JPH1067578A - Porous silicon carbide compact - Google Patents

Porous silicon carbide compact

Info

Publication number
JPH1067578A
JPH1067578A JP8244127A JP24412796A JPH1067578A JP H1067578 A JPH1067578 A JP H1067578A JP 8244127 A JP8244127 A JP 8244127A JP 24412796 A JP24412796 A JP 24412796A JP H1067578 A JPH1067578 A JP H1067578A
Authority
JP
Japan
Prior art keywords
silicon carbide
porous
molded body
carbon
porous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8244127A
Other languages
Japanese (ja)
Other versions
JP3938218B2 (en
Inventor
Yasuhiro Obara
庸博 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP24412796A priority Critical patent/JP3938218B2/en
Publication of JPH1067578A publication Critical patent/JPH1067578A/en
Application granted granted Critical
Publication of JP3938218B2 publication Critical patent/JP3938218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide

Abstract

PROBLEM TO BE SOLVED: To obtain a porous silicon carbide compact, excellent in durability, hardly dusting and suitably usable in a heat insulating material, etc., of a high- temperature furnace by converting a part or all of a porous carbon compact into silicon carbide. SOLUTION: A thermosetting resin is mixed with a foaming agent, a curing agent and, as necessary, further a modifier, etc., and expanded and cured into a required shape to thereby provide a thermosetting resin foam, which is then carbonized at >=600 deg.C in a nonoxidizing atmosphere to afford a porous carbon compact. A part or all of the resultant porous carbon compact is subsequently converted into silicon carbide according to a method for reacting the porous carbon compact with silicon vapor or various silicon compounds at 1300-2300 deg.C temperature, etc., to thereby provide a porous silicon carbon compact. All or a part of the surface of the porous silicon carbide compact, as necessary, can be covered with a silicon carbide film or a carbon film by a method such as chemical vapor deposition(CVD) or physical vapor deposition(PVD).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、シリコン単結晶引
上炉等の高温炉の断熱材等に好適に使用できる多孔質炭
化珪素成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous silicon carbide compact which can be suitably used as a heat insulator for a high temperature furnace such as a silicon single crystal pulling furnace.

【0002】[0002]

【従来の技術】熱硬化性樹脂発泡体を焼成することによ
り得られる多孔質炭素成形体は、耐熱性に優れ、軽量で
あることから、航空機、宇宙船、ミサイル、蒸着装置、
各種の高温炉等の断熱材、るつぼ、各種のフィルター等
として幅広く用いられるようになってきている。
2. Description of the Related Art Porous carbon moldings obtained by firing thermosetting resin foams have excellent heat resistance and are lightweight, so that they can be used for aircraft, spacecraft, missiles, vapor deposition devices,
It has been widely used as a heat insulating material for various high-temperature furnaces, crucibles, various filters, and the like.

【0003】このような多孔質炭素成形体は、断熱材と
して使用する場合、従来から断熱材として用いられてい
る炭素繊維と比較して、保形性に優れており取扱いが容
易である。しかしながら、このような多孔質炭素成形体
は、機械的強度や耐酸化性が充分ではないため耐久性に
劣っていた。また、表面からの粉落ちが発生しやすいた
め、高温炉の断熱材として使用すると、炉内の雰囲気を
汚染する場合があった。
[0003] When such a porous carbon molded article is used as a heat insulating material, it has excellent shape retention properties and is easy to handle as compared with carbon fibers conventionally used as a heat insulating material. However, such a porous carbon molded body was inferior in durability because of insufficient mechanical strength and oxidation resistance. In addition, since powder is easily dropped from the surface, when used as a heat insulating material for a high-temperature furnace, the atmosphere in the furnace may be contaminated.

【0004】特開昭62−132716号公報及び特開
平1−122976号公報には、上述の問題点を解決す
るための技術として、表面に緻密構造の炭素被膜を形成
させることにより気体不浸透性とした多孔質炭素成形体
が開示されている。
Japanese Patent Application Laid-Open Nos. 62-132716 and 1-122976 disclose a technique for solving the above-mentioned problem by forming a carbon film having a dense structure on the surface to prevent gas impermeability. Is disclosed.

【0005】しかしながら、シリコン単結晶引上炉等の
精密な機能を有する半導体関連炉においては、断熱材に
要求される性能が非常に高いため、上述したような炭素
被膜を有する多孔質炭素成形体であっても、性能的に満
足できるものではなかった。特に、半導体関連炉におい
ては非常に高いクリーン度が要求されているため、より
粉落ちが少なく、埃をたてないことが求められている。
However, in a semiconductor-related furnace having a precise function, such as a silicon single crystal pulling furnace, the performance required for a heat insulating material is extremely high. However, performance was not satisfactory. In particular, semiconductor-related furnaces are required to have a very high degree of cleanliness, and therefore are required to have less powder falling and not to be dusted.

【0006】また、このような多孔質炭素成形体をチョ
クラルスキー(Czochralski)法によるシリ
コン単結晶引上炉において使用した場合には、多孔質炭
素成形体の炭素成分と炉内に存在する一酸化珪素ガスと
が反応して、有毒ガスである一酸化炭素が発生し、人体
に対して危険であった。また、発生した一酸化炭素は、
シリコン単結晶中に溶け込んで品質を低下させて歩留り
を悪化させたり、シリコン単結晶引上炉の部材を構成す
る多孔質炭素が変質して炭化珪素を生成するためにその
部材の寸法を変化させて、炉の破壊、破損の原因となっ
ていた。
When such a porous carbon compact is used in a silicon single crystal pulling furnace by the Czochralski method, the carbon component of the porous carbon compact and the carbon present in the furnace are reduced. Reaction with the silicon oxide gas produced carbon monoxide, a toxic gas, which was dangerous for the human body. The generated carbon monoxide is
It melts into the silicon single crystal to lower the quality and deteriorates the yield, or changes the dimensions of the member to form silicon carbide by altering the porous carbon constituting the member of the silicon single crystal pulling furnace. Was causing furnace destruction and damage.

