JPS6236611B2 - - Google Patents

Info

Publication number
JPS6236611B2
JPS6236611B2 JP56039368A JP3936881A JPS6236611B2 JP S6236611 B2 JPS6236611 B2 JP S6236611B2 JP 56039368 A JP56039368 A JP 56039368A JP 3936881 A JP3936881 A JP 3936881A JP S6236611 B2 JPS6236611 B2 JP S6236611B2
Authority
JP
Japan
Prior art keywords
bismuth oxide
sintered body
concentration
oxide phase
nonlinear resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56039368A
Other languages
Japanese (ja)
Other versions
JPS57154802A (en
Inventor
Ken Takahashi
Tadahiko Mitsuyoshi
Takeo Yamazaki
Kunihiro Maeda
Shinichi Oowada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56039368A priority Critical patent/JPS57154802A/en
Publication of JPS57154802A publication Critical patent/JPS57154802A/en
Publication of JPS6236611B2 publication Critical patent/JPS6236611B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、酸化亜鉛を主成分とする焼結体から
成る電圧非直線抵抗体に関する。 近年、酸化亜鉛を主体とし、これに酸化ビスマ
ス、酸化マンガン、酸化コバルト、酸化アンチモ
ン、酸化クロム、酸化ホウ素などを添加し成形、
焼結した電圧非直線抵抗体が、電圧安定化素子、
サージアブソーバ、アレスタなどに利用されるよ
うになつてきた。 この酸化亜鉛系電圧非直線抵抗体の原理は、要
すれば、n型半導体である酸化亜鉛の結晶粒の粒
界に、酸化ビスマスを含む高抵抗層が形成され、
これが電気的に降伏し急激な電流上昇をもたらす
ことにある。 この酸化亜鉛系の電圧非直線抵抗体は、炭化珪
素から成る電圧非直線抵抗体などに比べて電圧−
電流特性の非直線性はすぐれているが、サージ吸
収あるいは長時間の定電圧課電によつて特性の劣
化が起り、もれ電流が徐々に増加してついには熱
暴走に至るという問題があつた。 このような特性劣化は、次の様な実験事実、す
なわち、 (1) 電圧非直線抵抗体素子を窒素雰囲気中で熱処
理すると、課電の場合と同様な特性劣化をする
こと。 (2) 特性劣化した素子を、大気中または酸素雰囲
気中で熱処理すると、特性がもとに戻ること。 などから、結晶粒界層中または結晶粒子表面の吸
着酸素が課電時に脱離し、外界に散逸することに
より、結晶粒界層の静電ポテンシヤルが低下し、
もれ電流が増加することに起因するものと考えら
れる。 このような酸化亜鉛系電圧非直線抵抗体の、課
電による特性劣化を小さくして、安定性を増すた
めの方法として、次のような方法が開発されてき
た。 (1) 焼結体の全表面から酸化ビスマスを拡散す
る、 (2) 焼結体中に含有されている酸化ビスマスの一
部または全部を、γ型酸化ビスマス相として含
ませる。 しかしながら、このような方法によつて製造さ
れたものも、必らずしも十分に安定な特性を持た
ず、また他の特性、特に長波尾衝撃電流に対する
耐量が低下するなどの欠点を生ずることもある。 このような実情に鑑み、本発明者らは、安定な
特性を有する電圧非直線抵抗体を見出すべく鋭意
研究を重ねた結果、γ型酸化ビスマス相濃度に特
定の勾配を持たせることにより、すぐれた電圧非
直線抵抗体が得られることを見出し、本発明に到
達した。 すなわち、本発明は、長時間の課電に対しても
特性が安定で、しかも高い長波尾衝撃電流耐量を
有する電圧非直線抵抗体を提供することにあり、
この目的は、酸化亜鉛を主成分とし、添加物とし
て少なくとも酸化ビスマスを含む焼結体の上下主
面に電極を設けてなる電圧非直線抵抗体におい
て、γ型酸化ビスマス相濃度が前記電極形成主面
で最も高く焼結体内部に行くに従つて低くなる厚
さ方向の濃度勾配を有し、かつ該電極形成主面に
おいて周縁部におけるγ型酸化ビスマス相濃度が
その内側より低いことを特徴とする電圧非直線抵
抗体によつて容易に達成される。そのような電圧
非直線抵抗体は、酸化亜鉛を主成分とする焼結体
の上下主面のうち、周縁部を除いた部分から酸化
ビスマスを拡散して前記濃度分布のγ型酸化ビス
マス相を形成し、次いで前記上下主面に電極を形
成することによつて製造される。 以下に、本発明を、本発明の一実施態様を示す
第1図および第2図を参照しながら、詳細に説明
する。 第1図および第2図は、本発明の電圧非直線抵
抗体の断面を示す略図である。本発明の電圧非直
線抵抗体は、γ型酸化ビスマス相濃度が電極形成
主面で最も高く焼結体内部に行くに従つて低くな
る厚さ方向の濃度勾配を有し、かつ該電極形成主
面において周縁部におけるγ型酸化ビスマス相濃
度がその内側より低いことを特徴とするものであ
る。第1図および第2図において、酸化ビスマス
を含む酸化亜鉛系焼結体1の電極2が形成されて
いる面において、酸化ビスマスを拡散した部分の
表面層11に含まれるγ型酸化ビスマス相濃度が
最も高い。この表面層11のγ型酸化ビスマス相
濃度が高いことにより、電圧非直線抵抗体の長時
間課電に対する安定性を向上させることができ
る。この理由としては、次のようなことが考えら
れる。 (1) 電圧非直線抵抗体の抵抗(動作領域)は、酸
化亜鉛の粒界に析出したγ型酸化ビスマス相の
含有量が多いほど低下する傾向にある。本発明
の構造では表面層11の抵抗が低いため、通電
時に表面層11で発生する熱量が内部に比べて
少なく、当然酸素の外部への散逸も少なくなり
表面層11は特性劣化しにくい。一方γ型酸化
ビスマス相の含有量が少ない内部では抵抗が高
く、通電時の発熱も大きいが、酸素の外部への
散逸が厚い層を通して行われれるので散逸量が
少なく、特性劣化しにくい。 (2) 酸化ビスマスが、焼結体中や酸化亜鉛粒界に
ある気孔を通つて拡散する結果、これらの気孔
を充填し、焼結体から外界へ散逸しようとする
酸素の移動を防ぐ効果が生じる。 γ型酸化ビスマス相は体心立方晶の構造を持
ち、α型酸化ビスマス相(単斜晶)やβ型酸化
ビスマス相(正方晶)に比べてその体積が大き
いので、気孔を充填する効果が大きい。 (3) γ型酸化ビスマス相中には3価のビスマスの
他に一部5価のビスマスも含まれていると言わ
れており、この5価のビスマスは粒界層に存在
する酸素イオンを安定化し外界への散逸を阻止
する効果を持つ。 また、本発明の電圧非直線抵抗体を、焼結体主
面の周縁部121を含む側面層12のγ型酸化ビ
スマス相の濃度を低くすれば、長波尾衝撃電流に
対する耐量をさらに向上させることができるの
で、より好ましい。その理由は、次のように考え
られる。第1図において、焼結体1に長波尾を有
する例えば2msの矩形波状の衝撃電流が流れた
場合、電極2の端部3で貫通破壊が最も起りやす
い。これは電極端部では電界集中が生じており、
電極中心部に比べ約4〜5倍の電界が印加されて
いるため、焼結体の電極端部に他の部分より過大
な電流が流れてその部分が熱破壊しやすいからで
ある。本発明によれば、焼結体主面周縁部または
該周縁部を含む側面層のγ型酸化ビスマス相濃度
が、焼結体中央部より低いために、該周縁部又は
該側面層の抵抗値が焼結体中央部より大きくな
り、そのため電界集中が生じても、流れる電流が
小さくなることから発生する熱量も小さくなり、
熱破壊を容易に回避することができる。 更に第2図のように電極2の端部3が酸化ビス
マス相拡散時に残した周縁部121の上にくるよ
うにすると、電極端部に接する焼結体部分が電極
の他の大部分に接する焼結体部分より高抵抗とな
り、電流集中を緩和して長波尾衝撃電流耐量を高
める効果が大きいので特に好ましい。 上記のようなγ型酸化ビスマス相含有量の多い
表面層は、酸化ビスマスを含む拡散剤を焼結体の
主面に付着または塗布し、これを熱処理によつて
拡散すると同時にγ相に相変化させることで形成
することができる。 拡散法としては、公知の方法、例えば酸化ビス
マスを水や有機溶媒を用いて塗布する方法、ある
いは蒸着などによつて拡散層を形成する方法等、
種々の方法を採用することができる。 本発明の電圧非直線抵抗体を製造するにあたつ
ては、酸化亜鉛を主成分とする焼結体の上下主面
のうち、周縁部を除いた部分から酸化ビスマスを
拡散して前記濃度分布のγ型酸化ビスマス相を形
成し、次いで前記上下主面に電極を形成するのが
よい。 従来行なわれてきた製法のように、焼結体の主
面全面から酸化ビスマス相を拡散させた場合、拡
散過程で溶融した酸化ビスマス相が主面から側面
へ流れて側面に付着する可能性が大きい。また、
拡散が進行すると側面層のγ型酸化ビスマス相濃
度が内側より高くなり、側面層の抵抗が小さくな
る。このため、側面層の近くにある電極端部にお
ける電流集中の度合がさらに高くなり、長波尾衝
撃電流に対する耐量が著しく低下する。さらにこ
の場合、側面が低抵抗となるため短波尾衝撃電流
印加時の沿面閃絡も起りやすくなり、この時の耐
量も低下する。拡散過程で酸化ビスマス相が側面
に流れないように完全に制御することも困難であ
り、注意して作製しても長波尾衝撃電流に対する
耐量の素子によるばらつきが大きくなる等の不都
合を生ずることがある。 これに対して、本発明の電圧非直線抵抗体を製
造する前記方法によれば、拡散過程で酸化ビスマ
ス相が側面に流れることがなく、上記のように弊
害を容易に回避することができる。 なお、本発明で酸化ビスマス相拡散の際に除く
周縁部は焼結体表面の面積のごく一部であるの
で、長時間課電に対する安定性は、主面全面から
酸化ビスマス相を拡散した場合とほとんど同程度
のものとすることができる。 本発明の電圧非直線抵抗体は、酸化亜鉛、酸化
ビスマスのほかにそれぞれ0.01〜10モル%の酸化
マンガン、酸化コバルト、酸化クロム、酸化アン
チモン、酸化ニツケル、酸化珪素、酸化ホウ素や
0.001〜0.01モル%の酸化アルミニウム、酸化ガ
リウムなどを含有することができる。これらの添
