JPS6242446A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS6242446A
JPS6242446A JP61201401A JP20140186A JPS6242446A JP S6242446 A JPS6242446 A JP S6242446A JP 61201401 A JP61201401 A JP 61201401A JP 20140186 A JP20140186 A JP 20140186A JP S6242446 A JPS6242446 A JP S6242446A
Authority
JP
Japan
Prior art keywords
substrate
voltage
ground potential
potential vss
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61201401A
Other languages
Japanese (ja)
Other versions
JPH0346982B2 (en
Inventor
Osamu Minato
湊 修
Seiji Kubo
征治 久保
Toshiaki Masuhara
増原 利明
Masanori Kaneko
正紀 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61201401A priority Critical patent/JPS6242446A/en
Publication of JPS6242446A publication Critical patent/JPS6242446A/en
Publication of JPH0346982B2 publication Critical patent/JPH0346982B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent random inversion of memorized data and thereby to attain high reliability by a method wherein a P-type well region of a specified thickness is provided in a surface region of a substrate, a plurality of memory cells and their peripheral circuits are built therein, and a voltage not higher than a ground potential VSS is applied to the well region, and a voltage not lower than the ground potential VSS is applied to the substrate. CONSTITUTION:On an N-type Si substrate 30, N-type layers 2, 3, 4, 5, transfer gates 6, 8, and electric charge storage gates 10, 11 constitute a dynamic memory cell. Under this method, a P-type well 20 is so this as to be 4-5mum that the number of electron- and-hole pairs generated in a well under alpha-particle radiation is far smaller than under a conventional method. The number of electrons collected in a storage capacitor is so small as to be not more than one tenth of the number under the conventional method. Generally, the P-type well 20 is fixed at a ground potential VSS or at a voltage VBB that is not higher than the ground potential VSS. The N-type Si substrate 30 is fixed at the ground potential VSS or at a power source voltage VDD that is not lower than the ground potential VSS. With the number of electrons being smaller than that of the stored electric charges, inversion does not take place of the data stored in the memory cell.

Description

【発明の詳細な説明】 〔従来の技術〕 従来より、ダイナミック形のランダム・アクセス・メモ
リなどのメモリICは、第1図に示す構成より成ってい
た。同図において、1はp形のSi基板であり、2,3
,4.5なるn形層と6゜8なる転送ゲート、10.1
1なる電荷蓄積ゲートから構成される電荷蓄積容量によ
り、2,3゜6.10で1ビット分、4,5,8.11
で1ビット分の、いわゆる1トランジスタ形ダイナミツ
ク・メモリ・セルを構成している。7,9はデータ線、
12.13はワード線として用いられる。
DETAILED DESCRIPTION OF THE INVENTION [Prior Art] Conventionally, memory ICs such as dynamic random access memories have had the configuration shown in FIG. In the figure, 1 is a p-type Si substrate, 2, 3
, 4.5 n-type layer and 6°8 transfer gate, 10.1
Due to the charge storage capacitor composed of the charge storage gate 1, 1 bit at 2,3°6.10, 4,5,8.11
This constitutes a so-called one-transistor type dynamic memory cell for one bit. 7 and 9 are data lines,
12.13 are used as word lines.

〔発明が解決しようとする問題点1 本構成で、メモリIC,LSIを構成し、パッケージに
封じ込めた場合、最も問題となる点は、パッケージ材料
中の不純物より発生するα線粒子がメモリIC,LSI
チップの表面に照射され、メモリ・セルに蓄えられた情
報を反転させてランダムな、エラーを発生させることで
ある(T−C。
[Problem to be Solved by the Invention 1] When a memory IC and an LSI are configured with this configuration and sealed in a package, the most problematic point is that α-ray particles generated from impurities in the package material LSI
It illuminates the surface of the chip and inverts the information stored in the memory cells, creating random errors (T-C).

May and M 、 H# Woods ;  “
A N aw P hysicolMechanism
  for  5oft  Errors  in  
DynaIlicMemories   ”Re1ab
j、1j、Ly  Physics  Symposi
um。
May and M, H# Woods; “
A Naw P hysicol Mechanism
for 5 of Errors in
DynaIlicMemories “Re1ab
j, 1j, Ly Physics Symposi
um.