【0007】特公平6−15808号公報には、炭素材
料を炭化珪素に転化させてなるベーンが開示されてい
る。また、特公平3−3086号公報には、炭素/炭素
複合体を炭化珪素に転化させてなる摩擦ディスクが開示
されている。これらの技術は、炭素成分を炭化珪素に転
化させることにより、耐磨耗性、耐酸化性等の向上を達
成しようとするものであるが、一酸化炭素の発生防止を
目的とするものではなく、また、シリコン単結晶引上炉
等の断熱材として使用することを想定した技術ではなか
った。
[0007] Japanese Patent Publication No. 6-15808 discloses a vane obtained by converting a carbon material into silicon carbide. Japanese Patent Publication No. 3-3086 discloses a friction disk obtained by converting a carbon / carbon composite into silicon carbide. These techniques are intended to achieve improvement in abrasion resistance, oxidation resistance, etc. by converting a carbon component into silicon carbide, but are not intended to prevent the generation of carbon monoxide. Further, the technique is not intended to be used as a heat insulating material for a silicon single crystal pulling furnace or the like.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記に鑑
み、耐久性に優れ、粉落ちが少なく、特にシリコン単結
晶引上炉用断熱材として好適に使用することができる多
孔質炭化珪素成形体を提供することを目的とするもので
ある。
SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a porous silicon carbide molding which is excellent in durability, has less powder falling, and can be suitably used particularly as a heat insulating material for a silicon single crystal pulling furnace. It is intended to provide the body.

【0009】[0009]

【課題を解決するための手段】本発明は、熱硬化性樹脂
発泡体を炭化することにより得られる多孔質炭素成形体
を用いて、前記多孔質炭素成形体の全部又は一部を炭化
珪素に転化することにより得られる多孔質炭化珪素成形
体である。以下に本発明を詳述する。
SUMMARY OF THE INVENTION The present invention provides a porous carbon molded article obtained by carbonizing a thermosetting resin foam, and converting all or a part of the porous carbon molded article into silicon carbide. It is a porous silicon carbide molded body obtained by conversion. Hereinafter, the present invention will be described in detail.

【0010】本発明においては、まず、熱硬化性樹脂発
泡体を炭化して多孔質炭素成形体を得る。上記熱硬化性
樹脂発泡体は、熱硬化性樹脂に発泡剤、硬化剤、その他
必要に応じて改質剤等を混合し、発泡硬化させることに
より得ることができる。上記熱硬化性樹脂としては特に
限定されず、例えば、フェノール樹脂、フラン樹脂、エ
ポキシ樹脂、ウレタン樹脂、石炭ピッチ、石油ピッチ等
が挙げられる。
In the present invention, first, a thermosetting resin foam is carbonized to obtain a porous carbon molded body. The above-mentioned thermosetting resin foam can be obtained by mixing a thermosetting resin with a foaming agent, a curing agent, and other modifiers as required, and foam-curing the mixture. The thermosetting resin is not particularly limited, and examples thereof include a phenol resin, a furan resin, an epoxy resin, a urethane resin, a coal pitch, and a petroleum pitch.

【0011】上記熱硬化性樹脂を発泡硬化させる場合に
おいては、上記熱硬化性樹脂は液状原料であるので、最
終的に得られる本発明の多孔質炭化珪素成形体が適用さ
れる用途に応じて、適宜の形状に成形することができ
る。例えば、立方体の型を用いて硬化させることにより
立方体ブロック形状としたり、断熱材形状の型を用いて
硬化させることにより炉の断熱材の寸法に合わせた形状
のものとすることができる。
In the case where the thermosetting resin is foamed and cured, the thermosetting resin is a liquid raw material, so that it depends on the use to which the finally obtained porous silicon carbide molded article of the present invention is applied. Can be formed into an appropriate shape. For example, a cubic block shape can be obtained by curing using a cubic mold, or a shape matching the size of the heat insulating material of the furnace can be obtained by curing using a heat insulating material type mold.

【0012】上記熱硬化性樹脂発泡体の炭化は、非酸化
雰囲気中、すなわち、減圧下、又は、アルゴンガス、ヘ
リウムガス、窒素ガス、ハロゲンガス等の雰囲気中にお
いて行うことが好ましい。上記焼成の温度は、600℃
以上が好ましい。600℃未満であると、上記熱硬化性
樹脂発泡体が充分に炭化されないので、得られる多孔質
炭素成形体は着火温度が低く、寸法安定性に劣るものと
なる。より好ましくは、800℃以上である。また、上
記焼成の温度が、約400〜600℃においては、上記
熱硬化性樹脂発泡体の熱分解ガスが急激に発生し、寸法
収縮が大きくなるので、この温度範囲においては、徐々
に昇温することが好ましい。好ましくは、約5℃/時間
以下の昇温速度とする。
The carbonization of the thermosetting resin foam is preferably performed in a non-oxidizing atmosphere, that is, under a reduced pressure or in an atmosphere of argon gas, helium gas, nitrogen gas, halogen gas or the like. The firing temperature is 600 ° C.
The above is preferred. When the temperature is lower than 600 ° C., the thermosetting resin foam is not sufficiently carbonized, so that the resulting porous carbon molded article has a low ignition temperature and is inferior in dimensional stability. More preferably, it is 800 ° C. or higher. Further, when the firing temperature is about 400 to 600 ° C., the thermal decomposition gas of the thermosetting resin foam is rapidly generated, and the dimensional shrinkage becomes large. Is preferred. Preferably, the heating rate is about 5 ° C./hour or less.

