JPS6243325B2 - - Google Patents

Info

Publication number
JPS6243325B2
JPS6243325B2 JP56064605A JP6460581A JPS6243325B2 JP S6243325 B2 JPS6243325 B2 JP S6243325B2 JP 56064605 A JP56064605 A JP 56064605A JP 6460581 A JP6460581 A JP 6460581A JP S6243325 B2 JPS6243325 B2 JP S6243325B2
Authority
JP
Japan
Prior art keywords
resistor
protective coating
voltage
layer
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56064605A
Other languages
Japanese (ja)
Other versions
JPS57178303A (en
Inventor
Masahiro Kobayashi
Hideo Imamura
Yoshio Takada
Junji Hinatsu
Kimiomi Izuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56064605A priority Critical patent/JPS57178303A/en
Publication of JPS57178303A publication Critical patent/JPS57178303A/en
Publication of JPS6243325B2 publication Critical patent/JPS6243325B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Details Of Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は絶縁体層を有する電圧非直線抵抗体の
保護被覆層の形成方法に関する。さらに詳しく
は、本発明は避雷器、サージアブソーバ用などに
用いられる絶縁体層を有する電圧非直線抵抗体の
耐電圧用あるいは耐環境向上用の保護被覆層の形
成方法に関する。 従来の電圧非直線抵抗体は、一般に酸化亜鉛を
主材としこれに微量の酸化ビスマス、酸化アンチ
モン、酸化コバルト、酸化マンガン、酸化クロム
などの金属酸化物を加えて造粒、成形、焼結する
ことによつて製造され、その結果電圧非直線性に
きわめてすぐれた抵抗体がえられる。しかし、こ
の抵抗体に電極を形成しただけの構造のものが直
接使用されることはほとんどない。すなち多くの
ばあい、第1図に示すように少なくとも衝撃大電
流の吸収時における空気放電による素子の外部閃
絡を防止するために、電圧非直線抵抗体1の側面
に絶縁体層3が設けられる。これで不充分なばあ
いには第2図に示すように、耐電圧性向上のため
に無機質材料からなる保護被覆層4が形成され
る。さらには第3図に示すように、電圧非直線抵
抗体の表面を化学的および機械的な損傷から守る
ために保護被覆層4を該抵抗体の電極2を除いた
全体に形成することも多く行なわれている。 このような従来の保護被覆層は、無機質材料を
用いるばあいには粉体状のものを選ぶことが多
い。かかる粉体自身には接着力がないので該抵抗
体に接着するために無機質材料の粉体とバインダ
とを混合し、該抵抗体の所定部分に塗布して熱処
理を行なうことによつて保護被覆層を形成する。 しかし、そのような工程によつて保護被覆層が
形成された電圧非直線抵抗体の電気特性はしばし
ば悪化する傾向にある。 一般に酸化亜鉛を主材とした電圧非直線抵抗体
は、還元性雰囲気下で熱処理するときその電気特
性が悪化することが知られている。したがつて前
記従来法による保護被覆層の形成によつて該抵抗
体の電気特性が悪化する原因として、保護被覆層
形成材料中の有機物が熱処理により分解し、還元
性雰囲気を発生せしめていることが考えられる。 本発明の方法は、前記のごとき従来の欠点を克
服すべくなされたものであり、無機質の粉末材料
を泥しよう状にし、これを絶縁体層を有する酸化
亜鉛を主体とする電圧非直線抵抗体の所定部分に
塗布する前に該抵抗体に硝酸塩層を形成すること
によつて該抵抗体の電気特性を維持したまま保護
被覆層を形成することを特徴とする。 硝酸塩層を形成する材料としては、たとえば硝
酸アルミニウム、硝酸マンガン、硝酸ニツケル、
硝酸亜鉛などの硝酸塩が用いられ、それらのう
ち、とくに硝酸アルミニウムが好ましい。 硝酸塩層は前記硝酸塩の水溶液中に絶縁体層と
有する電圧非直線抵抗体を浸し、つぎにオーブン
中にて100〜200℃、好ましくは110〜150℃で10〜
120分間、好ましくは20〜120分間乾燥して形成す
るか、該水溶液を該電圧非直線抵抗体を塗布する
かなどの方法で形成される。硝酸塩水溶液は、た
とえば硝酸アルミニウム9水塩(Al(NO33
9H2O)のばあい0.3〜2g/g水、好ましくは
0.5〜1g/g水の濃度のものが用いられる。硝
酸塩水溶液の濃度範囲がこれよりも低いばあいに
は1回の形成操作では電気特性悪化防止の効果が
低いものしか形成されない。したがつて該低濃度
溶液を用いるばあいには、この電気特性悪化防止
層の形成操作をくり返す必要性が生じてくる。 さらに硝酸塩層が形成された前記電圧非直線抵
抗体には、常法により保護被覆層が形成される。 本発明においては、保護被覆層を形成するばあ
いに、もしかりに保護被覆層形成材料に由来する
還元性雰囲気が発生したとしても、該抵抗体と保
護被覆層との間に形成された硝酸アルミニウムな
どの電気特性の悪化を防止するための硝酸塩層に
よつてその影響が弱められるか消滅せしめられる
から該抵抗体の電気特性の悪化を防ぐことができ
る。さらには避雷器、サージアブソーバなどにお
いて絶縁体層を有する酸化亜鉛を主体とする電圧
非直線抵抗体を金属、セラミツクおよび絶縁物な
どで機械的に補強して周辺部を一体化するばあい
にも、本発明の方法を適用するときには該抵抗体
の電気特性はほとんど悪化しない。 以上のように本発明によれば、絶縁体層を有す
る酸化亜鉛を主体とする電圧非直線抵抗体の電気
特性を悪化させることなく該抵抗体の任意の部分
あるいは全体に耐電圧用、耐環境向上用の保護被
覆層を形成することができる。 つぎに実施例をあげて本発明の方法を説明する
が、本発明はその実施例のみに限定されるもので
はない。 実施例 第1図に示す形態を有する絶縁体層を有する酸
化亜鉛を主体とする電圧非直線抵抗体をAl
(NO33・9H2Oの50gおよび水100gよりなる硝
酸アルミニウム水溶液に浸し、つぎにオーブンに
て110℃で30分間乾燥し硝酸アルミニウムを該抵
抗体に付着させた。 このものにたとえば鉛系ガラスなどのような低
融点ガラス粉末とニトロセルロースなどの有機物
バインダを混合して泥しよう化したものを保護被
覆層材料として第3図に示した形態に塗布したの
ち、バツチ炉にて500℃で1時間熱処理を施して
保護被覆層を形成した。 かくしてえられた電気特性の悪化を防止するた
めの硝酸塩層を有し、かつ保護被覆層が形成され
た絶縁体層を有する酸化亜鉛を主体とする電圧非
直線抵抗体Aの保護被覆層形成前後の両電極間の
電圧を測定した。比較のために、従来法によつて
えられた硝酸塩層を有しない絶縁体層を有する酸
化亜鉛を主体とする電圧非直線抵抗体Bおよび
Al(NO33・9H2Oの10gと水100gとからなる水
溶液を用いた本発明の方法によつてえられた抵抗
体Cの保護被覆層形成前後の両電極間の電圧を測
定した。対照として第1図に示す形の抵抗体Dを
前記と同様にバツチ炉にて500℃で1時間熱処理
した前後の両電極間の電圧も測定した。それらの
結果を第1表に示す。 第1表においてV10AおよびV1nAは、それぞ
れ抵抗体に10μAおよび1mAの電流を流したと
きの両電極間のバリスタ電圧の測定値を表わし、
(ΔV/V)10Aおよび(ΔV/V)1nAは各電圧
測定値の変化率を表わす。