加物は、素子の非直線係数の向上あるいは課電寿
命やインパルス耐量の向上に効果がある。 焼結体には酸化ビスマスを拡散するが、あらか
じめ焼結前に0.05モル%以上の酸化ビスマスが含
有されているものを成形、焼成するのが好まし
い。こうすることにより、焼結性を損うことなく
焼結体を得ることができる。また、拡散させる酸
化ビスマス量は、焼結体中の大部分の気孔を充填
するに充分な量であれば特に制限はないが、好ま
しくは0.01モル%以上である。 また、特に焼結体中に酸化ホウ素が含有される
ことは好ましい。γ型酸化ビスマス相は普通は準
安定相であるが、酸化ホウ素は、γ型酸化ビスマ
ス相を安定化する効果があり、従つて特に長期の
課電やサージ印加に伴う熱サイクルによるγ相か
ら他相への変化を防止し、長期間安定化を図るこ
とができる。酸化ホウ素の好ましい含有量は0.01
〜0.2モル%である。 なお、拡散温度が酸化ビスマスの融点(約820
℃)以下では、拡散速度が極めておそく、焼結体
の焼結温度以上になると、γ型酸化ビスマス相が
少なくなり、拡散の効果が小さくなる。従つて、
拡散温度としては、酸化ビスマスの融点ないし焼
結体の焼結温度とするのが好ましい。再現性よく
γ型酸化ビスマス相を形成させるためには、拡散
温度を1100℃以下とすることが特に好ましい。 焼結体には短波尾衝撃電流耐量を上げる目的で
さらに側面にガラス膜などを設けてもよい。 以上説明してきたように、本発明によれば電圧
非直線抵抗体の課電寿命が従来の素子に比べて著
しく向上する上、長波尾衝撃電流に対する耐量も
増加する。 以下に実施例によつて本発明をさらに具体的に
説明するが、本発明は、その要旨を超えない限
り、以下の実施例によつて限定されるものではな
い。 実施例 1 ZnOにBi2O30.7モル%、MnCO30.5モル%
Co2O31.0モル%、Cr2O30.5モル%、Sb2O31.0モ
ル%、NiO1.0モル%、SiO21.5モル%、B2O30.1モ
ル%、Al(NO330.005モル%を加え、ボールミ
ルを用いて10h混合した。この原料粉末に対して
2%ポリビニールアルコール水溶液を10%加えて
造粒した。これを円板状に成形し、空気中に1160
℃で5h焼成した。得られた焼結体の両主面を0.5
mmずつ研摩して、60mm〓×20mmtの素子を得た。
次にこの素子の両主面に、酸化ビスマス2g、エ
チルセルローズ0.05g、ブチルカルビトール0.4
gから成るペーストを主面の外周縁3mmの幅の部
分を残してほぼ均一に塗布し、950℃で2時間熱
処理した。最後に両主面にAlを溶射して、56mm
〓の電極を電極端が上記ペーストを塗らなかつた
部分にくるように形成した。 得られた素子の非直線係数(電流3×10-6〜3
×10-4A/cm2)は52、平坦率(電流3×10-3A/
cm2の時の電圧と3×10-4A/cm2の時の電圧の比)
は1.54であつた。 第3図は本発明の電圧非直線抵抗体を温度90
℃、課電率100%(20℃において直流1mAを流
すに必要な電圧と同じピーク値電圧)で交流連続
通電した時の抵抗分もれ電流の時間変化の様子を
示している。図においてAは本実施例で得られた
素子、Bは本実施例と同様な方法で得られた酸化
ビスマス拡散前の素子、Cは両主面の全面に本実
施例と同量のペーストを塗布して酸化ビスマス相
を拡散した素子、Dは本実施例と同様な方法で得
られた添加物として酸化ホウ素を含まない素子、
EはDの素子と同様な方法で得られた酸化ビスマ
ス拡散前の素子の特性である。 第3図より、素子Cと本発明の素子Aとは抵抗
分もれ電流の変化が小さく、長時間課電に対する
安定性が格段に高いことが認められる。温度によ
る特性劣化速度の加速性を考慮すると、90℃にお
ける通電時間1万時間は実使用状態の40℃におい
ては100年以上に相当するといえる。 また各素子A〜Eの長波尾衝撃電流に対する耐
量を計るために2msの矩形波耐量を測定した。
その結果を第1表に示す。
The present invention relates to a voltage nonlinear resistor made of a sintered body containing zinc oxide as a main component. In recent years, molding is mainly made of zinc oxide, with the addition of bismuth oxide, manganese oxide, cobalt oxide, antimony oxide, chromium oxide, boron oxide, etc.
The sintered voltage nonlinear resistor is used as a voltage stabilizing element,
It has come to be used in surge absorbers, arresters, etc. The principle of this zinc oxide-based voltage nonlinear resistor is that a high-resistance layer containing bismuth oxide is formed at the grain boundaries of zinc oxide, which is an n-type semiconductor.
This causes electrical breakdown and a rapid increase in current. This zinc oxide-based voltage nonlinear resistor has a lower voltage difference than a voltage nonlinear resistor made of silicon carbide.
Although the nonlinearity of the current characteristics is excellent, there is a problem that the characteristics deteriorate due to surge absorption or constant voltage application for a long time, and the leakage current gradually increases, eventually leading to thermal runaway. Ta. This characteristic deterioration is due to the following experimental facts: (1) When a voltage nonlinear resistor element is heat-treated in a nitrogen atmosphere, the characteristics deteriorate in the same way as when a voltage is applied. (2) When an element with deteriorated characteristics is heat-treated in the air or an oxygen atmosphere, the characteristics return to their original state. As a result, the adsorbed oxygen in the grain boundary layer or on the surface of the crystal grain is desorbed when electricity is applied and dissipates to the outside world, reducing the electrostatic potential of the grain boundary layer.
This is thought to be due to an increase in leakage current. The following methods have been developed to reduce the deterioration of characteristics of such a zinc oxide-based voltage nonlinear resistor due to the application of electricity and to increase its stability. (1) Bismuth oxide is diffused from the entire surface of the sintered body. (2) Part or all of the bismuth oxide contained in the sintered body is contained as a γ-type bismuth oxide phase. However, products manufactured by such a method do not necessarily have sufficiently stable characteristics, and may also have drawbacks such as a decrease in other characteristics, especially the ability to withstand long-wave tail impulse currents. There is also. In view of these circumstances, the inventors of the present invention have conducted intensive research to find a voltage nonlinear resistor with stable characteristics. As a result, the inventors have found that by creating a specific gradient in the concentration of the γ-type bismuth oxide phase, an excellent The inventors have discovered that a voltage nonlinear resistor can be obtained, and have arrived at the present invention. That is, an object of the present invention is to provide a voltage nonlinear resistor that has stable characteristics even when applied with electricity for a long time and has a high long-wave tail impact current capacity.