【0013】本発明においては、次に、上記多孔質炭素
成形体の全部又は一部を炭化珪素に転化(以下「珪化」
という)することにより、多孔質炭化珪素成形体を得
る。上記多孔質炭素成形体を珪化する方法としては特に
限定されず、例えば、珪素蒸気又は各種珪素化合物と反
応させるコンバージョン法;コンバージョン法のガス発
生源と同じ充填剤と一緒に被処理物を埋め込んで加熱処
理するパックセメンテーションを応用した方法等を採用
することができる。好ましくは、一酸化珪素ガスと上記
多孔質炭素成形体とを、下記式で表される珪化反応によ
り反応させるコンバージョン法である。 SiO(g)+2C=SiC+CO 上記コンバージョン法によれば、上記多孔質炭素成形体
の形状を保持したまま反応を進行させることができる。
In the present invention, next, all or a part of the porous carbon compact is converted into silicon carbide (hereinafter referred to as "silicide").
) To obtain a porous silicon carbide molded body. The method for silicidizing the porous carbon molded body is not particularly limited, for example, a conversion method of reacting with silicon vapor or various silicon compounds; an object to be processed is embedded together with a filler same as a gas generation source of the conversion method. A method using pack cementation for heat treatment can be employed. Preferably, a conversion method in which a silicon monoxide gas is reacted with the porous carbon molded body by a silicidation reaction represented by the following formula: SiO (g) + 2C = SiC + CO According to the above conversion method, the reaction can be allowed to proceed while maintaining the shape of the porous carbon molded body.

【0014】上記珪化反応は、1300〜2300℃の
温度範囲で加熱することにより進行する。ここで一酸化
珪素ガスを発生させるには、例えば、珪素粉と二酸化珪
素との混合体、炭化珪素粉と二酸化珪素粉との混合体、
炭素粉と二酸化珪素粉との混合物、その他の各種珪素混
合物等のガス発生源を、1200〜2300℃に加熱す
ることにより実施することができる。
The above silicidation reaction proceeds by heating in a temperature range of 1300 to 2300 ° C. Here, to generate silicon monoxide gas, for example, a mixture of silicon powder and silicon dioxide, a mixture of silicon carbide powder and silicon dioxide powder,
It can be carried out by heating a gas generating source such as a mixture of carbon powder and silicon dioxide powder and other various silicon mixtures to 1200 to 2300 ° C.

【0015】本発明の多孔質炭化珪素成形体は、上記多
孔質炭素成形体の一部のみを珪化したものであってもよ
い。例えば、図1に示すように、一定の厚みを有する上
記多孔質炭素成形体であって両面の表層部11と中心部
12とからなるものについては、その中心部12を除く
部分を炭化珪素に転化した後、当該珪化を停止させ、上
記中心部12に残存する炭素質を除去することにより、
内部が空洞化した多孔質炭化珪素成形体を得ることがで
きる。上記中心部12に残存する炭素質を除去する方法
としては特に限定されず、例えば、空気中で400〜8
00℃に加熱することにより酸化させて除去する方法等
を採用することができる。この場合において、得られた
空洞は、上記多孔質炭化珪素成形体の全体の厚みに対し
て、1/3程度が好ましい。このような内部が空洞化し
た多孔質炭化珪素成形体は、内部に大量の空間を保持し
ているので、軽量かつ断熱効果に優れ、高温炉等の断熱
材として特に好適に用いることができる。
The porous silicon carbide molded article of the present invention may be obtained by silicifying only a part of the porous carbon molded article. For example, as shown in FIG. 1, in the case of the above-mentioned porous carbon molded body having a constant thickness and having a surface layer portion 11 and a central portion 12 on both surfaces, a portion excluding the central portion 12 is made of silicon carbide. After the conversion, the silicidation is stopped, and the carbonaceous matter remaining in the central portion 12 is removed.
A porous silicon carbide molded body having a hollow inside can be obtained. The method for removing the carbonaceous material remaining in the central portion 12 is not particularly limited.
A method of oxidizing and removing by heating to 00 ° C. can be adopted. In this case, the obtained cavity is preferably about が of the entire thickness of the porous silicon carbide molded body. Such a porous silicon carbide molded body having a hollow inside has a large amount of space therein, so it is lightweight, has excellent heat insulating effect, and can be particularly suitably used as a heat insulating material for a high-temperature furnace or the like.

【0016】また、図2に示すように、円筒状に成形さ
れた上記多孔質炭素成形体の内層部21を炭化珪素に転
化することにより、内層部21が炭化珪素であり、外層
部22が炭素質である2層構造の円筒状多孔質炭素成形
体を得ることができる。上記2層構造の円筒状多孔質炭
化珪素成形体を得る具体的な方法としては特に限定され
ず、例えば、円筒状に成形された上記多孔質炭素成形体
の外周面23を保護し、内周面のみが一酸化珪素に触れ
る状態にしたうえで、上記珪化反応を実施する方法等を
採用することができる。このような2層構造の円筒状多
孔質炭化珪素成形体は、シリコン単結晶引上炉等の断熱
材として使用した場合に、炉芯部に面する内層部のみが
珪化されているので、一酸化炭素発生等を効果的に防止
することができる。
As shown in FIG. 2, the inner layer 21 of the porous carbon molded body formed into a cylindrical shape is converted into silicon carbide so that the inner layer 21 is made of silicon carbide and the outer layer 22 is made of silicon carbide. A cylindrical porous carbon molded body having a two-layer structure, which is carbonaceous, can be obtained. A specific method for obtaining the cylindrical porous silicon carbide molded body having the two-layer structure is not particularly limited. For example, the outer peripheral surface 23 of the cylindrically formed porous carbon molded body is protected, A method in which only the surface is brought into contact with silicon monoxide and then the above silicidation reaction is performed can be employed. When such a cylindrical porous silicon carbide molded body having a two-layer structure is used as a heat insulating material for a silicon single crystal pulling furnace or the like, only the inner layer facing the furnace core is silicified. Generation of carbon oxide and the like can be effectively prevented.