The present invention relates to a method for forming a protective coating layer of a voltage nonlinear resistor having an insulating layer. More specifically, the present invention relates to a method for forming a protective coating layer for improving voltage resistance or environment resistance of a voltage nonlinear resistor having an insulating layer used for lightning arresters, surge absorbers, and the like. Conventional voltage nonlinear resistors are generally made of zinc oxide as the main material, to which trace amounts of metal oxides such as bismuth oxide, antimony oxide, cobalt oxide, manganese oxide, and chromium oxide are added, then granulated, molded, and sintered. The result is a resistor with excellent voltage nonlinearity. However, a structure in which only electrodes are formed on this resistor is rarely used directly. That is, in many cases, as shown in FIG. 1, an insulating layer 3 is provided on the side surface of the voltage nonlinear resistor 1 in order to prevent external flash shorting of the element due to air discharge at least when absorbing a large impact current. will be provided. If this is insufficient, as shown in FIG. 2, a protective coating layer 4 made of an inorganic material is formed to improve voltage resistance. Furthermore, as shown in FIG. 3, in order to protect the surface of the voltage nonlinear resistor from chemical and mechanical damage, a protective coating layer 4 is often formed on the entire surface of the resistor except for the electrodes 2. It is being done. When using an inorganic material, such a conventional protective coating layer is often in powder form. Since the powder itself does not have adhesive strength, in order to adhere to the resistor, inorganic material powder and a binder are mixed, applied to a predetermined part of the resistor, and heat treated to form a protective coating. form a layer. However, the electrical characteristics of a voltage nonlinear resistor on which a protective coating layer is formed by such a process often tend to deteriorate. It is generally known that the electrical characteristics of a voltage nonlinear resistor mainly made of zinc oxide deteriorate when it is heat treated in a reducing atmosphere. Therefore, the cause of the deterioration of the electrical characteristics of the resistor due to the formation of the protective coating layer by the conventional method is that the organic matter in the material for forming the protective coating layer is decomposed by heat treatment and a reducing atmosphere is generated. is possible. The method of the present invention has been made to overcome the above-mentioned drawbacks of the conventional methods, and consists of forming an inorganic powder material into a slurry-like form and applying it to a voltage non-linear resistor mainly composed of zinc oxide and having an insulating layer. The protective coating layer is formed while maintaining the electrical characteristics of the resistor by forming a nitrate layer on the resistor before coating on a predetermined portion of the resistor. Examples of materials forming the nitrate layer include aluminum nitrate, manganese nitrate, nickel nitrate,
Nitrates such as zinc nitrate are used, and among these, aluminum nitrate is particularly preferred. The nitrate layer is formed by immersing the insulating layer and the voltage nonlinear resistor in an aqueous solution of the nitrate, and then heating it in an oven at 100 to 200°C, preferably 110 to 150°C for 10 to 30 minutes.
It is formed by drying for 120 minutes, preferably 20 to 120 minutes, or by applying the aqueous solution to the voltage nonlinear resistor. The nitrate aqueous solution is, for example, aluminum nitrate nonahydrate (Al(NO 3 ) 3 .
9H2O ) 0.3-2g/g water, preferably
