JPS6243110B2 - - Google Patents

Info

Publication number
JPS6243110B2
JPS6243110B2 JP56188868A JP18886881A JPS6243110B2 JP S6243110 B2 JPS6243110 B2 JP S6243110B2 JP 56188868 A JP56188868 A JP 56188868A JP 18886881 A JP18886881 A JP 18886881A JP S6243110 B2 JPS6243110 B2 JP S6243110B2
Authority
JP
Japan
Prior art keywords
reaction
furnace
reactor
raw material
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56188868A
Other languages
Japanese (ja)
Other versions
JPS5892786A (en
Inventor
Kazunari Koide
Masaaki Mori
Sho Sano
Yoshihiro Okumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP18886881A priority Critical patent/JPS5892786A/en
Publication of JPS5892786A publication Critical patent/JPS5892786A/en
Publication of JPS6243110B2 publication Critical patent/JPS6243110B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 この発明は窒化けい素粉末、特にα型窒化けい
素粉末を能率よくかつ高収率で得られるようにし
た改良形ロータリー方式の反応炉に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved rotary type reactor that can efficiently obtain silicon nitride powder, particularly α-type silicon nitride powder, with a high yield.

窒化けい素の焼結体は機械強度も高くまた耐ス
ポール性もあつてセラミツク構造体として今日各
方面から注目されているため、その素原料である
窒化けい素粉末の製造についても各種の研究、提
案がなされている。特願昭50−113762、特願昭51
−7694、特願昭51−150802、特願昭52−16037、
特願昭52−48373がその例である。しかしながら
これらの提案はいづれも窒化けい素粉末の製造法
に関するもののみである。ところで窒化けい素粉
末の製造に於ける問題点は、その製造自体の他に
その製造時使用される反応炉の構造にも従来から
各種指摘され、効率的なシリカ還元・窒化反応の
行なわれる構造の反応炉の出現が望まれていた。
そこで本発明者らは改めて窒化けい素粉体の能率
的な製造と併せてこれに最適な反応炉の開発に向
けて努めた結果、ここにこの発明を完成したもの
である。
Silicon nitride sintered bodies have high mechanical strength and spall resistance, and are currently attracting attention from various quarters as ceramic structures.Therefore, various studies are being conducted on the production of silicon nitride powder, which is the raw material. Suggestions have been made. Patent application 1977-113762, patent application 1977
-7694, Patent application 1972-150802, Patent application 1977-16037,
An example of this is Japanese Patent Application No. 52-48373. However, all of these proposals relate only to methods for producing silicon nitride powder. By the way, various problems in the production of silicon nitride powder have been pointed out not only in the production itself but also in the structure of the reactor used during production. It was hoped that a new reactor would emerge.
Therefore, the present inventors have made efforts to efficiently produce silicon nitride powder as well as to develop a reactor suitable for this purpose, and as a result, they have now completed this invention.

すなわちこの発明は、一端に原料粉投入口を、
他端に反応生成物の取出口を設け、内部をN2
ス雰囲気としたロータリーチユーブを傾斜させ、
これを転動させつつその反応域に設けた加熱装置
で投入口から取出口へと移送される原料を加熱、
反応させるようにした窒化けい素粉末製造用反応
炉において、反応副生物の固着する局部の炉壁を
多孔質とし、ここに窒化ガス吹込み孔を設けたこ
とを特徴としたロータリー方式反応炉である。以
下にこの発明について図示した実施例にもとづい
てさらに説明する。
That is, this invention has a raw material powder input port at one end,
A rotary reach tube with a reaction product outlet provided at the other end and an N2 gas atmosphere inside is tilted.
While rolling this, a heating device installed in the reaction zone heats the raw material transferred from the input port to the output port.
In a reactor for producing silicon nitride powder, a rotary type reactor is characterized in that the local furnace wall where reaction by-products adhere is made porous, and nitride gas injection holes are provided here. be. The present invention will be further described below based on illustrated embodiments.