【0017】上記多孔質炭素成形体の一部のみの珪化
は、上記珪化反応における反応温度と一酸化珪素濃度と
を一定にした状態で、反応時間を調整することにより実
施することができる。
The silicidation of only a part of the porous carbon compact can be performed by adjusting the reaction time while keeping the reaction temperature and the concentration of silicon monoxide constant in the silicidation reaction.

【0018】一般的に、炭化珪素成形体は、アルミナ、
シリカ等の焼結用助剤を用いて焼成し、炭化珪素焼結体
とする方法があるが、上記炭化珪素焼結体は、1700
℃以上の高温においては上記焼結用助剤が軟化して強度
が低下する欠点がある。本発明の多孔質炭化珪素成形体
は、一般の焼結方法を用いることがなく、いわゆる反応
焼結であるので、焼結用助剤を含まず、極めて高い強度
を発現させることができる。
Generally, the silicon carbide molded body is made of alumina,
There is a method of sintering using a sintering aid such as silica to obtain a silicon carbide sintered body.
At a high temperature of not less than ℃, there is a disadvantage that the sintering aid is softened and the strength is reduced. Since the porous silicon carbide molded body of the present invention is so-called reaction sintering without using a general sintering method, it does not include a sintering aid and can exhibit extremely high strength.

【0019】本発明の多孔質炭化珪素成形体の結晶構造
は、立方晶系構造(cubic)のβ型であることが好
ましい。上記立方晶系構造のβ型である多孔質炭化珪素
成形体は、上記珪化反応を、1400〜2000℃で実
施することにより得ることができる。上記立方晶系構造
のβ型は、六方晶系構造(hexagonal)及び三
方晶系菱面体構造(rhombohedral)のα型
に比べ、温度の上昇に伴い強度が増加する傾向が強く、
1700℃で最高となる。シリコン単結晶引上炉による
シリコン単結晶の引き上げ温度は、1500℃前後であ
るので、上記立方晶系構造のβ型である多孔質炭化珪素
成形体は、非常に高い強度を発揮し、粉落ちを最小に抑
えることができる。
The crystalline structure of the porous silicon carbide molded body of the present invention is preferably a cubic structure (cubic) β type. The β-type porous silicon carbide molded body having a cubic structure can be obtained by performing the silicidation reaction at 1400 to 2000 ° C. The β-type of the cubic structure has a strong tendency to increase in strength with an increase in temperature as compared with the α-type of a hexagonal structure (hexagonal) and a trigonal rhombohedral structure (rhombohedral),
It is highest at 1700 ° C. Since the pulling temperature of the silicon single crystal by the silicon single crystal pulling furnace is around 1500 ° C., the above-mentioned β-type porous silicon carbide molded body having a cubic structure exhibits extremely high strength and is powdered. Can be minimized.

【0020】本発明の多孔質炭化珪素成形体は、その表
面の全部又は一部を炭化珪素被膜で被覆することができ
る。また、本発明の多孔質炭化珪素成形体は、その表面
の全部又は一部を炭素被膜で被覆することができる。本
発明の多孔質炭化珪素成形体の表面を上記炭化珪素又は
上記炭素被膜で被覆することにより、本発明の多孔質炭
化珪素成形体の気体不浸透性を大幅に向上させることが
でき、粉落ちの発生をほぼ完全に防止することができ
る。本発明の多孔質炭化珪素成形体は、樹脂の発泡硬化
の際、表層にスキン層を成形し、その表面に多数の微細
空孔を有しており、上記炭化珪素被膜又は上記炭素被膜
で被覆した場合には、これら被膜が当該多孔質内部に根
をおろしていわゆるアンカー効果を発揮するので、極め
て堅固な表面被膜とすることができる。
The entire surface or a part of the porous silicon carbide molded body of the present invention can be covered with a silicon carbide film. Further, the entire surface or a part of the porous silicon carbide molded body of the present invention can be covered with a carbon coating. By coating the surface of the porous silicon carbide molded body of the present invention with the silicon carbide or the carbon coating, the gas impermeability of the porous silicon carbide molded body of the present invention can be significantly improved, Can be almost completely prevented. The porous silicon carbide molded body of the present invention has a surface layer formed by foaming and curing a resin, has a number of fine pores on its surface, and is coated with the silicon carbide film or the carbon film. In such a case, these coatings are rooted inside the porous material and exert a so-called anchor effect, so that an extremely firm surface coating can be obtained.