This purpose is to provide a voltage nonlinear resistor in which electrodes are provided on the upper and lower main surfaces of a sintered body containing zinc oxide as a main component and at least bismuth oxide as an additive, in which the γ-type bismuth oxide phase concentration is the main component forming the electrodes. The γ-type bismuth oxide phase has a concentration gradient in the thickness direction that is highest on the surface and decreases toward the inside of the sintered body, and the concentration of the γ-type bismuth oxide phase at the peripheral portion of the electrode-forming main surface is lower than that inside the main surface. This can easily be achieved by using a non-linear resistor. Such a voltage nonlinear resistor is made by diffusing bismuth oxide from the upper and lower main surfaces of a sintered body whose main component is zinc oxide, excluding the peripheral edge, to form a γ-type bismuth oxide phase with the above concentration distribution. and then forming electrodes on the upper and lower main surfaces. The present invention will be described in detail below with reference to FIGS. 1 and 2, which show one embodiment of the present invention. 1 and 2 are schematic diagrams showing a cross section of a voltage nonlinear resistor of the present invention. The voltage nonlinear resistor of the present invention has a concentration gradient in the thickness direction in which the concentration of the γ-type bismuth oxide phase is highest on the main surface where the electrode is formed and decreases as it goes inside the sintered body, and The γ-type bismuth oxide phase concentration at the peripheral edge of the surface is lower than that at the inner side. 1 and 2, on the surface of the zinc oxide-based sintered body 1 containing bismuth oxide, on which the electrode 2 is formed, the concentration of the γ-type bismuth oxide phase contained in the surface layer 11 in the portion where bismuth oxide is diffused. is the highest. The high concentration of the γ-type bismuth oxide phase in the surface layer 11 makes it possible to improve the stability of the voltage nonlinear resistor against long-term energization. Possible reasons for this are as follows. (1) The resistance (operating region) of a voltage nonlinear resistor tends to decrease as the content of the γ-type bismuth oxide phase precipitated at the grain boundaries of zinc oxide increases. In the structure of the present invention, since the resistance of the surface layer 11 is low, the amount of heat generated in the surface layer 11 when electricity is applied is smaller than that inside, and of course less oxygen is dissipated to the outside, so that the characteristics of the surface layer 11 are less likely to deteriorate. On the other hand, in the interior where the content of the γ-type bismuth oxide phase is low, resistance is high and heat generation is large when electricity is applied, but since oxygen dissipates to the outside through a thick layer, the amount of oxygen dissipated is small and characteristics are less likely to deteriorate. (2) Bismuth oxide diffuses through the pores in the sintered body and at the grain boundaries of zinc oxide, filling these pores and preventing the movement of oxygen from the sintered body to the outside world. arise. The γ-type bismuth oxide phase has a body-centered cubic structure and has a larger volume than the α-type bismuth oxide phase (monoclinic) and the β-type bismuth oxide phase (tetragonal), so it has a pore-filling effect. big. (3) It is said that the γ-type bismuth oxide phase contains not only trivalent bismuth but also some pentavalent bismuth, and this pentavalent bismuth absorbs oxygen ions present in the grain boundary layer. It has the effect of stabilizing and preventing dissipation to the outside world. Further, in the voltage nonlinear resistor of the present invention, by lowering the concentration of the γ-type bismuth oxide phase in the side layer 12 including the peripheral edge 121 of the main surface of the sintered body, the resistance to long-wave tail impact current can be further improved. This is more preferable because it allows The reason is thought to be as follows. In FIG. 1, when a rectangular waveform impact current having a long wave tail of 2 ms, for example, flows through the sintered body 1, penetration failure is most likely to occur at the end 3 of the electrode 2. This is because electric field concentration occurs at the end of the electrode.
