JPS624301B2 - - Google Patents

Info

Publication number
JPS624301B2
JPS624301B2 JP51119005A JP11900576A JPS624301B2 JP S624301 B2 JPS624301 B2 JP S624301B2 JP 51119005 A JP51119005 A JP 51119005A JP 11900576 A JP11900576 A JP 11900576A JP S624301 B2 JPS624301 B2 JP S624301B2
Authority
JP
Japan
Prior art keywords
container
wall thickness
preform
polyethylene terephthalate
containers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51119005A
Other languages
Japanese (ja)
Other versions
JPS5344267A (en
Inventor
Tooru Matsubayashi
Yoshio Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP11900576A priority Critical patent/JPS5344267A/en
Publication of JPS5344267A publication Critical patent/JPS5344267A/en
Publication of JPS624301B2 publication Critical patent/JPS624301B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリエステル製容器に関する。更に
詳しくは耐落下衝撃性の優れたポリエチレンテレ
フタレート製容器を提供しようとするものであ
る。 ポリエステル製の容器は、例えば炭酸飲料、食
品、化粧品等の容器として最近注目を集めてい
る。特にポリエチレンテレフタレート製容器は、
塩化ビニル樹脂容器に見られる如き、可塑剤や残
存モノマーによる人体衛生上の悪影響の懸念が無
く、また、ポリエチレン、ポリプロピレン製の容
器に比べて、酸素、炭酸ガス等のガス透過性が少
く、しかも透明性が優れるなどの利点があり、飲
料、食品、化粧品等の容器として有用である。 かかるポリエステル容器を得る方法が、従来、
米国特許第3733309号、米国特許第3745150号、特
開昭51−81851号等の明細書に示されている。し
かしこれらの方法で得られるポリエステル製容器
は、炭酸飲料等の場合の如き加圧下に液体を貯蔵
する容器に適するので、一般の食品等を充填する
には肉厚が大きすぎてコストが大となり、従来用
いられている容器の代替品となりにくい。逆に肉
厚を薄くしてコストを低下しようとすると耐落下
衝撃性が悪くなり、これを避けるには原料ポリエ
ステルの重合度を著しく高める必要が生じて重合
コストの上昇や成形が難しくなることによるコス
ト上昇を伴う等の欠点を生じ、従来用いられてい
る容器の代替品とすることは困難である。 本発明者は、このような欠点のないポリエステ
ル製容器について鋭意研究の結果、 容器の胴部と底部との間の曲部の肉厚を特定
範囲内の値にし、 容器の底部の肉厚変化を余り大きくせず、 容器の底部の厚さ方向の屈折率を特定の範囲
内の値に保つ ならば、容器の肉厚を大にしなくても優れた耐衝
撃性を付与でき、しかも極めて高重合度のポリマ
ーを用いる必要がないことを見出し、本発明に到
達した。 即ち、本発明は、固有粘度が0.50〜0.70である
ポリエチレンテレフタレートからなる容器であつ
て、該容器の胴部と底部との間にある曲部の肉厚
が0.1mm〜0.6mmであり、底部の最も肉厚の大きい
部分の肉厚Ammと、底部の最も肉厚が小さい部分
の肉厚Bmmとの比が A/B≦15 を満足し、かつ容器を水平面上に直立させた際
に、該容器の底部の、該水平面に接触する部分の
厚さ方向の屈折率が1.50〜1.55である耐落下衝撃
性が改良されたポリエステル製容器である。 本発明で云うポリエチレンテレフタレートと
は、テレフタル酸又はそのエステル形成性誘導体
とエチレングリコール又はそのエステル形成性誘
導体とを重合せしめて得ることのできるポリエス
テルであるが、少割合(例えば約20モル%以下)
の他のジカルボン酸及び/又はグリコール成分が
共重合されていてもよい。この共重合されてもよ
いジカルボン酸としては、フタル酸、イソフタル
酸、ナフタリンジカルボン酸類、ジフエニルジカ
ルボン酸類、ジフエノキシエタンジカルボン酸類
等の如き芳香族ジカルボン酸類、アジピン酸、セ
バチン酸、アゼライン酸、デカンジカルボン酸、
シクロヘキサンジカルボン酸等の如き脂肪族又は
脂環族ジカルボン酸類が例示できる。またグリコ
ール成分としてはトリメチレングリコール、テト
ラメチレングリコール、プロピレングリコール、
ネオペンチレングリコール、ヘキサメチレングリ
コール、ドデカメチレングリコール、シクロヘキ
サンジメタノール等の如き脂肪族又は脂環族グリ
コール類、ビスフエノール類、ハイドロキノン、
2・2−ビス(4−β−ヒドロキンエトキシフエ
ニル)プロパン、その他の芳香族ジオール類等が
例示できる。更にまた、P−ヒドロキシエトキシ
安息香酸、−オキシカプロン酸等の如きオキシ酸
類を用いても良く、またこれらの低級アルキルエ
ステル、その他のエステル形成性誘導体を使用し
てよい。前記ポリエチレンテレフタレートには、
トリメチロールプロパン、ペンタエリスリトー
ル、トリメリツト酸、トリメシン酸等の如き多官
能性化合物を、ジカルボン酸成分またはジオール
成分に対し2モル%以下共重合させてもよい。共
重合されたポリエチレンテレフタレートは、その
軟化点(ポリマーチツプを140℃で1時間熱処理
した後測定したピカツト軟化点)が220℃以上
(特に好ましくは230℃以上のもの)が好ましく用
いられる。 かかるポリエチレンテレフタレートは、固有粘
度が0.50以上、更に0.55以上のものが好ましく用
いられる。0.45より低い固有粘度を有するポリマ
ーは本発明で規定する肉厚及び屈折率の範囲であ
つても、容器の耐落下衝撃性が劣るため好ましく
ない。 また、該ポリエチレンテレフタレートの固有粘
度は0.70以下であるべきである。固有粘度は0.65
以下が好ましい。固有粘度が0.70よりも高い、重
合に長時間を要したり固相重合という煩雑な工程
を更に必要としたりして重合コストが上昇するの
みならず、樹脂の流れ性が悪く容器(例えばビ
ン)の底部等に、歪みを生じたり著しい偏肉を生
じたり透明性のよくない部分を生じたりして外観
や品質を低下せしめるので好ましくない。 本発明の容器では、その胴部と底部との間にあ
る曲部の肉厚を0.1mm〜0.6mmにする。この部分の
肉厚に0.1mm未満のもの部分があると、その部分
の耐落下衝撃強度が弱すぎるようになるので好ま
しくない。また該肉厚に0.6mmよりも厚い部分が
あると、驚くべきことにやはり耐落下衝撃強度が
著しく弱くなるので好ましくない。この理由は不
明であるが、この部分の肉厚が0.6mmよりも厚い
と、容器を落したとき、この部分からクラツクが
発生して容器が破裂し易い傾向が認められる。該
曲部の肉厚は0.15mm〜0.5mm、特に0.2mm〜0.5mmが
好ましい。 また、本発明の容器の底部では、その肉厚の最
も大きな部分の肉厚Ammと肉厚の最も小さい部分
の肉厚Bmmと(従つてA≧Bである。)の比を A/B≦15 にする。A/Bが15より大きい場合には、容器を
落したときに底部の肉厚の最も大きい部分から肉
厚が薄くなり始める部分にクラツクが発生し易く
なり、好ましくない。A/Bは12以下、特に10以
下が好ましい。 本発明の容器を水平面上に直立させた際に、該
容器の底部の該水平面に接触する部分の、厚さ方