【0021】本発明の多孔質炭化珪素成形体の表面を、
上記炭化珪素被膜又は上記炭素被膜で被覆する方法とし
ては特に限定されず、例えば、化学気相蒸着法(CVD
法)、スパッタリング等のPVD法等を採用することが
できる。本発明においては、これらのうち、上記CVD
法により熱分解膜を形成させることが好ましい。上記熱
分解膜は非常に緻密であるので、他の方法により得られ
る被膜よりもガス透過率が桁違いに小さくなる。因み
に、熱分解炭素のガス透過率(cm2 /sec)は、1
-10 〜10-12 であるのに対し、高密度の黒鉛焼成体
は、1〜10-1である。
The surface of the porous silicon carbide molded body of the present invention is
The method for coating with the silicon carbide film or the carbon film is not particularly limited, and for example, a chemical vapor deposition method (CVD)
Method), a PVD method such as sputtering, or the like. In the present invention, among these, the above-mentioned CVD
It is preferable to form a thermal decomposition film by the method. Since the thermal decomposition film is very dense, the gas permeability is significantly lower than that of a film obtained by another method. Incidentally, the gas permeability (cm 2 / sec) of the pyrolytic carbon is 1
In contrast to 0 -10 to 10 -12 , the high-density graphite fired body is 1 to 10 -1 .

【0022】上記CVD法の具体的な方法としては、上
記炭化珪素被膜で被覆する場合は、例えば、本発明の多
孔質炭化珪素成形体を減圧容器を持つ加熱炉の中に入
れ、CH4 +H2 +SiCl4 の雰囲気下、1700〜
2000℃で蒸着処理するか、又は、CH3 SiCl4
+H2 の雰囲気下、1400〜1800℃で蒸着処理す
る方法等が挙げられる。また、上記炭素被膜で被覆する
場合は、例えば、本発明の多孔質炭化珪素成形体を減圧
容器を持つ加熱炉の中に入れ、CH4 +H2 の雰囲気下
1400〜2000℃で蒸着処理する方法等が挙げられ
る。この場合において、上記加熱炉内の圧力は、100
Torr以下であることが好ましい。
As a specific method of the above-mentioned CVD method, in the case of coating with the above-mentioned silicon carbide film, for example, the porous silicon carbide molded body of the present invention is placed in a heating furnace having a reduced pressure vessel, and CH 4 + H under an atmosphere of 2 + SiCl 4, 1700~
Evaporate at 2000 ° C. or use CH 3 SiCl 4
A method of performing a vapor deposition treatment at 1400 to 1800 ° C. in an atmosphere of + H 2 and the like can be given. In the case of coating with the above carbon film, for example, a method in which the porous silicon carbide molded body of the present invention is placed in a heating furnace having a reduced-pressure vessel and subjected to a vapor deposition treatment at 1400 to 2000 ° C. in a CH 4 + H 2 atmosphere. And the like. In this case, the pressure in the heating furnace is 100
It is preferably equal to or less than Torr.

【0023】本発明の多孔質炭化珪素成形体は、高温焼
結炉、真空炉、ホットプレス炉等の高温炉の断熱剤、特
に、シリコン単結晶引上炉用断熱材として好適に用いる
ことができる。また、原子力工業、航空機工業、ロケッ
ト工業等の各種の分野においても断熱材等として好適に
用いることができる。更には、シリコン単結晶引上炉用
るつぼ、自動車の排ガス処理用フィルター、アルミニウ
ム等の金属製錬用バブラー、美術工芸品等の高級鋳物等
のゴミを取り除くための濾過フィルター、砥石等として
も利用することができる。
The porous silicon carbide molded body of the present invention can be suitably used as a heat insulating agent for high temperature furnaces such as a high temperature sintering furnace, a vacuum furnace, and a hot press furnace, particularly, a heat insulating material for a silicon single crystal pulling furnace. it can. Further, it can be suitably used as a heat insulating material in various fields such as the nuclear industry, the aircraft industry, the rocket industry, and the like. Furthermore, it is also used as a crucible for a silicon single crystal pulling furnace, a filter for exhaust gas treatment of automobiles, a bubbler for smelting metals such as aluminum, a filter for removing dust such as high-grade castings such as arts and crafts, and a whetstone. can do.

【0024】本発明の多孔質炭化珪素成形体は、セルの
稜及び面を構成する固体の支柱又は平板を相互につなぎ
あわせたネットワークからなるセル構造をとる。上記セ
ル構造としては、固体部分がセルの稜部に集中し、セル
とセルとの境界面が開いているオープンセル型と、固体
部分がセルの境界部にも存在し、セルとセルとが分離さ
れているクローズドセル型とがある。本発明の多孔質炭
化珪素成形体を断熱材として用いる場合には、上記クロ
ーズドセル型のものが好適に用いられる。炭素繊維を用
いた従来の断熱材の場合、その熱伝導率(kcal/m
・hr・℃)は、0.24であるが、本発明の多孔質炭
化珪素成形体を用いたクローズドセル型の断熱材では、
0.11と大幅に断熱効果が向上する。
The porous silicon carbide compact of the present invention has a cell structure composed of a network in which solid columns or flat plates constituting the edges and surfaces of the cells are connected to each other. As the cell structure, an open cell type in which a solid portion is concentrated at a cell edge and an interface between cells is open, and a solid portion also exists at a cell boundary, and a cell and a cell There is a closed cell type that is separated. When the porous silicon carbide molded body of the present invention is used as a heat insulating material, the closed cell type is preferably used. In the case of a conventional heat insulating material using carbon fiber, its thermal conductivity (kcal / m
(Hr · ° C.) is 0.24, but in the closed-cell type heat insulating material using the porous silicon carbide molded body of the present invention,
The heat insulating effect is greatly improved to 0.11.

