIを形成する第2工程と、
前記第2工程を複数回繰り返し、最終にエピタキシアル
層Nから第1導電形拡散層Nを拡散することで各工程の
第1導電形領域を連結してPN分離島を形成し、該島内
に半導体素子を設けたことを特徴とする半導体集積回路
の製造方法。
(1) A first conductivity type diffusion layer on the main surface of the first conductivity type semiconductor substrate.
A first step of forming a second conductivity type epitaxial layer I on the main surface of the island, and forming the diffusion layer I on the main surface of the epitaxial layer I.
a second step of further forming a second conductivity type epitaxial layer II after forming a first conductivity type diffusion layer II directly above the first conductivity type diffusion layer II;
The second step is repeated multiple times, and finally the first conductivity type diffusion layer N is diffused from the epitaxial layer N, thereby connecting the first conductivity type regions of each step to form a PN isolation island, and forming a PN isolation island within the island. A method for manufacturing a semiconductor integrated circuit, characterized in that a semiconductor element is provided.
(2)前記第1項の第1工程において、第1導電形拡散
層 I を形成する際に、該拡散層 I に囲まれて第2導電
形拡散層を形成し、該拡散層をPN分離島の埋込層とす
る特許請求の範囲第1項記載の半導体集積回路の製造方
法。
(2) In the first step of item 1 above, when forming the first conductivity type diffusion layer I, a second conductivity type diffusion layer is formed surrounded by the diffusion layer I, and the diffusion layer is divided into PN parts. A method of manufacturing a semiconductor integrated circuit according to claim 1, wherein the buried layer is formed on a remote island.
(3)主たるPN分離島と、該島に隣接し、その周縁の
一部を共有する従たるPN分離島とを有し、両島に半導
体素子を設けた半導体集積回路の製造方法において、 第1導電形半導体基板の主面に、第1導電 形拡散層 I を、前記主島の周縁および従島の底面とし
て予定された部位に形成し、該主面上に第2導電形エピ
タキシアル層 I を形成する第1工程と、該エピタキシ
アル層 I の主面に、主島の周縁および従島の周縁に予
定された部位に第1導電形拡散層IIを形成した後、さら
に第2導電形エピタキシアル層IIを形成する第2工程と
、前記第2工程を複数回繰り返し、最終にエピタキシア
ル層Nから第1導電形拡散層Nを拡散することで各工程
の第1導電形領域を連結して、主従の関係にある複数の
PN分離島を形成し、該島内に半導体素子を設けたこと
を特徴とする半導体集積回路の製造方法。
(3) In a method for manufacturing a semiconductor integrated circuit having a main PN isolation island and a secondary PN isolation island adjacent to the island and sharing a part of its periphery, and in which semiconductor elements are provided on both islands, A first conductivity type diffusion layer I is formed on the main surface of the first conductivity type semiconductor substrate at a portion planned as the periphery of the main island and the bottom surface of the subsidiary island, and a second conductivity type epitaxial layer I is formed on the main surface. After forming the first conductivity type diffusion layer II on the main surface of the epitaxial layer I at planned locations around the periphery of the main island and the periphery of the secondary island, a second conductivity type diffusion layer II is formed. The second step of forming a type epitaxial layer II and the second step are repeated multiple times, and finally the first conductivity type region in each step is diffused from the epitaxial layer N by diffusing the first conductivity type diffusion layer N. 1. A method of manufacturing a semiconductor integrated circuit, characterized in that a plurality of PN isolation islands are connected to each other in a master-slave relationship, and a semiconductor element is provided within the islands.
(4)前記第3項の第1工程において、第1導電形拡散
層 I を形成する際に、前記主島の周縁予定部位に囲ま
れて、第2導電形拡散層を形成するとともに第2工程に
おいて第1導電形拡散層IIを形成する際に、前記従島の
該拡散層IIに囲まれて第2導電形拡散層を形成し、前記
第2導電形拡散層を主従のPN分離島のそれぞれの埋込
層とする特許請求の範囲第3項記載の半導体集積回路の
製造方法。
(4) In the first step of item 3 above, when forming the first conductivity type diffusion layer I, a second conductivity type diffusion layer is formed surrounded by the planned peripheral area of the main island, and a second conductivity type diffusion layer I is formed. When forming the first conductivity type diffusion layer II in the process, a second conductivity type diffusion layer is formed surrounded by the diffusion layer II of the slave island, and the second conductivity type diffusion layer is connected to the master and slave PN isolation islands. 4. The method of manufacturing a semiconductor integrated circuit according to claim 3, wherein each of the buried layers is a buried layer.
JP14502285A 1985-07-01 1985-07-01 Manufacture of semiconductor integrated circuit Pending JPS624340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14502285A JPS624340A (en) 1985-07-01 1985-07-01 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14502285A JPS624340A (en) 1985-07-01 1985-07-01 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS624340A true JPS624340A (en) 1987-01-10

Family

ID=15375620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14502285A Pending JPS624340A (en) 1985-07-01 1985-07-01 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS624340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111426A (en) * 2003-12-05 2009-05-21 Internatl Rectifier Corp Structure of group iii nitride monolithic power ic and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148955A (en) * 1975-06-24 1976-04-27 Nippon Electron Optics Lab ISOKI
JPS551148A (en) * 1978-06-19 1980-01-07 Nec Corp Semiconductor device
JPS55105344A (en) * 1979-02-07 1980-08-12 Nec Corp Semiconductor device
JPS60251658A (en) * 1984-05-28 1985-12-12 Canon Inc Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148955A (en) * 1975-06-24 1976-04-27 Nippon Electron Optics Lab ISOKI
JPS551148A (en) * 1978-06-19 1980-01-07 Nec Corp Semiconductor device
JPS55105344A (en) * 1979-02-07 1980-08-12 Nec Corp Semiconductor device
JPS60251658A (en) * 1984-05-28 1985-12-12 Canon Inc Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111426A (en) * 2003-12-05 2009-05-21 Internatl Rectifier Corp Structure of group iii nitride monolithic power ic and its manufacturing method

Similar Documents

Publication Publication Date Title
JPS6159853A (en) Structure of silicon crystalline body
US3722079A (en) Process for forming buried layers to reduce collector resistance in top contact transistors
JPH02154417A (en) Semiconductor substrate and manufacture thereof
US3546542A (en) Integrated high voltage solar cell panel
US3997378A (en) Method of manufacturing a semiconductor device utilizing monocrystalline-polycrystalline growth
US3390022A (en) Semiconductor device and process for producing same
CA1154543A (en) Mesh gate v-mos power fet
JP2605030B2 (en) Quadrature bipolar transistor
US3716425A (en) Method of making semiconductor devices through overlapping diffusions
US4870028A (en) Method of making double gate static induction thyristor
JPS624340A (en) Manufacture of semiconductor integrated circuit
US3975818A (en) Method of forming closely spaced electrodes onto semiconductor device
US3885994A (en) Bipolar transistor construction method
JPS62177959A (en) Semiconductor device
JPS5911660A (en) Semiconductor integrated circuit device
JPS6196748A (en) Dielectric isolated substrate and manufacture thereof
JPS63152170A (en) Manufacture of semiconductor device
JPS61252644A (en) Manufacture of semiconductor device
JPS5969967A (en) Semiconductor device
JPS6161434A (en) Manufacture of element region for semiconductor integrated circuit
JPS6226181B2 (en)
JPH02135755A (en) Dielectric isolated substrate and manufacture thereof
JPS5890760A (en) Lamination type semiconductor device
JPS61259547A (en) Wiring layer forming method of semiconductor device
JPS58108772A (en) Manufacture of transistor