This is because an electric field approximately 4 to 5 times greater than that at the center of the electrode is applied, so a larger current flows through the electrode end of the sintered body than in other parts, making that part more likely to be thermally destroyed. According to the present invention, since the concentration of the γ-type bismuth oxide phase in the periphery of the main surface of the sintered body or the side layer including the periphery is lower than that in the center of the sintered body, the resistance value of the periphery or the side layer is lower than that in the center of the sintered body. is larger than the center of the sintered body, so even if electric field concentration occurs, the amount of heat generated will be smaller because the current flowing will be smaller.
Thermal damage can be easily avoided. Furthermore, as shown in FIG. 2, if the end 3 of the electrode 2 is placed above the peripheral edge 121 left during the bismuth oxide phase diffusion, the sintered body part in contact with the end of the electrode will be in contact with most of the other part of the electrode. It is particularly preferable because it has a higher resistance than the sintered body portion and is highly effective in alleviating current concentration and increasing the long-wave tail impact current withstand capacity. The above-mentioned surface layer with a high content of γ-type bismuth oxide phase is created by attaching or coating a diffusing agent containing bismuth oxide to the main surface of the sintered body, and then diffusing it through heat treatment and at the same time changing the phase to the γ phase. It can be formed by As the diffusion method, there are known methods such as a method of applying bismuth oxide using water or an organic solvent, a method of forming a diffusion layer by vapor deposition, etc.
Various methods can be adopted. In manufacturing the voltage nonlinear resistor of the present invention, bismuth oxide is diffused from the upper and lower main surfaces of a sintered body containing zinc oxide as a main component, excluding the peripheral edge, to obtain the concentration distribution. It is preferable to form a γ-type bismuth oxide phase, and then form electrodes on the upper and lower main surfaces. When the bismuth oxide phase is diffused from the entire main surface of the sintered body as in the conventional manufacturing method, there is a possibility that the bismuth oxide phase melted during the diffusion process will flow from the main surface to the side surfaces and adhere to the side surfaces. big. Also,
As the diffusion progresses, the concentration of the γ-type bismuth oxide phase in the side layer becomes higher than that in the inner side, and the resistance of the side layer becomes smaller. For this reason, the degree of current concentration at the electrode end near the side layer becomes even higher, and the withstand capability against long-wave tail impact current is significantly reduced. Furthermore, in this case, since the side surfaces have low resistance, creeping flashing is likely to occur when a short-wave tail impact current is applied, and the withstand capability at this time also decreases. It is difficult to completely control so that the bismuth oxide phase does not flow to the sides during the diffusion process, and even if careful fabrication is done, problems such as large variations in resistance to long-wave tail impact current depending on the device may occur. be. On the other hand, according to the method for manufacturing the voltage nonlinear resistor of the present invention, the bismuth oxide phase does not flow to the side surfaces during the diffusion process, and the above-mentioned disadvantages can be easily avoided. In addition, in the present invention, since the peripheral area that is removed when the bismuth oxide phase is diffused is only a small part of the surface area of the sintered body, the stability against long-term electrification is determined when the bismuth oxide phase is diffused from the entire main surface. It can be almost the same as. In addition to zinc oxide and bismuth oxide, the voltage nonlinear resistor of the present invention also contains 0.01 to 10 mol% of each of manganese oxide, cobalt oxide, chromium oxide, antimony oxide, nickel oxide, silicon oxide, and boron oxide.