向の屈折率が1.50〜1.55であるようにする。該屈
折率が1.50より小さくても1.55より大きくても、
耐衝撃性が低下するので好ましくない。 本発明の容器を製造するには、例えば次のよう
な方法を採用すればよい。即ち、原料ポリエチレ
ンテレフタレートを射出成形して、吹込成形用の
円筒状有底プリフオームを作成する。得られたプ
リフオームは底部の厚さが直胴部の厚さと同等が
或いはそれよりも薄いことが好ましく、かつ底部
の密度が直胴部とほぼ同等であることが好まし
い。該プリフオームを、80〜150℃好ましくは85
〜120℃の温度範囲に加熱したのち、金型内に固
定し、延伸ロツドにより軸方向に延伸し、かつ空
気・窒素等の流体を圧入し、容器の型まで膨張さ
せ、金型により冷却固化させて容器を得るが、延
伸の際、プリフオーム底部の温度がプリフオーム
胴部の温度と同等か或いはそれよりも約5〜10℃
程度高くする。このためには、プリフオームを加
熱する際、加熱をプリフオームの側面からのみで
なく、プリフオームの底部側からも行い、上記温
度範囲になるよう制御するとよい。また、加熱完
了後延伸ロツドによりプリフオームを延伸しかつ
吹込を行う迄の間に、加熱されたプリフオームを
3〜10秒間放冷することにより、プリフオームの
底部と胴部の温度勾配をゆるやかにするととも
に、プリフオームの厚み方向の温度差を少くする
ことが好ましい。更に、吹込はプリフオームの延
伸完了後あるいは完了直前に行うのが好ましく、
少くとも吹込開始時期はプリフオームが50%以上
延伸されたのちが好ましい。また延伸ロツドの材
質は熱伝導度が1Kcal/m・hr・℃以下のものを
用いる。更に吹込金型は容器の底部に相当する部
分の温度を容器の胴部に相当する部分よりも約10
℃高くしておくとよい。 しかしながら、本発明の容器がこのような方法
で得られたもののみには限られないことは言うま
でもない。 本発明の容器は結晶性で耐落下衝撃性や透明
性、光沢等の外観がすぐれ、食品や化粧品の容器
として用いた場合、味の変化や臭気の付着が少
く、水分その他の透過量も少いという特長があ
る。 以下、実施例により本発明を詳述する。なお、
本発明で用いる主な測定値の測定法は次の通りで
ある。 Γ固有粘度〔η〕:0−クロロフエノールを溶媒
として35℃で測定した値。 Γ厚さ方向の屈折率nz:アツベ屈折率計に偏光
板を装置し、容器底部から切り取つたサンプル
の厚さ方向の屈折率を、温度25℃で、ナトリウ
ムのD線を用いて測定した値。 実施例1〜6及び比較例1〜5 〔η〕=0.65、軟化点259℃のポリエチレンテレ
フタレートチツプを160℃で4時間熱風乾燥機に
より加熱乾燥した(チツプの水分率を0.008%に
した。)。 このチツプを用いて、3オンスの射出成形機
(東芝機械KK製LS−60B型を使用)により、外径
28mm、長さ160mm、肉厚2mm、重量33gの有底プ
リフオームを成形した。成形条件は、シリンダー
温度260〜280℃、射出圧力800Kg/cm2、サイクル
35秒、金型温度20℃(水冷する。)とした。 得られた有底プリフオームを加熱筒(プリフオ
ームの胴部加熱と底部加熱とを異る温度設定ので
きるもの)中で所定時間予備加熱した後、胴部の
径70〜80mm、高さ265mm、口部の径28mmの食品容
器用瓶形状のキヤビテイを有する吹込金型内に移
し、プリフオームを延伸ロツド(実施例ではナイ
ロン製のロツド、比較例はステンレススチール製
のロツドを用いた。)により軸方向に延伸すると
共に、圧縮空気により円周方向に膨脹させ、内容
積1リツトルの瓶を製造した。成形条件を種々に
変えて成形した結果、表1に示すような品質の瓶
を得た。 得られた瓶に温度10℃の水900mlを充填密封し
た後、その底部を下にしてコンクリート床面に落
下させて、耐落下衝撃強度をテストした。該テス
トは、最初はコンクリート床面から1mの高さか
ら行ない、毎回高さを10cmづつ増してテストを反
復し、瓶が破壤されるまで行なつた。得られた結
果を表1に示す。
The present invention relates to polyester containers. More specifically, the object is to provide a container made of polyethylene terephthalate that has excellent drop impact resistance. Containers made of polyester have recently attracted attention as containers for carbonated beverages, foods, cosmetics, and the like. In particular, containers made of polyethylene terephthalate,
Unlike polyvinyl chloride resin containers, there is no concern about the negative effects on human health caused by plasticizers or residual monomers, and compared to containers made of polyethylene or polypropylene, there is less permeability to gases such as oxygen and carbon dioxide. It has advantages such as excellent transparency, and is useful as containers for beverages, foods, cosmetics, etc. Conventionally, methods for obtaining such polyester containers have been
It is shown in specifications such as U.S. Patent No. 3,733,309, U.S. Pat. However, polyester containers obtained by these methods are suitable for storing liquids under pressure, such as those for carbonated drinks, and are too thick and costly to fill with general foods. , it is difficult to replace conventionally used containers. On the other hand, if you try to reduce the cost by reducing the wall thickness, the drop impact resistance will deteriorate, and to avoid this, it will be necessary to significantly increase the degree of polymerization of the raw material polyester, which will increase the polymerization cost and make molding difficult. It is difficult to use as a substitute for conventional containers because of disadvantages such as increased cost. As a result of intensive research into polyester containers that do not have such drawbacks, the inventor