′78.ΔpprH)。このα線粒子はそのエネルギー
によっては、Si表面から20〜100μm程度の深さ
に達し、ある広がりをもって深さ方向にほぼ均一に電子
とホールのペアを作る。ホールは基板に引っばられるが
、電子は1例えば、パビ′(電子のない状態)なるメモ
リ・セルの蓄積容量に引っばられてそのメモリ・セルを
”0”  (it子のある状態)の状態に反転させてし
まう。上記、メモリ・セルの情報が反転するのは、メモ
リ・セルの′¥j積容量に蓄えられる電荷量とα線粒子
の照射によって作られる電子が蓄積容量に集められる量
に関係しており、上記電子の量が蓄積電荷意より少なけ
れば、メモリ・セルに若えられた情報の反転は生じない
'78. ΔpprH). Depending on the energy, these α-ray particles reach a depth of about 20 to 100 μm from the Si surface, and form pairs of electrons and holes almost uniformly in the depth direction with a certain spread. Holes are attracted to the substrate, but electrons are attracted by the storage capacitance of a memory cell, for example, a pavi' (state with no electrons), and the memory cell becomes ``0'' (a state with an I-electron). It reverses the state. The above-mentioned inversion of the information in the memory cell is related to the amount of charge stored in the product capacitor of the memory cell and the amount of electrons created by irradiation with α-ray particles collected in the storage capacitor. If the amount of electrons is less than the stored charge, no inversion of the information stored in the memory cell will occur.

本発明の目的は、上記従来例の欠点を克服して。The object of the present invention is to overcome the drawbacks of the above-mentioned conventional examples.

高信頼性を有する半導体装置を提供することにある。An object of the present invention is to provide a semiconductor device with high reliability.

〔実施例〕〔Example〕

第2図は、本発明の第1の実施例を示すものである。同
図において、30はn形のSi基板、20はp形のウェ
ルである。本発明によれば。
FIG. 2 shows a first embodiment of the invention. In the figure, 30 is an n-type Si substrate, and 20 is a p-type well. According to the invention.

20なるP形ウェルの厚さは高々4〜5μmと薄く、α
線粒子が照射されても該ウェル内で作られる電子とホー
ルのペアの数は従来例に比べ非常に小さいものとなる。
The thickness of the P-type well 20 is as thin as 4 to 5 μm at most, and α
Even when ray particles are irradiated, the number of electron-hole pairs created within the well is much smaller than in the conventional example.

単純なモデルによる計算によれば、本考案による構造の
場合、蓄積容量に集められる電子の数は、従来構造の1
/lO以下と大幅な減少を示した。よって、従来1問題
となったランダムなメモリ情報の反転は、本構造では起
こらず、高い信頼性を有する半導体装置を提供すること
ができる。
According to calculations using a simple model, in the case of the structure according to the present invention, the number of electrons collected in the storage capacitor is 1
It showed a significant decrease to less than /lO. Therefore, random inversion of memory information, which has been a problem in the past, does not occur in this structure, and a highly reliable semiconductor device can be provided.

実施例では、メモリ・セル部のみを、p形ウェルで囲っ
て本発明の詳細な説明したが、周辺回路部を含むチップ
全表面にp形ウェルを用いてもよく、また、周辺回路部
とメモリ・セル部を別々のP形ウェルで囲っても、本発
明の効果は発揮できる。
In the embodiment, the present invention was explained in detail by surrounding only the memory cell section with a p-type well, but the p-type well may be used on the entire surface of the chip including the peripheral circuit section, and the peripheral circuit section and the Even if the memory cell portion is surrounded by separate P-type wells, the effects of the present invention can be exerted.

通常、20は接地電位v8B又はそれより低い電圧■[
3Bに固定され、30は7g8又はそれより高い電圧で
電源電圧VDDレベルの電圧に固定される。一方メモリ
・セルに蓄えられた情報をより長時間、保持させるには
、30をメモリ・セルの蓄積電圧、例えばVoo−Vt
)l (Vth :MOSトランジスタのしきい電圧)
と同じ電圧に固定すれば20と4間のリーク電流が減少
し効果大である。
Normally, 20 is the ground potential v8B or lower voltage ■[
3B, and 30 is fixed at a voltage of 7g8 or higher, which is at the power supply voltage VDD level. On the other hand, in order to retain the information stored in the memory cell for a longer time, 30 is set to the storage voltage of the memory cell, e.g. Voo-Vt.
)l (Vth: threshold voltage of MOS transistor)
If the voltage is fixed at the same voltage as , the leakage current between 20 and 4 will be reduced, which is very effective.

また、20も、VBB+0.5V程度に固定すると20
が形成されるSi表面が完全に蓄積化(アキュシュレー
ト)されてリーク電流が減少するという大きな効果があ
る。
Also, if 20 is fixed at about VBB + 0.5V, 20
This has the great effect of reducing leakage current by completely accumulating the Si surface on which is formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のメモリICを示す断面図、第2図は本発
明の実施例のメモリICを示す断面図である。 2.3,4.5・・・n+形拡散層、20・・・p形波
@層ウェル、30・・・n@Si基板。 7ど
FIG. 1 is a sectional view showing a conventional memory IC, and FIG. 2 is a sectional view showing a memory IC according to an embodiment of the present invention. 2.3, 4.5...n+ type diffusion layer, 20...p type wave@layer well, 30...n@Si substrate. 7th

Claims (1)

【特許請求の範囲】 1、複数のメモリ・セルおよび周辺回路が、半導体基板
の表面領域に設けられてなる半導体メモリ装置において
、前記基板の表面領域に厚さ5μm以下のp形ウェル領
域が設けられ、該p形ウェル領域内に前記複数のメモリ
・セルおよび前記周辺回路が設けられ、前記ウェル領域
は接地電位V_S_S又はそれより低い電圧が印加され
、前記基板にはV_S_S又はそれより高い電圧が印加
されてなる半導体メモリ装置。 2、第1項記載の半導体メモリ装置において、上記基板
は電源電圧V_D_Dレベルの電圧が印加されてなる半
導体メモリ装置。 3、第2項記載の半導体メモリ装置において、上記基板
はメモリ・セルの蓄積電圧V_D_D−Vth(Vth
:メモリ・セルのMOSトランジスタのしきい電圧)と
同じ電圧が印加されてなる半導体メモリ装置。 4、複数のメモリ・セルおよび周辺回路が、半導体基板
の表面領域に設けられてなる半導体メモリ装置において
、前記基板の表面領域に厚さ5μm以下のp形ウェル領
域が設けられ、該p形ウェル領域内に前記複数のメモリ
・セルが設けられ、前記p形ウェル領域外に前記周辺回
路が設けられ、前記ウェル領域は接地電位V_S_S又
はそれより低い電圧が印加され、前記基板にはV_S_
S又はそれより高い電圧が印加されてなる半導体メモリ
装置。 5、第4項記載の半導体メモリ装置において、上記基板
は電源電圧V_D_Dレベルの電圧が印加されてなる半
導体メモリ装置。 6、第5項記載の半導体メモリ装置において、上記基板
はメモリ・セルの蓄積電圧V_D_D−Vth(Vth
:メモリ・セルのMOSトランジスタのしきい電圧)と
同じ電圧が印加されてなる半導体メモリ装置。
[Claims] 1. In a semiconductor memory device in which a plurality of memory cells and peripheral circuits are provided in a surface region of a semiconductor substrate, a p-type well region with a thickness of 5 μm or less is provided in the surface region of the substrate. The plurality of memory cells and the peripheral circuit are provided in the p-type well region, a ground potential V_S_S or a voltage lower than that is applied to the well region, and a voltage of V_S_S or higher is applied to the substrate. A semiconductor memory device with a voltage applied to it. 2. The semiconductor memory device according to item 1, wherein a voltage at the level of power supply voltage V_D_D is applied to the substrate. 3. In the semiconductor memory device according to item 2, the substrate has a memory cell storage voltage V_D_D-Vth (Vth
: A semiconductor memory device to which the same voltage as the threshold voltage of the MOS transistor of the memory cell is applied. 4. In a semiconductor memory device in which a plurality of memory cells and peripheral circuits are provided in a surface region of a semiconductor substrate, a p-type well region with a thickness of 5 μm or less is provided in the surface region of the substrate, and the p-type well region is provided in the surface region of the substrate. The plurality of memory cells are provided within the region, the peripheral circuit is provided outside the p-type well region, a ground potential V_S_S or a voltage lower than that is applied to the well region, and a voltage of V_S_S_ is applied to the substrate.
A semiconductor memory device to which a voltage of S or higher is applied. 5. The semiconductor memory device according to item 4, wherein a voltage at a power supply voltage V_D_D level is applied to the substrate. 6. In the semiconductor memory device according to item 5, the substrate has a memory cell storage voltage V_D_D-Vth (Vth
: A semiconductor memory device to which the same voltage as the threshold voltage of the MOS transistor of the memory cell is applied.
JP61201401A 1986-08-29 1986-08-29 Semiconductor memory device Granted JPS6242446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201401A JPS6242446A (en) 1986-08-29 1986-08-29 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201401A JPS6242446A (en) 1986-08-29 1986-08-29 Semiconductor memory device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57176145A Division JPS5874071A (en) 1982-10-08 1982-10-08 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6242446A true JPS6242446A (en) 1987-02-24
JPH0346982B2 JPH0346982B2 (en) 1991-07-17

Family

ID=16440475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201401A Granted JPS6242446A (en) 1986-08-29 1986-08-29 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6242446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000846A1 (en) * 1997-06-27 1999-01-07 Hitachi, Ltd. Semiconductor integrated circuit device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138370A (en) * 2012-03-14 2012-07-19 Panasonic Corp Lighting fixture
JP2013254741A (en) * 2009-04-24 2013-12-19 Mitsubishi Electric Corp Electric apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050066B2 (en) * 1978-03-27 1985-11-06 超エル・エス・アイ技術研究組合 MOS semiconductor integrated circuit device
JPS57176145A (en) * 1981-04-23 1982-10-29 Omori Machinery Device for manufacturing simple cup

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254741A (en) * 2009-04-24 2013-12-19 Mitsubishi Electric Corp Electric apparatus
JP2012138370A (en) * 2012-03-14 2012-07-19 Panasonic Corp Lighting fixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000846A1 (en) * 1997-06-27 1999-01-07 Hitachi, Ltd. Semiconductor integrated circuit device

Also Published As

Publication number Publication date
JPH0346982B2 (en) 1991-07-17

Similar Documents

Publication Publication Date Title
Suma et al. An SOI-DRAM with wide operating voltage range by CMOS/SIMOX technology
US6577522B2 (en) Semiconductor memory device including an SOI substrate
JP2915011B2 (en) Capacitive memory cells for protection against singleton disturbances.
US4849801A (en) Semiconductor memory device having increased capacitance for the storing nodes of the memory cells
JPS6136965A (en) Semiconductor memory device
JP2518133B2 (en) Static type semiconductor memory device
JPH0252427B2 (en)
US6507511B1 (en) Secure and dense SRAM cells in EDRAM technology
US5388067A (en) Semiconductor memory cell
JPS6262065B2 (en)
JPH0150114B2 (en)
Chin et al. An experimental 16-Mbit DRAM with reduced peak-current noise
US5877051A (en) Methods of reducing alpha particle inflicted damage to SRAM cells, methods of forming integrated circuitry, and methods of forming SRAM cells
Shimohigashi et al. An n-well CMOS dynamic RAM
JPS6242446A (en) Semiconductor memory device
JPS6337505B2 (en)
JPS5874071A (en) Semiconductor device
JPH07263577A (en) Semiconductor device
Lu et al. Plate-noise analysis of an on-chip generated half-VDD biased-plate PMOS cell in CMOS DRAMs
McPartland et al. Alpha-particle-induced soft errors and 64K dynamic RAM design interaction
JPH02196469A (en) Semiconductor device
JPS602780B2 (en) semiconductor equipment
JPH07211802A (en) Semiconductor integrated circuit
JPS62154296A (en) Semiconductor memory device
JPH0245341B2 (en)