A concentration of 0.5 to 1 g/g water is used. If the concentration range of the nitrate aqueous solution is lower than this, a single forming operation will only form a solution that is less effective in preventing deterioration of electrical properties. Therefore, when the low concentration solution is used, it becomes necessary to repeat the formation operation of the layer for preventing deterioration of electrical properties. Furthermore, a protective coating layer is formed on the voltage nonlinear resistor on which the nitrate layer is formed by a conventional method. In the present invention, when forming a protective coating layer, even if a reducing atmosphere derived from the material for forming the protective coating layer is generated, the nitric acid formed between the resistor and the protective coating layer The influence of aluminum or the like is weakened or eliminated by the nitrate layer for preventing deterioration of the electrical characteristics of the resistor, thereby preventing deterioration of the electrical characteristics of the resistor. Furthermore, in lightning arresters, surge absorbers, etc., a voltage non-linear resistor mainly made of zinc oxide with an insulating layer is mechanically reinforced with metal, ceramic, insulating material, etc. to integrate the peripheral part. When the method of the present invention is applied, the electrical characteristics of the resistor are hardly deteriorated. As described above, according to the present invention, any part or the entirety of the voltage non-linear resistor mainly made of zinc oxide having an insulating layer can be made to withstand voltage or withstand the environment without deteriorating the electrical characteristics of the resistor. A protective coating layer for enhancement can be formed. Next, the method of the present invention will be explained with reference to Examples, but the present invention is not limited to these Examples. Example A voltage nonlinear resistor mainly made of zinc oxide and having an insulating layer having the form shown in Fig.
The resistor was immersed in an aluminum nitrate aqueous solution consisting of 50 g of (NO 3 ) 3 ·9H 2 O and 100 g of water, and then dried in an oven at 110° C. for 30 minutes to adhere aluminum nitrate to the resistor. A mixture of low-melting point glass powder such as lead-based glass and an organic binder such as nitrocellulose to form slurry is applied to this material as a protective coating layer material in the form shown in Figure 3, and then batch-coated. A protective coating layer was formed by heat treatment in a furnace at 500°C for 1 hour. Before and after formation of the protective coating layer of voltage nonlinear resistor A mainly made of zinc oxide, which has a nitrate layer for preventing deterioration of the electrical characteristics obtained in this way, and an insulator layer on which a protective coating layer is formed. The voltage between both electrodes was measured. For comparison, voltage nonlinear resistor B and
The voltage between the two electrodes of resistor C obtained by the method of the present invention using an aqueous solution consisting of 10 g of Al(NO 3 ) 3.9H 2 O and 100 g of water was measured before and after the protective coating layer was formed. . As a control, a resistor D having the shape shown in FIG. 1 was heat-treated at 500 DEG C. for 1 hour in a batch furnace in the same manner as described above, and the voltage between the two electrodes was also measured. The results are shown in Table 1. In Table 1, V 10A and V 1nA represent the measured values of the varistor voltage between the two electrodes when currents of 10 μA and 1 mA are passed through the resistor, respectively,
(ΔV/V) 10A and (ΔV/V) 1 nA represent the rate of change of each voltage measurement.