of the present invention set the wall thickness of the curved portion between the body and the bottom of the container to a value within a specific range, and determined that the wall thickness change at the bottom of the container If the refractive index in the thickness direction of the bottom of the container is kept within a certain range without making it too large, it is possible to provide excellent impact resistance without increasing the wall thickness of the container, and it is also possible to achieve extremely high impact resistance. The inventors have discovered that it is not necessary to use a polymer with a certain degree of polymerization, and have arrived at the present invention. That is, the present invention provides a container made of polyethylene terephthalate having an intrinsic viscosity of 0.50 to 0.70, in which the wall thickness of the curved portion between the body and the bottom of the container is 0.1 mm to 0.6 mm, and the bottom The ratio of the wall thickness Amm of the thickest part of the bottom to the wall thickness Bmm of the smallest wall thickness of the bottom satisfies A/B≦15, and when the container is held upright on a horizontal surface, This polyester container has improved drop impact resistance and has a refractive index of 1.50 to 1.55 in the thickness direction of the bottom portion of the container that contacts the horizontal surface. Polyethylene terephthalate as used in the present invention is a polyester that can be obtained by polymerizing terephthalic acid or its ester-forming derivative and ethylene glycol or its ester-forming derivative, but in a small proportion (for example, about 20 mol% or less).
Other dicarboxylic acid and/or glycol components may be copolymerized. The dicarboxylic acids that may be copolymerized include aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, naphthalene dicarboxylic acids, diphenyl dicarboxylic acids, diphenoxyethane dicarboxylic acids, adipic acid, sebacic acid, azelaic acid, decanedicarboxylic acid,
Examples include aliphatic or alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid. In addition, glycol components include trimethylene glycol, tetramethylene glycol, propylene glycol,
Aliphatic or alicyclic glycols such as neopentylene glycol, hexamethylene glycol, dodecamethylene glycol, cyclohexanedimethanol, etc., bisphenols, hydroquinone,
Examples include 2,2-bis(4-β-hydroxyethoxyphenyl)propane and other aromatic diols. Furthermore, oxyacids such as P-hydroxyethoxybenzoic acid and -oxycaproic acid may be used, and lower alkyl esters thereof and other ester-forming derivatives may also be used. The polyethylene terephthalate includes:
A polyfunctional compound such as trimethylolpropane, pentaerythritol, trimellitic acid, trimesic acid, etc. may be copolymerized in an amount of 2 mol % or less based on the dicarboxylic acid component or diol component. The copolymerized polyethylene terephthalate preferably has a softening point (Picato softening point measured after heat treating a polymer chip at 140°C for 1 hour) of 220°C or higher (particularly preferably 230°C or higher). Such polyethylene terephthalate has an intrinsic viscosity of 0.50 or more, preferably 0.55 or more. Polymers having an intrinsic viscosity lower than 0.45 are not preferred because the drop impact resistance of the container is poor even if the wall thickness and refractive index are within the range specified in the present invention. Also, the intrinsic viscosity of the polyethylene terephthalate should be 0.70 or less. Intrinsic viscosity is 0.65
The following are preferred. If the intrinsic viscosity is higher than 0.70, not only does polymerization take a long time or require the complicated process of solid phase polymerization, which increases polymerization costs, but the resin has poor flowability and is difficult to use in containers (e.g. bottles). This is undesirable because it may cause distortion, significant unevenness in thickness, or areas with poor transparency at the bottom, etc., resulting in a deterioration in appearance and quality. In the container of the present invention, the wall thickness of the curved portion between the body and the bottom is set to 0.1 mm to 0.6 mm. If the wall thickness of this part is less than 0.1 mm, the drop impact resistance of that part will be too weak, which is undesirable. Further, if the wall thickness includes a portion thicker than 0.6 mm, surprisingly, the drop impact strength is also significantly weakened, which is not preferable. The reason for this is unknown, but if the wall thickness of this part is thicker than 0.6 mm, cracks will occur from this part and the container will tend to burst when the container is dropped. The thickness of the curved portion is preferably 0.15 mm to 0.5 mm, particularly preferably 0.2 mm to 0.5 mm. In addition, for the bottom of the container of the present invention, the ratio of the wall thickness Amm at the thickest part and the wall thickness Bmm at the smallest wall thickness (therefore, A≧B) is A/B≦. Make it 15. If A/B is greater than 15, cracks are likely to occur at the bottom where the wall thickness starts to decrease from the thickest part when the container is dropped, which is undesirable. A/B is preferably 12 or less, particularly preferably 10 or less. When the container of the present invention is stood upright on a horizontal surface, the refractive index in the thickness direction of the portion of the bottom of the container that contacts the horizontal surface is 1.50 to 1.55. Whether the refractive index is smaller than 1.50 or larger than 1.55,
This is not preferred because impact resistance decreases. In order to manufacture the container of the present invention, the following method may be adopted, for example. That is, raw material polyethylene terephthalate is injection molded to create a cylindrical preform with a bottom for blow molding. It is preferable that the thickness of the obtained preform at the bottom is equal to or thinner than the thickness of the straight body, and it is preferable that the density of the bottom is almost the same as that of the straight body. The preform is heated to 80 to 150°C, preferably 85°C.
After heating to a temperature range of ~120°C, it is fixed in a mold, stretched in the axial direction by a stretching rod, and fluid such as air or nitrogen is injected to expand it to the container mold, where it is cooled and solidified in the mold. During stretching, the temperature at the bottom of the preform is equal to or about 5 to 10°C higher than the temperature at the body of the preform.
Increase the degree. For this purpose, when heating the preform, it is preferable to heat not only from the side of the preform but also from the bottom side of the preform and control the temperature to be within the above temperature range. In addition, by allowing the heated preform to cool for 3 to 10 seconds before stretching the preform with a stretching rod after heating is completed and before blowing, the temperature gradient between the bottom and body of the preform is made gentler. It is preferable to reduce the temperature difference in the thickness direction of the preform. Furthermore, it is preferable that the blowing be carried out after or just before the completion of stretching the preform.
It is preferable to start blowing at least after the preform has been stretched by 50% or more. Furthermore, the material used for the stretching rod has a thermal conductivity of 1 Kcal/m·hr·°C or less. In addition, the blow mold lowers the temperature of the part corresponding to the bottom of the container by about 10
It is better to keep it at a higher temperature. However, it goes without saying that the containers of the present invention are not limited to those obtained by such a method. The container of the present invention is crystalline and has excellent appearance such as drop impact resistance, transparency, and gloss, and when used as a container for food or cosmetics, there is little change in taste or adhesion of odor, and the amount of water and other substances that permeate is small. It has the advantage of being Hereinafter, the present invention will be explained in detail with reference to Examples. In addition,
The main measurement methods used in the present invention are as follows. Γ Intrinsic viscosity [η]: Value measured at 35°C using 0-chlorophenol as a solvent. ΓRefractive index in the thickness direction n z : The refractive index in the thickness direction of a sample cut from the bottom of the container was measured using a sodium D line at a temperature of 25°C using an Atsube refractometer equipped with a polarizing plate. value. Examples 1 to 6 and Comparative Examples 1 to 5 Polyethylene terephthalate chips with [η] = 0.65 and a softening point of 259°C were heat-dried at 160°C for 4 hours in a hot air dryer (the moisture content of the chips was brought to 0.008%). . Using this chip, the outer diameter was
A bottomed preform with a length of 28 mm, a length of 160 mm, a wall thickness of 2 mm, and a weight of 33 g was molded. The molding conditions were: cylinder temperature 260-280℃, injection pressure 800Kg/cm 2 , cycle.
The mold temperature was set to 20°C (water-cooled) for 35 seconds. After preheating the obtained bottomed preform for a predetermined period of time in a heating tube (one that can set different temperatures for heating the body and bottom of the preform), The preform was transferred into a blowing mold having a cavity in the shape of a food container bottle with a diameter of 28 mm, and stretched in the axial direction with a stretching rod (a nylon rod was used in the example, and a stainless steel rod was used in the comparative example). At the same time, it was expanded in the circumferential direction with compressed air to produce a bottle with an internal volume of 1 liter. As a result of molding under various molding conditions, bottles with the quality shown in Table 1 were obtained. After filling the resulting bottle with 900 ml of water at a temperature of 10°C and sealing it, the bottle was dropped onto a concrete floor with its bottom facing down to test its drop impact strength. The test was initially carried out at a height of 1 m above the concrete floor, and the test was repeated by increasing the height by 10 cm each time until the bottle was destroyed. The results obtained are shown in Table 1.

【表】 耐落下衝撃強度に関しては、1.5m以下では実
用上問題を生ずる。表1に示す如く、本発明の範
囲内の場合は耐落下衝撃性が優れているのに対
し、比較例1〜5の場合はいずれも1.5m以下で
破壊されており、実用上問題があることが判る。 実施例7〜12及び比較例6 〔η〕の異なるポリエチレンテレフタレートチ
ツプを用いる以外は、実施例1〜6と同様にして
瓶を得た。得られた瓶を実施例1〜6の場合と同
様の方法で落下させ、耐衝撃性をテストした。成
形条件及び結果を表2に示す。
[Table] Regarding drop impact strength, a drop of 1.5 m or less will cause practical problems. As shown in Table 1, the cases within the scope of the present invention have excellent drop impact resistance, whereas the cases of Comparative Examples 1 to 5 were all broken at 1.5 m or less, which is a practical problem. I understand that. Examples 7 to 12 and Comparative Example 6 Bottles were obtained in the same manner as Examples 1 to 6, except that polyethylene terephthalate chips with different [η] were used. The resulting bottles were dropped in the same manner as in Examples 1 to 6 to test impact resistance. Table 2 shows the molding conditions and results.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 固有粘度が0.50〜0.70であるポリエチレンテ
レフタレートからなる胴部が二軸延伸されかつ配
向結晶化された容器であつて、該容器の胴部と底
部との間にある曲部の肉厚が0.1mm〜0.6mmであ
り、底部の最も肉厚の大きい部分の肉厚Ammと、
底部の最も肉厚の小さい部分の肉厚Bmmとの比が A/B≦15 を満足し、かつ容器を水平面上に直立させた際に
該容器の底部の、該水平面に接触する部分の厚さ
方向の屈折率が1.50〜1.55である耐落下衝撃性が
改良されたポリエステル製容器。
[Scope of Claims] 1. A container in which a body made of polyethylene terephthalate having an intrinsic viscosity of 0.50 to 0.70 is biaxially stretched and oriented crystallized, and the curve between the body and the bottom of the container is The wall thickness of the bottom part is 0.1 mm to 0.6 mm, and the wall thickness of the thickest part of the bottom part is A mm,
The ratio of the wall thickness Bmm of the smallest wall thickness of the bottom part satisfies A/B≦15, and the thickness of the part of the bottom part of the container that comes into contact with the horizontal surface when the container is stood upright on the horizontal surface. A polyester container with improved drop impact resistance and a refractive index in the transverse direction of 1.50 to 1.55.
JP11900576A 1976-10-05 1976-10-05 Container made from polyester Granted JPS5344267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11900576A JPS5344267A (en) 1976-10-05 1976-10-05 Container made from polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11900576A JPS5344267A (en) 1976-10-05 1976-10-05 Container made from polyester

Publications (2)

Publication Number Publication Date
JPS5344267A JPS5344267A (en) 1978-04-20
JPS624301B2 true JPS624301B2 (en) 1987-01-29

Family

ID=14750626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11900576A Granted JPS5344267A (en) 1976-10-05 1976-10-05 Container made from polyester

Country Status (1)

Country Link
JP (1) JPS5344267A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579872A (en) * 1978-12-11 1980-06-16 Inoue Japax Res Inc Treating processing apparatus for surface covering
JP3128764B2 (en) * 1990-10-19 2001-01-29 三井化学株式会社 Bottle made of saturated polyester for carbonated drinks

Also Published As

Publication number Publication date
JPS5344267A (en) 1978-04-20

Similar Documents

Publication Publication Date Title
EP0653981B1 (en) Method of forming multi-layer preform and container with low crystallizing interior layer
US6613259B2 (en) Process of making polyester pellets
JPH0351568B2 (en)
HU218116B (en) Method of forming container from polyester base-material and container
JP3616687B2 (en) Self-supporting container with excellent heat and pressure resistance
JP3128764B2 (en) Bottle made of saturated polyester for carbonated drinks
JP5239480B2 (en) Polyethylene terephthalate bottle
JPS624301B2 (en)
JPH01288421A (en) Biaxial orientation polyester bottle
JPS6319330B2 (en)
JPS5856335B2 (en) Method for manufacturing polyester containers
JPH0112657B2 (en)
JP2863570B2 (en) Copolymerized polyethylene terephthalate and its use
MXPA04000960A (en) Methods for making polyethylene terephthalate (pet) preforms and containers such as food bottles, containers and intermediate preforms obtained.
JPS6340747B2 (en)
JPH0678094B2 (en) Heat-resistant bottle made of synthetic resin and method for producing the same
JPH021756A (en) Heat-resistant hollow container
JPH028026A (en) Heat resistant hollow vessel
TW304176B (en)
JP3606671B2 (en)   Polyester preform and biaxially stretched bottle and method for producing polyester biaxially stretched bottle
JP2953726B2 (en) Method for producing saturated polyester bottle
JP3522043B2 (en) Polyester, preform and biaxially stretched bottle made of polyester, and method for producing polyester biaxially stretched bottle
JPS61268753A (en) Polyester packaging material
JP4130001B2 (en) Polyester molding method, molded article and bottle molded by the method
JPH11106616A (en) Polyester composition, bottle and its production