【0025】一方、本発明の多孔質炭化珪素成形体を、
自動車の排ガス処理用;製鉄、製鋼、製アルミ等の金属
製錬用バブラー(プラグ);美術工芸品等の高級鋳物等
の濾過フィルター用等のように、内部に気体や液体を流
し込み、化学的処理や物理的処理を行う用途に用いる場
合には、上記オープンセル型のものを好適に用いること
ができる。また、本発明の多孔質炭化珪素成形体を砥石
等として用いる場合は、被研磨物に応じて上記セル構造
を適宜選択することができる。
On the other hand, the porous silicon carbide molded body of the present invention is
Gas and liquid are poured into the inside, such as for gas smelting bubbler (plug) for metal smelting such as steel making, steel making, aluminum making, etc. for filtration filters of high-grade castings such as arts and crafts, etc. When used for the purpose of performing processing or physical processing, the above-mentioned open cell type can be suitably used. When the porous silicon carbide molded body of the present invention is used as a grindstone or the like, the above cell structure can be appropriately selected according to the object to be polished.

【0026】本発明の多孔質炭化珪素成形体を、ある程
度の力がかかる高温下で使用する場合は、カーボン板、
セラミック板、金属板等のフェース材によるサンドイッ
チ構造とすることによりパネル化して用いることができ
る。本発明の多孔質炭化珪素成形体を角型炉等の断熱材
として適用する場合等には、本発明の多孔質炭化珪素成
形体をパネル状物とし、これらを適用する炉の大きさ及
び形状に合わせてボルト等により適宜接合することによ
り使用することができる。更に、本発明の多孔質炭化珪
素成形体をトンネル炉の炉壁断熱材等として適用する場
合には、当該炉壁の形状に合わせてボルト等により適宜
接合することにより使用することができる。
When the porous silicon carbide molded body of the present invention is used under a high temperature at which a certain force is applied, a carbon plate,
A sandwich structure using a face material such as a ceramic plate or a metal plate can be used as a panel. When the porous silicon carbide molded article of the present invention is applied as a heat insulating material for a square furnace or the like, the porous silicon carbide molded article of the present invention is made into a panel-like material, and the size and shape of the furnace to which these are applied It can be used by suitably joining with bolts or the like according to the requirements. Further, when the porous silicon carbide molded body of the present invention is applied as a furnace wall heat insulating material of a tunnel furnace, it can be used by suitably joining with bolts or the like according to the shape of the furnace wall.

【0027】本発明の多孔質炭化珪素成形体は、全部又
は一部が炭化珪素に転化されているので、硬くて粉落ち
が少ない。また、シリコン単結晶引上炉の断熱材として
使用する場合は、炉心部に面する層が炭化珪素であるの
で、従来の炭素系断熱材を用いたシリコン単結晶引上炉
において起こっていた一酸化炭素の発生が起こらない。
更に、表面を炭化珪素被膜又は炭素被膜で被覆すること
により、気体不浸透性に優れた緻密な表面層を得ること
ができ、機械的強度や耐酸化性を高めて耐久性をより向
上させ、また粉落ちを最小に抑えることができる。
The porous silicon carbide molded body of the present invention is hard and less powdered because all or a part of it is converted into silicon carbide. Further, when used as a heat insulating material for a silicon single crystal pulling furnace, since the layer facing the core portion is silicon carbide, it occurs in a silicon single crystal pulling furnace using a conventional carbon-based heat insulating material. No generation of carbon oxide occurs.
Furthermore, by coating the surface with a silicon carbide film or a carbon film, a dense surface layer having excellent gas impermeability can be obtained, and the mechanical strength and oxidation resistance are increased to further improve the durability, Further, powder drop can be minimized.

【0028】[0028]

【実施例】以下に実施例を掲げて本発明を更に詳細に説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0029】実施例1 不揮発分80%、粘度400cps/25℃のフェノー
ル樹脂100重量部と発泡剤9重量部とを容器に入れて
約25秒間攪拌し、続いて硬化剤としてp−トルエンス
ルホン酸水溶液15重量部を添加して約25秒間攪拌し
て混合液体を調製した。この混合液体を表面温度50℃
の円筒形状の金型(内径640mm、外径800mm、
高さ710mm)に流し込んだ。約30分間発泡硬化さ
せた後、金型から取り出し、レゾール型のフェノール樹
脂発泡体を得た。
Example 1 100 parts by weight of a phenol resin having a non-volatile content of 80% and a viscosity of 400 cps / 25 ° C. and 9 parts by weight of a foaming agent were stirred in a container for about 25 seconds, and then p-toluenesulfonic acid was used as a curing agent. 15 parts by weight of the aqueous solution was added and stirred for about 25 seconds to prepare a mixed liquid. This mixed liquid is heated at a surface temperature of 50 ° C.
Cylindrical mold (inner diameter 640 mm, outer diameter 800 mm,
(710 mm height). After foaming and curing for about 30 minutes, it was taken out of the mold to obtain a resol type phenol resin foam.

【0030】得られたフェノール樹脂発泡体を非酸化性
雰囲気中、約20℃/時間の昇温速度で900℃まで、
更に、300℃/時間の昇温速度で2000℃まで焼成
し、見掛け密度0.15g/cm3 の多孔質炭素成形体
を得た。得られた多孔質炭素成形体を、珪素粉及び二酸
化珪素の混合体と接触しないようにカーボン容器に入
れ、1900℃で2時間保持して全体をβ型炭化珪素に
転化し、多孔質炭化珪素成形体を得た。
The obtained phenolic resin foam is heated in a non-oxidizing atmosphere to 900 ° C. at a rate of about 20 ° C./hour.
Further, it was fired at a temperature rising rate of 300 ° C./hour up to 2000 ° C. to obtain a porous carbon molded body having an apparent density of 0.15 g / cm 3 . The obtained porous carbon compact is put into a carbon container so as not to come into contact with a mixture of silicon powder and silicon dioxide, and is kept at 1900 ° C. for 2 hours to convert the whole into β-type silicon carbide. A molded article was obtained.