It can contain 0.001 to 0.01 mol% of aluminum oxide, gallium oxide, etc. These additives are effective in improving the non-linearity coefficient of the device, as well as the lifespan of charging and impulse withstand capability. Although bismuth oxide is diffused into the sintered body, it is preferable to form and fire the body containing 0.05 mol % or more of bismuth oxide before sintering. By doing so, a sintered body can be obtained without impairing sinterability. The amount of bismuth oxide to be diffused is not particularly limited as long as it is sufficient to fill most of the pores in the sintered body, but is preferably 0.01 mol% or more. Moreover, it is particularly preferable that boron oxide be contained in the sintered body. The γ-type bismuth oxide phase is normally a metastable phase, but boron oxide has the effect of stabilizing the γ-type bismuth oxide phase, and therefore, it is particularly effective against the γ-phase due to thermal cycles associated with long-term voltage application or surge application. It is possible to prevent changes to other phases and achieve long-term stability. The preferred content of boron oxide is 0.01
~0.2 mol%. Note that the diffusion temperature is the melting point of bismuth oxide (approximately 820
℃), the diffusion rate is extremely slow, and when the temperature exceeds the sintering temperature of the sintered body, the γ-type bismuth oxide phase decreases and the diffusion effect becomes small. Therefore,
The diffusion temperature is preferably the melting point of bismuth oxide or the sintering temperature of the sintered body. In order to form a γ-type bismuth oxide phase with good reproducibility, it is particularly preferable that the diffusion temperature is 1100° C. or lower. A glass film or the like may be further provided on the side surface of the sintered body for the purpose of increasing short wave tail impact current resistance. As described above, according to the present invention, the life of the voltage nonlinear resistor is significantly improved compared to conventional elements, and the resistance to long-wave tail impact currents is also increased. EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. Example 1 ZnO with 0.7 mol% Bi 2 O 3 and 0.5 mol% MnCO 3
Co2O3 1.0mol %, Cr2O3 0.5mol %, Sb2O3 1.0mol%, NiO1.0mol%, SiO2 1.5mol%, B2O3 0.1mol %, Al ( NO3 ) 3 0.005 mol% was added and mixed for 10 hours using a ball mill. To this raw material powder, 10% of a 2% polyvinyl alcohol aqueous solution was added and granulated. This is formed into a disk shape and placed in the air at 1160°C.
It was baked at ℃ for 5 h. Both main surfaces of the obtained sintered body are 0.5
By polishing in mm increments, an element of 60 mm × 20 mm t was obtained.
Next, on both main surfaces of this element, 2 g of bismuth oxide, 0.05 g of ethyl cellulose, and 0.4 g of butyl carbitol were added.
The paste consisting of g was applied almost uniformly on the main surface, leaving a 3 mm wide area on the outer periphery, and heat treated at 950° C. for 2 hours. Finally, Al was sprayed on both main surfaces and the diameter was 56 mm.
The electrode 〓 was formed so that the electrode end was located on the part where the above paste was not applied. The nonlinear coefficient of the obtained element (current 3 × 10 -6 ~ 3
×10 -4 A/cm 2 ) is 52, and the flatness rate (current 3 × 10 -3 A/cm 2 ) is 52.
(ratio of voltage at cm 2 and voltage at 3×10 -4 A/cm 2 )
was 1.54. Figure 3 shows the voltage nonlinear resistor of the present invention at a temperature of 90°C.
It shows how the resistance leakage current changes over time when AC is continuously applied at 100% charging rate (the same peak voltage as the voltage required to flow 1 mA of DC at 20°C). In the figure, A is the element obtained in this example, B is the element before bismuth oxide diffusion obtained by the same method as in this example, and C is the element with the same amount of paste as in this example applied to the entire surface of both main surfaces. D is an element in which the bismuth oxide phase is diffused by coating, D is an element that does not contain boron oxide as an additive obtained by the same method as in this example,
E is the characteristic of the device before bismuth oxide diffusion obtained by the same method as the device D. From FIG. 3, it can be seen that element C and element A of the present invention have small changes in resistance leakage current, and have significantly high stability against long-term energization. Considering the acceleration of the rate of characteristic deterioration due to temperature, it can be said that 10,000 hours of energization at 90°C is equivalent to more than 100 years at 40°C, which is the actual operating condition. Furthermore, in order to measure the withstand capacity of each element A to E against long wave tail impact current, the 2 ms rectangular wave withstand capacity was measured.
The results are shown in Table 1.