第1図は本願発明の実施例を示すものである。
同図において1は炉体であつて、この炉は全体が
ロータリーチユーブで出来ている。筒状黒鉛容器
で構成される炉本体2は全体が傾斜して配置さ
れ、その外側は断熱材3で被覆されている。炉本
体の両側蓋4,4には原料の投入口5、反応
生成物の取出口6が設けられてある。炉内を窒素
雰囲気に保つため、反応生成物の取出口側にN2
ガスの導入口7を設け、これよりN2ガスを封入
する。8は高周波誘導コイルであつて、炉本体2
の反応ゾーンの外周に固着されている。9は排ガ
ス排出口である。10はこの発明において特に嵌
装した多孔質レンガであつて、これよりN2ガス
を常時封入しておき、炉壁内のこの部分に反応副
生物が固着しないようにする。この発明における
炉体は長手方向の中心軸を中心に回転もしくは
360゜以内で回動自在、更には適宜な振動を与え
る図示しない装置に連結されている。この発明に
なる反応炉は以上の通りであるが、これの運転は
以下の通りである。
FIG. 1 shows an embodiment of the present invention.
In the figure, 1 is a furnace body, and this furnace is entirely made of a rotary tube. A furnace body 2 composed of a cylindrical graphite container is arranged so as to be inclined as a whole, and the outside thereof is covered with a heat insulating material 3. A raw material inlet 5 and a reaction product outlet 6 are provided on both side covers 4 1 and 4 2 of the furnace body. In order to maintain a nitrogen atmosphere inside the furnace, N 2 is placed on the outlet side of the reaction product.
A gas inlet 7 is provided, through which N 2 gas is sealed. 8 is a high frequency induction coil, which is connected to the furnace body 2.
is fixed to the outer periphery of the reaction zone. 9 is an exhaust gas outlet. Reference numeral 10 denotes a porous brick particularly fitted in this invention, from which N2 gas is constantly sealed to prevent reaction by-products from adhering to this part of the furnace wall. The furnace body in this invention rotates or rotates around a central axis in the longitudinal direction.
It is rotatable within 360 degrees and is connected to a device (not shown) that provides appropriate vibration. The reactor according to the present invention is as described above, and its operation is as follows.

誘導コイル8に通電して炉内を加熱状態にした
のち、ガスの導入口7よりN2ガスを炉内に導入
しつつ、原料投入口5より原料を投入する。これ
と同時に炉体を回転もしくは回動させることによ
つて投入原料が炉内で転動するようにする。本発
明に用いる原料は、たとえばシリカ粉末あるいは
SiO成分を含む化合物粉末及びカーボン粉末に窒
化けい素粉末、炭化けい素粉末及び酸窒化けい素
粉末のうち少なくとも1種を添加して混合原料粉
末を調整し、これを短径が30mm以下に造粒したも
のを用いる。また加熱温度はシリカの還元・窒化
反応が満足して行われるよう通常1300〜1550℃と
する。炉体の回転・転動速度は炉内温度、原料供
給量その他によつて異なるが、遅すぎると原料の
良好な転動状態が得られず、また速すぎると原料
の破壊を生じ、これら双方の条件を満足する限度
で定める。このような条件下で連続的に原料を供
給すると、投入原料は炉内を投入口から取出口に
至る間に傾斜した炉体内で流動層を形成しつつ反
応しながら順次取出口に転送され、窒化けい素粉
末が取出口6より連続的に得られる。炉体の転動
は360゜以上の回転はもちろん、360゜以内の回動
の外炉体に適宜な振動を与えることでもよい。以
上の如くして長期にわたつてシリカの還元・窒化
反応を行つていくと、炉内壁にはSiCを主成分と
する反応副生物が固結して来る。この反応副生物
は加熱装置の設けられている反応ゾーンでは蒸気
化しているものの、これが排ガス排出口9より大
気中に排出される直前に冷却されるため、従来技
術によると、これが固着され炉内壁に固結されて
堆積される。実験の結果によれば、これによつて
炉内径は1/10にもなつて原料およびN2ガスのス
ムースな流通を著しく阻害し、結果として反応に
悪影響を及ぼした。
After the induction coil 8 is energized to heat the inside of the furnace, the raw material is introduced through the raw material input port 5 while introducing N 2 gas into the furnace through the gas introduction port 7 . At the same time, the furnace body is rotated or rotated so that the input raw materials are rolled within the furnace. The raw materials used in the present invention include, for example, silica powder or
A mixed raw material powder is prepared by adding at least one of silicon nitride powder, silicon carbide powder, and silicon oxynitride powder to a compound powder containing an SiO component and carbon powder, and this is manufactured to a width of 30 mm or less. Use granulated ones. The heating temperature is usually 1300 to 1550°C so that the reduction and nitriding reactions of silica can be carried out satisfactorily. The rotation and rolling speed of the furnace body varies depending on the temperature inside the furnace, the amount of raw material supplied, etc., but if it is too slow, it will not be possible to obtain a good rolling condition of the raw material, and if it is too fast, the raw material will be destroyed, and both of these will occur. The limit shall be set to satisfy the following conditions. When raw materials are continuously supplied under such conditions, the input raw materials react while forming a fluidized bed in the inclined furnace body while passing from the inlet to the outlet, and are sequentially transferred to the outlet. Silicon nitride powder is continuously obtained from the outlet 6. The rolling of the furnace body may include rotation of 360° or more, or may be done by applying appropriate vibrations to the outer furnace body that rotates within 360°. As the reduction and nitriding reaction of silica is carried out over a long period of time as described above, reaction by-products containing SiC as a main component solidify on the inner wall of the furnace. Although this reaction by-product is vaporized in the reaction zone where the heating device is installed, it is cooled immediately before being discharged into the atmosphere from the exhaust gas outlet 9. It is consolidated and deposited. According to the experimental results, this reduced the inner diameter of the furnace to 1/10, significantly inhibiting the smooth flow of raw materials and N 2 gas, and as a result had a negative impact on the reaction.