【0031】得られた多孔質炭化珪素成形体を、シリコ
ン単結晶引上炉の断熱材として使用し、シリコン単結晶
を得た。得られたシリコン単結晶について、カーボンフ
ァイバーを断熱材として使用した従来のシリコン単結晶
引上炉から得られたシリコン単結晶と比較することによ
り評価したところ、不純物として含まれるカーボンの含
有量は、1/3であった。また、断熱材としての寿命
は、従来のカーボンファイバー製のものに比較して、4
倍であった。
The obtained porous silicon carbide compact was used as a heat insulating material of a silicon single crystal pulling furnace to obtain a silicon single crystal. The obtained silicon single crystal was evaluated by comparing it with a silicon single crystal obtained from a conventional silicon single crystal pulling furnace using carbon fiber as a heat insulating material. It was 1/3. In addition, the life as a heat insulating material is 4 times longer than that of conventional carbon fiber.
It was twice.

【0032】実施例2 炭化珪素に転化するための処理時間を30分間とするこ
とにより、円筒内面層が炭化珪素に転化し、他の部分は
炭素質である多孔質炭化珪素成形体としたこと以外は、
実施例1と同様にして多孔質炭化珪素成形体を得、実施
例1と同様にしてシリコン単結晶を得て評価したとこ
ろ、不純物として含まれるカーボンの含有量は、1/2
であり、断熱材としての寿命は、3倍であった。
Example 2 By setting the treatment time for converting to silicon carbide to 30 minutes, the cylindrical inner surface layer was converted to silicon carbide, and the other portion was formed of a carbonaceous porous silicon carbide molded body. except,
A porous silicon carbide molded body was obtained in the same manner as in Example 1, and a silicon single crystal was obtained and evaluated in the same manner as in Example 1. The content of carbon contained as an impurity was 1 /.
And the life as a heat insulating material was tripled.

【0033】実施例3 多孔質炭化珪素成形体の全体に、炭化珪素被膜をCVD
法により設けたこと以外は、実施例2と同様にして多孔
質炭化珪素成形体を得、実施例2と同様にしてシリコン
単結晶を得て評価したところ、不純物として含まれるカ
ーボンの含有量は、1/4であり、断熱材としての寿命
は、4倍であった。
Example 3 A silicon carbide coating was formed on the entire porous silicon carbide compact by CVD.
A porous silicon carbide molded body was obtained in the same manner as in Example 2 except that it was provided by the method, and a silicon single crystal was obtained and evaluated in the same manner as in Example 2. , 1/4, and the life as a heat insulating material was quadrupled.

【0034】実施例4 多孔質炭化珪素成形体の全体に、熱分解炭素被膜をCV
D法により設けたこと以外は、実施例2と同様にして多
孔質炭化珪素成形体を得、実施例2と同様にしてシリコ
ン単結晶を得て評価したところ、不純物として含まれる
カーボンの含有量は、1/3であり、断熱材としての寿
命は、4倍であった。
Example 4 A pyrolytic carbon coating was applied to the entire surface of the porous silicon carbide molded body by CV.
A porous silicon carbide molded body was obtained in the same manner as in Example 2 except that it was provided by Method D, and a silicon single crystal was obtained and evaluated in the same manner as in Example 2. The content of carbon contained as an impurity was determined. Was 1/3, and the life as a heat insulating material was 4 times.

【0035】実施例5 円筒形の多孔質炭化珪素成形体の円筒内面に、炭化珪素
被膜をCVD法により設けたこと以外は、実施例1と同
様にして多孔質炭化珪素成形体を得、実施例1と同様に
してシリコン単結晶を得て評価したところ、不純物とし
て含まれるカーボンの含有量は、1/3であり、断熱材
としての寿命は、5倍であった。
Example 5 A porous silicon carbide molded article was obtained in the same manner as in Example 1 except that a silicon carbide film was provided on the inner surface of the cylindrical porous silicon carbide molded article by the CVD method. When a silicon single crystal was obtained and evaluated in the same manner as in Example 1, the content of carbon contained as an impurity was 1/3, and the life as a heat insulating material was 5 times.

【0036】[0036]

【発明の効果】本発明の多孔質炭化珪素成形体は、上述
の構成からなるので、断熱性、耐久性に優れ、粉落ちが
少ない。また、シリコン単結晶引上炉の断熱材として用
いた場合においては、一酸化炭素を発生することがない
ので、作業の安全性が高く、高品質のシリコン単結晶を
高い歩留りで得ることができる。
The porous silicon carbide molded body of the present invention has the above-mentioned structure, and therefore has excellent heat insulating properties and durability, and has less powder falling. In addition, when used as a heat insulating material for a silicon single crystal pulling furnace, carbon monoxide is not generated, so that work safety is high and a high quality silicon single crystal can be obtained at a high yield. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多孔質炭化珪素成形体であって中心部
を除く部分のみを珪化したものの断面概略図を示す。
FIG. 1 is a schematic cross-sectional view of a porous silicon carbide molded body of the present invention in which only a portion excluding a central portion is silicified.

【図2】本発明の多孔質炭化珪素成形体であって円筒状
成形体の内層部のみを珪化したものの概略図を示す。
FIG. 2 is a schematic view of a porous silicon carbide molded body of the present invention in which only an inner layer portion of a cylindrical molded body is silicided.