【表】 第1表の試料番号7、8における結果より、電
圧非直線抵抗体は熱処理によつてバリスタ電圧が
数%程度変化することがわかる。従来法により保
護被覆層を形成すると、試料番号3、4にみられ
るようにバリスタ電圧はV10A、V1nAとも50%
以上の変化率を示し電圧非直線抵抗体としてはも
はや使用できないほど電気特性は悪化する。しか
し本発明の方法によつて形成された試料番号1、
2のものではバリスタ電圧の変化は試料番号7、
8程度であり、従来法による保護被覆層の形成に
よつてみられる電気特性の悪化は認められない。
ただし試料番号5、6にみられるように使用する
硝酸アルミニウム水溶液濃度が低いばあいには、
電気特性悪化防止層としての効果は小さくなつて
しまう。
[Table] From the results for sample numbers 7 and 8 in Table 1, it can be seen that the varistor voltage of the voltage nonlinear resistor changes by several percent due to heat treatment. When a protective coating layer is formed using the conventional method, the varistor voltage is 50% for both V 10A and V 1nA as seen in sample numbers 3 and 4.
The electrical characteristics deteriorate to such an extent that it can no longer be used as a voltage nonlinear resistor. However, sample number 1 formed by the method of the present invention,
2, the change in varistor voltage is sample number 7,
8, and there is no deterioration in electrical properties that is observed when forming a protective coating layer using the conventional method.
However, if the concentration of the aluminum nitrate aqueous solution used is low, as seen in sample numbers 5 and 6,
The effect as a layer for preventing deterioration of electrical properties is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電極と側面絶縁体層を有する電圧非直
線抵抗体の断面図、第2図は第1図に示される電
圧非直線抵抗体にさらに保護被覆層を形成したも
のの断面図、第3図は第1図に示される電圧非直
線抵抗体の電極を除いたすべての表面に保護被覆
層を形成したものの断面図である。 (図面の符号) 1:電圧非直線抵抗体、2:
電極、3:絶縁体層、4:保護被覆層。
Fig. 1 is a cross-sectional view of a voltage non-linear resistor having an electrode and a side insulator layer, Fig. 2 is a cross-sectional view of the voltage non-linear resistor shown in Fig. 1 with a protective coating layer further formed, and Fig. 3 is a cross-sectional view of a voltage non-linear resistor shown in Fig. The figure is a sectional view of the voltage nonlinear resistor shown in FIG. 1, with a protective coating layer formed on all surfaces except for the electrodes. (Symbols in the drawing) 1: Voltage nonlinear resistor, 2:
Electrode, 3: Insulator layer, 4: Protective coating layer.