【表】 第1表によれば、本発明の素子Aは十分な矩形
波耐量を有していることがわかる。素子Cはこの
点において不十分である。 一般に、UHV(1000KV以上)用アレスタとし
て用いるためには、60mm〓×20mmt程度の素子の
場合、3000A、安全率を考慮すれば、4000A以上
の矩形波耐量が望ましいとされている。 これらの結果から、本発明の素子は、即時間課
電安定性および長波尾衝撃電流耐性に優れ、
UHV用アレスタとしても不十分に実用可能であ
ることがわかる。 また第4図は、得られた電圧非直線抵抗体素子
AおよびC中のγ型酸化ビスマス相の分布を示
す。第4図には素子中央部分の素子中心部におけ
るγ型酸化ビスマス相濃度を1に規格化したとき
の分布を示してある。γ型酸化ビスマス相の分布
は、素子を電極面に平行に切断して表面部分と素
子中央部分の各1mmの厚さの切片を切り出し、つ
いでそれぞれの切片をさらに側面に沿つた外側か
ら幅1mmずつ内側へと細分して各細片を粉末に
し、エツクス線粉末回析法によるγ−Bi2O3相の
回折強度より表面部分、素子中央部分それぞれに
ついて動径方向の分布として求めた。測定には面
間隔2.71〜2.72Åの反射線を用い、ZnOの回折線
強度で規格化した。 第5図は、得られた電圧非直線抵抗体素子Aお
よびCの抵抗分布を示す。抵抗分布は試料(電極
形成前)の両主面の対応する点に1mm〓の針を接
触して、これに電流2μA(電流密度3×
10-4A/cm2)を流した時の電圧の分布を動径方向
に針をずらしながら測定し、この電圧分布から求
めた。 第4図に見られるように、本発明の電圧非直線
抵抗体においては素子表面部分A1が素子中央部
分A2に比べて平均的にγ型酸化ビスマス相濃度
が高いが、いずれの部分でも側面に近くなるとγ
型酸化ビスマス相の量が減少している。特に表面
部分A1の周縁部ではγ型酸化ビスマス相濃度が
内側に比べ低く、側面層全体のγ型酸化ビスマス
相含有量も内側に比べて少ないことがわかる。第
5図に見られるように、これに伴い素子Aでは側
面層が高抵抗になつている。一方素子Cでは素子
表面部分C1が素子中央部分C2に比べてγ型酸
化ビスマス相濃度が高く、特に側面に近い部分で
含有量が多い。これは拡散時に酸化ビスマス相が
一部側面にかかり、側面からの拡散もあつたため
と考えられる。素子Cでは側面層の抵抗が小さく
なつているが、同様の理由で説明できる。 素子B,D,Eにはγ型酸化ビスマス相が含ま
れない。第5図に見られるようにこれらの試料で
は側面層の抵抗がわるかに高くなつているが、こ
れは焼結体の密度分布と焼結時のBi2O3の揮散の
影響と考えられる。 実施例 2 実施例1と同様にして得た焼結体の両主面を研
摩した後、この素子の両主面に実施例1と同様の
ペーストを主面の外周縁1mm幅の部分を残してほ
ぼ均一に塗布し、950℃で2時間熱処理した。最
後に両主面にAlを溶射して、56mm〓の電極の電
極端が上記ペーストを塗つた部分上にくるように
形成した。 得られた素子の非直線係数は50、平坦率は1.55
であつた。また課電寿命は第3図のA,Cと同様
に長く、抵抗分電流は10000時間課電後も初期の
2倍に達しなかつた。矩形波耐量も4100Aと、
UHV用アレスタとして十分な値を示した。 この素子中のγ型酸化ビスマス相の分布を実施
例1と同様の方法で調べた結果、電極形成主面の
γ型酸化ビスマス相濃度が中央部より高いこと及
びこの主面に近い部分では側面から1mmの幅の部
分で内側よりγ型酸化ビスマス相濃度が低く、側
面層のγ型酸化ビスマス相含有量が内側に比べて
少ないことが分かつた。側面層が内側に比べて高
抵抗であることも、実施例1と同様の方法で確認
された。 なお、焼結体に酸化ビスマスを拡散せずに、焼
結後の素子を950℃で2時間熱処理だけしたもの
についてエツクス線粉末回折法でγ型酸化ビスマ
ス相の分布を調べたところ、素子中にγ型酸化ビ
スマス相は含まれていなかつた。このことから、
実施例1および実施例2で素子中に検出されたγ
型酸化ビスマス相は拡散した酸化ビスマス相に由
来するものと推定される。 次に拡散温度の影響を見るために本実施例と同
様のもので、拡散温度だけを750℃、1150℃とし
て酸化ビスマス相を拡散した。この場合750℃で
は拡散が不十分となり、非直線係数が5〜8と小
さかつた。また1150℃では拡散後の焼結体中にγ
型酸化ビスマス相が少なく、課電寿命が短かかつ
た。
[Table] According to Table 1, it can be seen that the element A of the present invention has sufficient rectangular wave resistance. Element C is deficient in this respect. Generally, in order to use it as a UHV (1000 KV or higher) arrester, it is said that a rectangular wave withstand capacity of 3000 A is desirable for an element of about 60 mm × 20 mm t , and 4000 A or more when considering the safety factor. From these results, the device of the present invention has excellent instantaneous charging stability and long-wave tail impact current resistance.
It can be seen that it is insufficiently practical as a UHV arrester. Further, FIG. 4 shows the distribution of the γ-type bismuth oxide phase in the obtained voltage nonlinear resistor elements A and C. FIG. 4 shows the distribution when the concentration of the γ-type bismuth oxide phase in the central part of the element is normalized to 1. The distribution of the γ-type bismuth oxide phase is determined by cutting the device parallel to the electrode surface, cutting out 1 mm thick slices from the surface portion and the center portion of the device, and then cutting each slice 1 mm wide from the outside along the sides. Each fine piece was divided into powder, and the distribution in the radial direction was determined for the surface portion and the center portion of the element from the diffraction intensity of the γ-Bi 2 O 3 phase by X-ray powder diffraction method. Reflection lines with an interplanar spacing of 2.71 to 2.72 Å were used for measurement, and normalized by the diffraction line intensity of ZnO. FIG. 5 shows the resistance distribution of the voltage nonlinear resistor elements A and C obtained. To measure the resistance distribution, touch a 1 mm needle to corresponding points on both main surfaces of the sample (before electrode formation) and apply a current of 2 μA (current density 3×
10 -4 A/cm 2 ) was applied, the voltage distribution was measured while shifting the needle in the radial direction, and the voltage distribution was determined from this voltage distribution. As seen in FIG. 4, in the voltage nonlinear resistor of the present invention, the element surface portion A1 has a higher concentration of γ-type bismuth oxide phase on average than the element central portion A2, but in any portion, the side surface portion When it gets closer, γ
The amount of bismuth oxide phase is reduced. In particular, it can be seen that the concentration of the γ-type bismuth oxide phase in the peripheral portion of the surface portion A1 is lower than that on the inside, and the content of the γ-type bismuth oxide phase in the entire side layer is also lower than that on the inside. As seen in FIG. 5, in accordance with this, the side layer of element A has a high resistance. On the other hand, in the element C, the concentration of the γ-type bismuth oxide phase is higher in the element surface part C1 than in the element central part C2, and the content is particularly high in the parts near the side surfaces. This is thought to be because the bismuth oxide phase covered some of the sides during diffusion, and there was also some diffusion from the sides. In element C, the resistance of the side layer is smaller, which can be explained by the same reason. Elements B, D, and E do not contain a γ-type bismuth oxide phase. As seen in Figure 5, the resistance of the side layer is much higher in these samples, but this is thought to be due to the density distribution of the sintered body and the volatilization of Bi 2 O 3 during sintering. . Example 2 After polishing both main surfaces of a sintered body obtained in the same manner as in Example 1, a paste similar to that in Example 1 was applied to both main surfaces of this element, leaving a 1 mm wide portion on the outer periphery of the main surface. The coating was applied almost uniformly using a wafer and heat treated at 950°C for 2 hours. Finally, Al was sprayed on both main surfaces to form a 56 mm electrode so that the electrode end was on the area where the paste was applied. The obtained element has a nonlinear coefficient of 50 and a flatness rate of 1.55.
It was hot. In addition, the energized lifespan was as long as in A and C in Fig. 3, and the resistive current did not reach twice the initial value even after 10,000 hours of energization. The square wave withstand capacity is 4100A,
It showed sufficient values as a UHV arrester. As a result of examining the distribution of the γ-type bismuth oxide phase in this device using the same method as in Example 1, it was found that the concentration of the γ-type bismuth oxide phase on the main surface where the electrode is formed is higher than in the center, and that It was found that the concentration of the γ-type bismuth oxide phase was lower in the 1 mm wide part than on the inside, and that the content of the γ-type bismuth oxide phase in the side layer was lower than that on the inside. It was also confirmed by the same method as in Example 1 that the side layer had higher resistance than the inside layer. In addition, when the distribution of the γ-type bismuth oxide phase was investigated by X-ray powder diffraction method on the sintered element that was heat-treated at 950°C for 2 hours without diffusing bismuth oxide into the sintered body, it was found that the distribution of the γ-type bismuth oxide phase in the element was did not contain any γ-type bismuth oxide phase. From this,
γ detected in the device in Example 1 and Example 2
The type bismuth oxide phase is presumed to be derived from the diffused bismuth oxide phase. Next, in order to examine the effect of diffusion temperature, the bismuth oxide phase was diffused using the same method as in this example, with only the diffusion temperature set to 750°C and 1150°C. In this case, at 750°C, diffusion was insufficient and the nonlinear coefficient was as small as 5 to 8. Moreover, at 1150℃, γ is present in the sintered body after diffusion.
The type bismuth oxide phase was small, and the life of charging was short.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の電圧非直線抵抗
体の構造を示す断面図、第3図〜第5図は本発明
の実施例で得られた電圧非直線抵抗体と従来の電
圧非直線抵抗体との特性比較をした特性曲線図で
ある。 1……焼結体、11……γ型酸化ビスマス相の
高濃度相、12……γ型酸化ビスマス相低濃度の
側面層、121……γ型酸化ビスマス相低濃度の
主面周縁部、2……電極、3……電極端部。
1 and 2 are cross-sectional views showing the structure of the voltage nonlinear resistor of the present invention, and FIGS. 3 to 5 show the voltage nonlinear resistor obtained in the embodiment of the present invention and the conventional voltage nonlinear resistor. It is a characteristic curve diagram comparing characteristics with a linear resistor. 1...Sintered body, 11...High concentration phase of γ-type bismuth oxide phase, 12... Side layer with low concentration of γ-type bismuth oxide phase, 121... Main surface peripheral part with low concentration of γ-type bismuth oxide phase, 2... Electrode, 3... Electrode end.