そこでこの発明は、炉内壁に附着した反応副生
物の除去装置である多孔質レンガ10を別途設け
たものである。この場合の反応副生物の除去は第
1図に示されているように、炉内壁の副生物固着
個所に多孔質レンガ10を嵌装し、その一端に窒
化ガスの吹込孔13を接続する。そしてこれより
N2ガスを常時封入しておき、ここに反応副生物
が固着しないようにしておくものである。この場
合は回転中常にN2ガスを封入するようにリング
状導入管を炉体の外周に設けなければならない。
このようにすれば炉の正常運転が連続的に期待出
来るのできわめて経済的である。
Therefore, the present invention separately provides a porous brick 10 which is a device for removing reaction by-products attached to the inner wall of the furnace. In order to remove the reaction by-products in this case, as shown in FIG. 1, a porous brick 10 is fitted in the area where the by-products are fixed on the inner wall of the furnace, and a nitriding gas blowing hole 13 is connected to one end of the porous brick 10. And from this
N2 gas is always kept in the chamber to prevent reaction by-products from sticking there. In this case, a ring-shaped introduction pipe must be installed around the outer periphery of the furnace body so that N 2 gas is always enclosed during rotation.
In this way, normal operation of the furnace can be expected continuously, which is extremely economical.

なお、第2図に示したものは本発明の実施に当
つて、更に好ましい使用形態を表わしたものであ
る。同図において示された炉は、第1図で示した
炉において高周波誘導コイルを移動形加熱誘導コ
イル11としたものである。これによつて炉内壁
に堆積した反応副生物を除去するには、移動形加
熱誘導コイル11の稼動を停止したのち、これを
炉体外周にそつて摺動させて、反応ゾーンから反
応副生物の堆積領域外周に移動させる。この状態
で加熱装置11を再び稼働させる。これによつて
冷却して炉内壁に固結した反応副生物は溶融し、
さらに加熱することによつて蒸気化してこれらは
排気口9より炉外に排出される。ここで移動形加
熱誘導コイル11を再び反応ゾーンの炉体外周に
摺動させて戻し、これを稼働させて再び運転を再
開させる。
Incidentally, what is shown in FIG. 2 represents a more preferred form of use in carrying out the present invention. The furnace shown in the same figure is the furnace shown in FIG. 1 except that the high-frequency induction coil is replaced by a movable heating induction coil 11. In order to remove the reaction by-products deposited on the inner wall of the furnace, after stopping the operation of the movable heating induction coil 11, it is slid along the outer periphery of the furnace body to remove the reaction by-products from the reaction zone. to the outer periphery of the deposition area. In this state, the heating device 11 is operated again. As a result, the reaction by-products that were cooled and solidified on the inner wall of the furnace are melted.
Further heating results in vaporization, and these are discharged from the furnace through the exhaust port 9. Here, the movable heating induction coil 11 is again slid back to the outer periphery of the furnace body in the reaction zone, and is activated to restart the operation.

以上の如く本願発明によれば窒化けい素粉末の
製造に当つてこれまでない新方式、即ち原料粉粒
を転動しつつ還元・窒化反応させることが出来る
とともに、反応によつて生ずる反応副生物の除去
も至つて簡便に行なわれて常に炉内を最良の状態
に保つことが出来るので、反応効率を格段に向上
させることが出来る。
As described above, according to the present invention, in manufacturing silicon nitride powder, it is possible to carry out the reduction and nitridation reaction while rolling the raw material powder particles, and also to produce reaction by-products from the reaction. Removal of the reaction mixture is also very simple and the inside of the furnace can be kept in the best condition at all times, so the reaction efficiency can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の1実施例になるロータリー
方式反応炉で、とくにその側断面図を示したもの
である。第2図は第1図に示した反応炉の他の使
用形態を示したものの断面図である。 1……炉体、2……炉本体、3……断熱材、4
,4……蓋、5……原料投入口、6……取出
口、7……N2ガス導入口、8……高周波誘導コ
イル、9……排ガス排出口、10……多孔質レン
ガ、11……移動形加熱誘導コイル、13……窒
素ガスの吹込孔。
FIG. 1 shows a rotary reactor according to an embodiment of the present invention, particularly a side sectional view thereof. FIG. 2 is a sectional view showing another usage of the reactor shown in FIG. 1. 1...Furnace body, 2...Furnace body, 3...Insulating material, 4
1 , 4 2 ... Lid, 5 ... Raw material input port, 6 ... Output port, 7 ... N2 gas inlet, 8 ... High frequency induction coil, 9 ... Exhaust gas outlet, 10 ... Porous brick , 11...Movable heating induction coil, 13...Nitrogen gas blowing hole.

Claims (1)

【特許請求の範囲】[Claims] 1 一端に原料粉投入口を、他端に反応生成物の
取出口を設け、内部をN2ガス雰囲気としたロー
タリーチユーブを傾斜させ、これを転動させつつ
その反応域に設けた加熱装置で投入口から取出口
へと移送される原料を加熱、反応させるようにし
た窒化けい素粉末製造用反応炉において、反応副
生物の固着する局部の炉壁を多孔質とし、ここに
窒素ガスの吸込孔を設けたことを特徴とするロー
タリー方式反応炉。
1. A rotary tube with a raw material powder inlet at one end and a reaction product outlet at the other end, with an N2 gas atmosphere inside, is tilted and rotated, using a heating device installed in the reaction zone. In a reactor for producing silicon nitride powder, which heats and reacts raw materials transferred from an input port to an output port, the furnace wall is made porous in the local areas where reaction by-products adhere, and nitrogen gas is sucked into this reactor. A rotary reactor characterized by having holes.
JP18886881A 1981-11-25 1981-11-25 Rotary type reaction furnace Granted JPS5892786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18886881A JPS5892786A (en) 1981-11-25 1981-11-25 Rotary type reaction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18886881A JPS5892786A (en) 1981-11-25 1981-11-25 Rotary type reaction furnace

Publications (2)

Publication Number Publication Date
JPS5892786A JPS5892786A (en) 1983-06-02
JPS6243110B2 true JPS6243110B2 (en) 1987-09-11

Family

ID=16231270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18886881A Granted JPS5892786A (en) 1981-11-25 1981-11-25 Rotary type reaction furnace

Country Status (1)

Country Link
JP (1) JPS5892786A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5909568B2 (en) * 2014-02-17 2016-04-26 月島機械株式会社 Fluidized bed equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566864U (en) * 1979-06-22 1981-01-21
JPS5741677U (en) * 1980-08-20 1982-03-06

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS47404U (en) * 1971-01-25 1972-08-02

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566864U (en) * 1979-06-22 1981-01-21
JPS5741677U (en) * 1980-08-20 1982-03-06

Also Published As

Publication number Publication date
JPS5892786A (en) 1983-06-02

Similar Documents

Publication Publication Date Title
US5154862A (en) Method of forming composite articles from CVD gas streams and solid particles of fibers
KR930009353B1 (en) Method of surface treatment and apparatus used therefor
JP2019500564A5 (en)
US3748169A (en) Method and apparatus for the production of hollow members of any length of semiconductor material
JPS6243110B2 (en)
US4547220A (en) Reduction of MoO3 and ammonium molybdates by ammonia in a rotary furnace
JPS6335452A (en) Manufacture of structural member for semiconductor diffusion furnace
JPS5820799A (en) Preparation of silicon carbide whisker
JP3250684B2 (en) Metal compound powder production equipment
JPH03187998A (en) Production of aluminum nitride whisker
JPH0226812A (en) Production of aluminum nitride powder having high purity
JPH0118005B2 (en)
GB2215738A (en) Method of preparing silicon carbide sintered body
JPH04500031A (en) Method for obtaining powder refractory material and reactor for carrying out this method
JPS58213607A (en) Preparation of silicon imide and/or silicon nitride
JPS5884427A (en) Furnace tube for forming semiconductor-diffused layer
JPH02175698A (en) Production of sic whisker and device therefor
JPH06127915A (en) Fluidized bed reactor for producing polycrystalline silicon
JPS63103899A (en) Production of silicon carbide whisker of high-quality and apparatus therefor
JPH05332680A (en) Continuous type heat treatment furnace
JPS6220156B2 (en)
JPH1067578A (en) Porous silicon carbide compact
JPS5939767A (en) Silicon carbide-carbon complex material manufacturing device
JPS583996B2 (en) Chimitunatanka Keiso Shitsu Keitaino Seizouhouhou
JPS5849697A (en) Preparation of silicon carbide whisker