Claims (1)

【特許請求の範囲】 1 絶縁体層を有する酸化亜鉛を主体とする電圧
非直線抵抗体上に硝酸塩層を形成したのち保護被
覆層を形成することを特徴とする絶縁体層を有す
る電圧非直線抵抗体の保護被覆層の形成方法。 2 前記硝酸塩層が絶縁体層を有する酸化亜鉛を
主体とする電圧非直線抵抗体を硝酸塩水溶液に浸
すか該電圧非直線抵抗体に硝酸塩水溶液を塗布し
たのち乾燥して形成される特許請求の範囲第1項
記載の方法。 3 前記硝酸塩水溶液が硝酸アルミニウム9水塩
の水溶液である特許請求の範囲第2項記載の方
法。
[Claims] 1. A voltage nonlinear resistor having an insulating layer, characterized in that a nitrate layer is formed on a voltage nonlinear resistor mainly made of zinc oxide, and a protective coating layer is then formed on the voltage nonlinear resistor having an insulating layer. A method for forming a protective coating layer for a resistor. 2 Claims in which the nitrate layer is formed by immersing a voltage nonlinear resistor mainly made of zinc oxide and having an insulating layer in a nitrate aqueous solution, or by coating the voltage nonlinear resistor with a nitrate aqueous solution and then drying the voltage nonlinear resistor. The method described in paragraph 1. 3. The method according to claim 2, wherein the nitrate aqueous solution is an aqueous solution of aluminum nitrate nonahydrate.
JP56064605A 1981-04-28 1981-04-28 Method of forming protective coating layer for voltage nonlinear resistor Granted JPS57178303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56064605A JPS57178303A (en) 1981-04-28 1981-04-28 Method of forming protective coating layer for voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56064605A JPS57178303A (en) 1981-04-28 1981-04-28 Method of forming protective coating layer for voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS57178303A JPS57178303A (en) 1982-11-02
JPS6243325B2 true JPS6243325B2 (en) 1987-09-12

Family

ID=13263047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56064605A Granted JPS57178303A (en) 1981-04-28 1981-04-28 Method of forming protective coating layer for voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS57178303A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249491A (en) * 1975-10-16 1977-04-20 Meidensha Electric Mfg Co Ltd Non-linear resistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249491A (en) * 1975-10-16 1977-04-20 Meidensha Electric Mfg Co Ltd Non-linear resistor

Also Published As

Publication number Publication date
JPS57178303A (en) 1982-11-02

Similar Documents

Publication Publication Date Title
US4724416A (en) Voltage non-linear resistor and its manufacture
JPH0252409B2 (en)
US4920328A (en) Material for resistor body and non-linear resistor made thereof
US4326187A (en) Voltage non-linear resistor
US4420737A (en) Potentially non-linear resistor and process for producing the same
JPS6243325B2 (en)
JPS6236609B2 (en)
JP2985527B2 (en) Method of manufacturing voltage non-linear resistor
JP2572852B2 (en) Method of manufacturing voltage non-linear resistor
JPH0132712Y2 (en)
JPH0425682B2 (en)
JPH0349365Y2 (en)
JPS6236611B2 (en)
JPS5967607A (en) Method of producing nonlinear resistor
JPS63132401A (en) Manufacture of voltage nonlinear resistor
JPH0336281B2 (en)
JPH0258807A (en) Manufacture of voltage nonlinear resistor
JP2001052907A (en) Ceramic element and manufacturing method
JPS62249401A (en) Manufacture of voltage nonlinear resistance element
JPS6235242B2 (en)
JPH04253301A (en) Manufacture of non-linear varistor
JPS639728B2 (en)
JPS5994402A (en) Method of producing voltage nonlinear resistor
JPS6031207A (en) Voltage nonlinear resistor and method of producing same
JPH08124717A (en) Nonlinear resistor