Claims (1)

【特許請求の範囲】 1 酸化亜鉛を主成分とし、酸化ビスマスを含む
焼結体の上下主面に電極を設けてなる電圧非直線
抵抗体において、γ型酸化ビスマス濃度が前記電
極形成主面で最も高く焼結体内部に行くに従つて
低くなる厚さ方向の濃度勾配を有し、かつ、電極
形成主面においては、面の周縁部がその内側より
低い濃度であることを特徴とする電圧非直線抵抗
体。 2 前記抵抗体の主面に設けた電極が、前記主面
のγ型酸化ビスマス濃度が低い周縁部とその内側
の高濃度部分に跨つて設けられ、かつ、その電極
端部が上記周縁部上に来るように形成されている
ことを特徴とする特許請求の範囲第1項記載の電
圧非直線抵抗体。
[Scope of Claims] 1. A voltage nonlinear resistor comprising zinc oxide as a main component and electrodes provided on the upper and lower main surfaces of a sintered body containing bismuth oxide, wherein the γ-type bismuth oxide concentration is on the main surface on which the electrodes are formed. A voltage having a concentration gradient in the thickness direction that is highest and decreases as it goes inside the sintered body, and in the main surface where the electrode is formed, the concentration is lower at the peripheral edge of the surface than inside the surface. Nonlinear resistor. 2. An electrode provided on the main surface of the resistor is provided across a peripheral portion of the main surface having a low concentration of γ-type bismuth oxide and a high concentration portion inside the peripheral portion, and an end portion of the electrode is provided on the peripheral portion. 2. The voltage nonlinear resistor according to claim 1, wherein the voltage nonlinear resistor is formed so that the voltage nonlinear resistor has the following characteristics.
JP56039368A 1981-03-20 1981-03-20 Voltage nonlinear resistor and method of producing same Granted JPS57154802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56039368A JPS57154802A (en) 1981-03-20 1981-03-20 Voltage nonlinear resistor and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56039368A JPS57154802A (en) 1981-03-20 1981-03-20 Voltage nonlinear resistor and method of producing same