【符号の説明】[Explanation of symbols]

11 表層部 12 中心部 21 内層部 22 外層部 23 外周面 DESCRIPTION OF SYMBOLS 11 Surface layer part 12 Central part 21 Inner layer part 22 Outer layer part 23 Outer peripheral surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂発泡体を炭化することによ
り得られる多孔質炭素成形体を用いて、前記多孔質炭素
成形体の全部又は一部を炭化珪素に転化することにより
得られることを特徴とする多孔質炭化珪素成形体。
1. A method of using a porous carbon molding obtained by carbonizing a thermosetting resin foam to convert all or a part of the porous carbon molding into silicon carbide. Characteristic porous silicon carbide molded body.
【請求項2】 前記多孔質炭素成形体を炭化珪素に転化
するにあたって、前記多孔質炭素成形体の中心部を除く
部分を炭化珪素に転化した後、前記中心部に残存する炭
素質を除去することにより得られる請求項1記載の多孔
質炭化珪素成形体。
2. When converting the porous carbon molded body into silicon carbide, a portion excluding a central portion of the porous carbon molded body is converted into silicon carbide, and carbonaceous material remaining in the central portion is removed. The porous silicon carbide molded body according to claim 1, which is obtained by the above method.
【請求項3】 前記多孔質炭素成形体を炭化珪素に転化
するにあたって、円筒状に成形された前記多孔質炭素成
形体の内層部のみを炭化珪素に転化することにより得ら
れる請求項1記載の多孔質炭化珪素成形体。
3. The method according to claim 1, wherein when converting the porous carbon molded body into silicon carbide, only the inner layer portion of the porous carbon molded body formed into a cylindrical shape is converted into silicon carbide. Porous silicon carbide molded body.
【請求項4】 請求項1記載の多孔質炭化珪素成形体を
用いて、更にその表面の全部又は一部を炭化珪素被膜で
被覆することを特徴とする多孔質炭化珪素成形体。
4. A porous silicon carbide molded body, characterized in that the porous silicon carbide molded body according to claim 1 is further covered with a silicon carbide coating on all or a part of its surface.
【請求項5】 請求項1記載の多孔質炭化珪素成形体を
用いて、更にその表面の全部又は一部を炭素被膜で被覆
することを特徴とする多孔質炭化珪素成形体。
5. A porous silicon carbide molded body, characterized in that the porous silicon carbide molded body according to claim 1 is further covered with a carbon coating on all or a part of its surface.
JP24412796A 1996-08-26 1996-08-26 Porous silicon carbide molded body Expired - Fee Related JP3938218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24412796A JP3938218B2 (en) 1996-08-26 1996-08-26 Porous silicon carbide molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24412796A JP3938218B2 (en) 1996-08-26 1996-08-26 Porous silicon carbide molded body

Publications (2)

Publication Number Publication Date
JPH1067578A true JPH1067578A (en) 1998-03-10
JP3938218B2 JP3938218B2 (en) 2007-06-27

Family

ID=17114173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24412796A Expired - Fee Related JP3938218B2 (en) 1996-08-26 1996-08-26 Porous silicon carbide molded body

Country Status (1)

Country Link
JP (1) JP3938218B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179401A (en) * 1998-12-17 2000-06-27 Daimlerchrysler Ag Propulsion device
JP2008222500A (en) * 2007-03-13 2008-09-25 Japan Aerospace Exploration Agency Porous molding, porous filled molding, method for producing porous molding and method for producing porous filled molding
CN107285800A (en) * 2017-07-24 2017-10-24 苏州宏久航空防热材料科技有限公司 A kind of three-dimensional CVD silicon carbide ceramic foam material with hollow member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179509A (en) * 2008-01-30 2009-08-13 Ngk Insulators Ltd Porous silicon carbide and heat insulating material using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179401A (en) * 1998-12-17 2000-06-27 Daimlerchrysler Ag Propulsion device
JP2008222500A (en) * 2007-03-13 2008-09-25 Japan Aerospace Exploration Agency Porous molding, porous filled molding, method for producing porous molding and method for producing porous filled molding
CN107285800A (en) * 2017-07-24 2017-10-24 苏州宏久航空防热材料科技有限公司 A kind of three-dimensional CVD silicon carbide ceramic foam material with hollow member

Also Published As

Publication number Publication date
JP3938218B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
NO144485B (en) SINTERABLE SILICON CARBID POWDER.
JPH0686333U (en) Diffusion furnace components
US20050020431A1 (en) Silicon carbide-based, porous structural material being heat-resistant and super lightweight
WO2011011603A2 (en) Glass encapsulated hot isostatic pressed silicon carbide
JP3938218B2 (en) Porous silicon carbide molded body
CN105236988B (en) A kind of high-purity high-density recrystallized silicon carbide device and preparation method thereof
JPH09175870A (en) Reaction-sintered ceramic and its production
Semen et al. Structural ceramics derived from a preceramic polymer
JP4348429B2 (en) Porous silicon nitride and method for producing the same
JPS6152106B2 (en)
JPS632913B2 (en)
GB2215738A (en) Method of preparing silicon carbide sintered body
JP3297547B2 (en) Method for producing silicon carbide sintered body
JP4491080B2 (en) Method for producing sintered silicon carbide
JP2005298304A (en) Highly dense silicon carbide ceramic and its producing method
JPH03183612A (en) Silicon carbide sheet and production thereof
JP2002201071A (en) Method of manufacturing silicon carbide material
JPS62297280A (en) Carbon base foam heat insulating formed body and manufacture
JPH0463028B2 (en)
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JPS6344713B2 (en)
JPH0535105B2 (en)
JPS6138143B2 (en)
JP2000026177A (en) Production of silicon-silicon carbide ceramics
JPS60186473A (en) Silicon nitride sintered body and manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees