JPS6242604A - Operational amplifier integrated circuit - Google Patents

Operational amplifier integrated circuit

Info

Publication number
JPS6242604A
JPS6242604A JP60182178A JP18217885A JPS6242604A JP S6242604 A JPS6242604 A JP S6242604A JP 60182178 A JP60182178 A JP 60182178A JP 18217885 A JP18217885 A JP 18217885A JP S6242604 A JPS6242604 A JP S6242604A
Authority
JP
Japan
Prior art keywords
stage
operational amplifier
integrated circuit
amplifier
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60182178A
Other languages
Japanese (ja)
Inventor
Shinichi Katsu
勝 新一
Masaru Kazumura
数村 勝
Masahiro Hagio
萩尾 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP60182178A priority Critical patent/JPS6242604A/en
Publication of JPS6242604A publication Critical patent/JPS6242604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To attain an operational amplifier integrated circuit which is superior in high frequency characteristic and is strong against the process variation by providing a differential amplifier circuit consisting of a pair of dual gate FETs in the second stage of an operational amplifier. CONSTITUTION:A differential amplifier circuit 2 consisting of a pair of dual gate FETs Q1 and Q2 is connected in cascade as the second stage following a differential amplifier circuit 1 of the first stage. With respect to the high frequency characteristic, the input capacity due to the Miller effect viwed from input terminals 4 and 5 of the amplifier of the second stage is about 2(1+A)-fold input capacity for the use of single gate FETs because dual gate FETs are used as FETs Q1 and Q2. A is the gain of the amplifier of the second stage and is normally 10-50 times.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電界効果トランジスタ(以下FETと略す)
による演算増幅器集積回路に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a field effect transistor (hereinafter abbreviated as FET).
The present invention relates to an operational amplifier integrated circuit.

従来の技術 ガリウムヒ素FETを用いた集積回路は、シリコンに較
べ隔設の高速性が期待出来るため、開発が勢力的に進め
られている。なかでも、演算増幅器集積回路は、アナロ
グ集積回路の最も基本となる回路であり、A/D変換器
やデジタル・フィルタ等のアナログ信号とデジタル信号
の混在領域で極めて重要な回路となっている。
Conventional integrated circuits using gallium arsenide FETs are expected to be faster in isolation than silicon, and are therefore being actively developed. Among these, operational amplifier integrated circuits are the most basic circuits of analog integrated circuits, and are extremely important circuits in areas where analog and digital signals are mixed, such as A/D converters and digital filters.

以下従来の演算増幅器集積回路の一例について説明する
。演算増幅器集積回路は、少なくとも3個の段から構成
されている。まず初段は、差動増幅回路であり、第2段
は初段と同じ差動増幅回路か、若しくはカスコード型増
幅回路が用いられる。
An example of a conventional operational amplifier integrated circuit will be described below. An operational amplifier integrated circuit consists of at least three stages. First, the first stage is a differential amplifier circuit, and the second stage is either the same differential amplifier circuit as the first stage or a cascode type amplifier circuit.

幅回路により、2個の入力信号に対し、直流領域から差
動増幅を行なう。第2段は、初段で増幅された信号をさ
らに増幅する。第3段は出力インピーダンスを低減する
The width circuit performs differential amplification of two input signals from the DC region. The second stage further amplifies the signal amplified in the first stage. The third stage reduces the output impedance.

発明が解決しようとする問題点 しかしながら上記のような構成では、第2段に初段と同
様の差動増幅回路を用いると、ミラー効果のため、高周
波での利得は著し7く減少する。また、第2段にカスコ
ード回路を用いると、ミラー効果は低減され、優れた周
波数特性が得られるが、この場合は初段と第2段の接続
が正しく行なわれるように、初段出力の正確な直流レベ
ルの保持が厳しく要求される。この結果、FETの閾値
電圧の精密な制御が集積回路製造プロセスで必要となり
、高い歩留りを得ることは非常に困難であった。
Problems to be Solved by the Invention However, in the above configuration, if a differential amplifier circuit similar to that in the first stage is used in the second stage, the gain at high frequencies will be significantly reduced by 7 due to the Miller effect. In addition, if a cascode circuit is used in the second stage, the Miller effect is reduced and excellent frequency characteristics are obtained. Maintaining the same level is strictly required. As a result, precise control of the threshold voltage of the FET is required in the integrated circuit manufacturing process, making it extremely difficult to obtain a high yield.

本発明は上記問題点に鑑み、精密な閾値電圧の制御を必
要とせず、しかも高周波特性の優れた波器 算増q集積回路全提供するものである。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a wave multiplication integrated circuit which does not require precise threshold voltage control and has excellent high frequency characteristics.

問題点を解決するだめの手段 差動増幅回路を第2段めの増幅器として設けることによ
り構成される。
The only means to solve the problem is to provide a differential amplifier circuit as a second stage amplifier.

作  用 本発明は上記1〜た構成により、第2段は差動増幅回路
入力とな−・ており、初段の平衡出力で駆動されるため
、初段出力の正確な直流レベルの保持は不要となり、製
造プロセスは非常に容易となり、高歩留りが得られる。
Effects According to the present invention, the second stage is inputted to the differential amplifier circuit by the above-mentioned configurations 1 to 1, and is driven by the balanced output of the first stage, so it is not necessary to maintain an accurate DC level of the first stage output. , the manufacturing process becomes very easy and high yield can be obtained.

さらに、第2段はデュアルゲートFET1用いているの
で、ミラー効果は著しく小さく、良好な高周波特性を得
ることが出来る0 実施例 以下本発明の一実施例の演算増幅器半導体集積回路につ
いて、図面全参照しながら説明する。図は本発明の一実
施例における演算増幅器集積回路の回路図を示すもので
ある。図において、1は差動増幅回路による初段増幅器
、2は第2段増幅器、3は出力バノフ7である。4,5
は初段増幅器1の平衡出力で、第2段増幅器2に入力さ
れる。6゜7は第2段増幅器2の平衡出力で、出カバ、
ファ3に入力される。8,9ばそれぞれ正および負の電
源端子である。Q1〜Q5はガリウムヒ素FETQ1と
Q2のソース7どちらも共通接続点1oに接、続されて
いる。QlとQ2の第1ゲートはそれぞれ、初段増幅器
1の平衡出力4,5に接続される。
Furthermore, since the second stage uses a dual gate FET 1, the Miller effect is extremely small and good high frequency characteristics can be obtained.Example: Refer to all drawings for an operational amplifier semiconductor integrated circuit according to an example of the present invention. I will explain while doing so. The figure shows a circuit diagram of an operational amplifier integrated circuit in one embodiment of the present invention. In the figure, 1 is a first stage amplifier formed by a differential amplifier circuit, 2 is a second stage amplifier, and 3 is an output Banoff 7. 4,5
is the balanced output of the first stage amplifier 1 and is input to the second stage amplifier 2. 6°7 is the balanced output of the second stage amplifier 2, and the output
input to F3. 8 and 9 are positive and negative power supply terminals, respectively. The sources 7 of Q1 to Q5 are both connected to the common connection point 1o of the gallium arsenide FETs Q1 and Q2. The first gates of Ql and Q2 are connected to the balanced outputs 4, 5 of the first stage amplifier 1, respectively.

Qlと02の第2ゲートは、どちらも共通接続点10に
接続される。Ql 、Q2のドレインはそれぞれ第2段
増幅器の平衡出力6,7となる。Q3〜Q5は/ングル
ゲート型FETである。Q3゜Q4はそれぞれQl、Q
2の負荷で、Q3,04のドレインはどちらも正電源端
子8に接続され、Q3.Q4のゲートはどちらもそれぞ
れのFETのソースに接続されている。Q5はそのドレ
インが共通接続点1oに接続され、ゲートとソースは負
電源端子9に共通接続される。
The second gates of Ql and 02 are both connected to the common connection point 10. The drains of Ql and Q2 become the balanced outputs 6 and 7 of the second stage amplifier, respectively. Q3 to Q5 are single gate type FETs. Q3゜Q4 are Ql and Q, respectively.
2, the drains of Q3,04 are both connected to the positive power supply terminal 8, and the drains of Q3. Both gates of Q4 are connected to the sources of their respective FETs. Q5 has its drain connected to the common connection point 1o, and its gate and source commonly connected to the negative power supply terminal 9.

以上のように構成された演算増幅器集積回路について、
その動作全説明する。まず高周波特性については、Ql
、Q2をデュアルゲート型FETにしたことにより、第
2段増幅器の入力端子4゜6より見たミラー効果による
入力容量は、シングルゲート型FETを用いた場合に比
し、約2/(1+A)倍になる。ここでAは第2段の増
幅器の利得である。Aは通常10〜50倍である。この
結果、初段増幅器1の出力抵抗と第2段増幅器2のミラ
ー容量の積から生じる伝達関数の極は、本実施例の演算
増幅器集積回路では、所望帯域外に移動し、高周波特性
の優れた演算増幅器集積回路が実現出来る。さらに、初
段と第2段は平衡信号で結合されているので、製造プロ
セスの結果、FETの閾値が変化し、所定の直流レベル
が得られなくても、性能の劣化は非常に小さい。計算機
シミュレーションによれば、従来のようにカスコード増
幅器を第2段に用いて不平衡信号で第2段を駆動した場
合、FETの閾値電圧の変動は□、1vしか許されない
が、本発明のように、差動増幅回路を第2段に用いて平
衡信号で初段と第2段を結合すると、FETの閾値電圧
は、±0.4 Vまで許されることが確認された。
Regarding the operational amplifier integrated circuit configured as above,
I will explain the entire operation. First, regarding high frequency characteristics, Ql
, by using a dual-gate FET for Q2, the input capacitance due to the Miller effect seen from the input terminal 4°6 of the second stage amplifier is approximately 2/(1+A) compared to when a single-gate FET is used. Double. Here, A is the gain of the second stage amplifier. A is usually 10 to 50 times. As a result, in the operational amplifier integrated circuit of this embodiment, the pole of the transfer function resulting from the product of the output resistance of the first-stage amplifier 1 and the Miller capacitance of the second-stage amplifier 2 moves outside the desired band, resulting in excellent high-frequency characteristics. An operational amplifier integrated circuit can be realized. Furthermore, since the first and second stages are coupled by a balanced signal, even if the threshold of the FET changes as a result of the manufacturing process and a predetermined DC level cannot be obtained, the performance degradation is very small. According to a computer simulation, when a cascode amplifier is used in the second stage and the second stage is driven by an unbalanced signal as in the conventional case, the threshold voltage of the FET is allowed to fluctuate only by □, 1v, but as in the present invention, Furthermore, it was confirmed that when a differential amplifier circuit is used in the second stage and the first stage and second stage are connected with a balanced signal, the threshold voltage of the FET can be up to ±0.4 V.

以上のように本実施例によれば、演算増幅器の第2段に
、デュアルゲート型FETの対よりなる差動増幅回路を
設けることにより、ミラー効果が極めて小さく、良好な
高周波特性を有し、しかも器 プロセスの変動に強い演算増幅′集積回路を実現するこ
とが出来る。
As described above, according to this embodiment, by providing a differential amplifier circuit consisting of a pair of dual gate FETs in the second stage of the operational amplifier, the Miller effect is extremely small and good high frequency characteristics are achieved. Moreover, it is possible to realize an operational amplifier integrated circuit that is resistant to fluctuations in the device process.

なお、本実施例において第2段増幅器は差動増幅回路の
みからなるが、直流レベルシフトとバッファを兼ねたソ
ース・フォロワ回路全出力端子6゜7と第3段の出カバ
ソファ3の間に入れてもよい。
In this embodiment, the second stage amplifier consists of only a differential amplifier circuit, but a source follower circuit that also serves as a DC level shifter and a buffer is inserted between the full output terminal 6°7 and the output cover sofa 3 of the third stage. You can.

また、本実施例において、Q3,04のゲート端子はそ
れぞれソース端子と共通接続されているが、それぞれド
レイン端子と共通接続]7てもよい。また、Q3.Q4
の代わりに、抵抗を用いてもよい。
Further, in this embodiment, the gate terminals of Q3 and Q04 are each commonly connected to the source terminal, but they may also be commonly connected to the drain terminal. Also, Q3. Q4
A resistor may be used instead.

さらにQ5のゲート端子はソース端子と共通接続されて
いるが、固定の直流電位を持つ電源に接続してもよい。
Further, although the gate terminal of Q5 is commonly connected to the source terminal, it may be connected to a power source having a fixed DC potential.

また本実施例では、Ql、Q2の第2ゲートヲ共通接続
点10に接続しているが、固定の直流電位金持つ電源に
、01 、Q2の第2ゲート全共通接続してもよい。
Further, in this embodiment, the second gates of Q1 and Q2 are connected to the common connection point 10, but the second gates of Q1 and Q2 may all be commonly connected to a power supply having a fixed DC potential.

発明の効果 以上のように本発明は、演算増幅器の第2段にデュアル
ゲート型FET0対よりなる差動増@回路を設けること
により、高周波特性の優れた、し。
Effects of the Invention As described above, the present invention provides excellent high frequency characteristics by providing a differential amplifier circuit consisting of 0 pairs of dual gate type FETs in the second stage of the operational amplifier.

かもプロセス変動に強い演算増幅器集積回路を実現する
ことができる。
Moreover, it is possible to realize an operational amplifier integrated circuit that is resistant to process variations.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例における演算増幅器集積回路の回
路図である。
The figure is a circuit diagram of an operational amplifier integrated circuit in one embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 初段の差動増幅回路の後に、デュアルゲート型FETの
対よりなる差動増幅回路を第二段として、縦続接続した
ことを特徴とする演算増幅器集積回路。
1. An operational amplifier integrated circuit characterized in that, after a first stage differential amplifier circuit, a second stage differential amplifier circuit consisting of a pair of dual gate FETs is connected in cascade.
JP60182178A 1985-08-20 1985-08-20 Operational amplifier integrated circuit Pending JPS6242604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60182178A JPS6242604A (en) 1985-08-20 1985-08-20 Operational amplifier integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60182178A JPS6242604A (en) 1985-08-20 1985-08-20 Operational amplifier integrated circuit

Publications (1)

Publication Number Publication Date
JPS6242604A true JPS6242604A (en) 1987-02-24

Family

ID=16113703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60182178A Pending JPS6242604A (en) 1985-08-20 1985-08-20 Operational amplifier integrated circuit

Country Status (1)

Country Link
JP (1) JPS6242604A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS432498Y1 (en) * 1965-11-10 1968-02-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS432498Y1 (en) * 1965-11-10 1968-02-01

Similar Documents

Publication Publication Date Title
CA1208710A (en) Cmos operational amplifier
US6316997B1 (en) CMOS amplifiers with multiple gain setting control
JPH07336163A (en) Mos ota
US4484148A (en) Current source frequency compensation for a CMOS amplifier
JPH0832372A (en) Mos ota
US5113147A (en) Wide-band differential amplifier using gm-cancellation
JP2502057B2 (en) CMOS amplifier
US3946327A (en) Amplifier employing complementary field-effect transistors
US4529948A (en) Class AB amplifier
JP3332115B2 (en) Multi-input transistor and multi-input transconductor circuit
JPH07105672B2 (en) Complete double-ended complementary field effect transistor amplifier
JPH05284008A (en) Semiconductor integrated circuit device
JPS63288512A (en) Analog voltage comparator
JPS6282704A (en) Amplifier circuit
US4859961A (en) Wide bandwidth push-pull parallel amplifier
US3516004A (en) Signal translating circuit comprising a plurality of igfet amplifiers cascaded in direct coupled fashion
JPS6242604A (en) Operational amplifier integrated circuit
JPS645370Y2 (en)
JP3341945B2 (en) Operational amplifier
US4853564A (en) GaAs monolithic true logarithmic amplifier
JP2701572B2 (en) Low noise amplifier
JPH03120902A (en) Semiconductor device and mixer circuit
JPS61131606A (en) Differential amplifier circuit
JPH03286606A (en) Operational amplifier circuit
JPH0574962B2 (en)