Publications (2)

Publication Number Publication Date
JPS57154802A JPS57154802A (en) 1982-09-24
JPS6236611B2 true JPS6236611B2 (en) 1987-08-07

Family

ID=12551108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56039368A Granted JPS57154802A (en) 1981-03-20 1981-03-20 Voltage nonlinear resistor and method of producing same

Country Status (1)

Country Link
JP (1) JPS57154802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525372Y2 (en) * 1986-04-18 1993-06-28

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117202A (en) * 1982-12-24 1984-07-06 株式会社東芝 Voltage and current nonlinear resistor
JPH0193704U (en) * 1987-12-14 1989-06-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525372Y2 (en) * 1986-04-18 1993-06-28

Also Published As

Publication number Publication date
JPS57154802A (en) 1982-09-24

Similar Documents

Publication Publication Date Title
EP1150306B2 (en) Current/voltage non-linear resistor and sintered body therefor
JPH0252409B2 (en)
EP0037577A1 (en) Nonlinear resistor and process for producing the same
JPS60226102A (en) Voltage nonlinear resistor
JPS6243326B2 (en)
JPS6236611B2 (en)
EP0358323A1 (en) Voltage non-linear type resistors
JPH01149401A (en) Voltage dependent nonlinear resistor
JPS5811084B2 (en) Voltage nonlinear resistor
JPH0136684B2 (en)
JPS6329802B2 (en)
JPS6243324B2 (en)
JPS6221242B2 (en)
JPS6329804B2 (en)
US11315709B2 (en) Metal oxide varistor formulation
JP2985559B2 (en) Varistor
JPH0439761B2 (en)
JPS6250045B2 (en)
JPS626324B2 (en)
JPS61294803A (en) Manufacture of voltage non-linear resistor
JPS6236615B2 (en)
JP2573580B2 (en) Voltage non-linear resistor
JPS5831721B2 (en) Voltage nonlinear resistance element and its manufacturing method
JPS6329805B2 (en)
JPH0258807A (en) Manufacture of voltage nonlinear resistor