JPH0245341B2 - - Google Patents

Info

Publication number
JPH0245341B2
JPH0245341B2 JP55001162A JP116280A JPH0245341B2 JP H0245341 B2 JPH0245341 B2 JP H0245341B2 JP 55001162 A JP55001162 A JP 55001162A JP 116280 A JP116280 A JP 116280A JP H0245341 B2 JPH0245341 B2 JP H0245341B2
Authority
JP
Japan
Prior art keywords
substrate
memory
memory cell
well
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55001162A
Other languages
Japanese (ja)
Other versions
JPS5698855A (en
Inventor
Tooru Tsujiide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP116280A priority Critical patent/JPS5698855A/en
Publication of JPS5698855A publication Critical patent/JPS5698855A/en
Publication of JPH0245341B2 publication Critical patent/JPH0245341B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • H01L23/556Protection against radiation, e.g. light or electromagnetic waves against alpha rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Static Random-Access Memory (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 本発明は電界効果型トランジスタを用いた記憶
回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a memory circuit using field effect transistors.

パターニング技術の向上及びトランジスタサイ
ズの縮小化に伴ないメモリセルの面積は毎年縮小
化の一途を辿つている。とくにフリツプフロツプ
回路をメモリセルに用いたスタテイツク型記憶回
路装置においてはメモリセル面積がチツプ全体に
占める割合がダイナミツク型記憶回路装置より大
きく、パターンの微細化の寄与は前者の方が大き
い。しかし乍らメモリセル面積の縮小化は当然フ
リツプフロツプトランジスタのドレイン側のノー
ドに寄生する容量値の減少をもたらし、従つて蓄
えられた電荷量は少なくなる。
As patterning technology improves and transistor sizes decrease, the area of memory cells continues to decrease every year. In particular, in a static type memory circuit device using a flip-flop circuit as a memory cell, the memory cell area occupies a larger proportion of the entire chip than in a dynamic type memory circuit device, and the contribution of pattern miniaturization is greater in the former. However, the reduction in memory cell area naturally brings about a decrease in the capacitance value parasitic to the node on the drain side of the flip-flop transistor, and therefore the amount of stored charge decreases.

一方、スタテイツク型記憶回路装置の待機時の
消費電力の減少を計るためメモリセルの記憶保持
用の負荷に数MΩから数GΩのポリシリコン抵抗
が用いられるようになつている。このようにスタ
テイツクメモリセルに蓄えられる電荷量が小さく
なり、かつ電荷を補充する為の負荷の抵抗が大き
くなるとソフトエラーが問題となる。
On the other hand, in order to reduce the power consumption of static memory circuit devices during standby, polysilicon resistors of several MΩ to several GΩ are now being used as loads for memory retention in memory cells. As described above, when the amount of charge stored in a static memory cell becomes small and the resistance of the load for replenishing the charge becomes large, soft errors become a problem.

ソフトエラーとは1978年T.C.Mayにより
International Reliability Physics Symposium
において発表されたα線による記憶データの破壊
データの破壊をさす。すなわちパツケージ材料中
にPPM単位で存在するウラン、トリウム等の自
然放射性元素が崩壊する際に発生するα線がメモ
リアレイ領域を透過すると、Si基板中で電子一正
孔対が形成され、この電子が蓄えられた正電位を
低下させるためにメモリセル情報の反転が起る。
What is a soft error? According to TCMay in 1978
International Reliability Physics Symposium
Destruction of stored data due to alpha rays, which was announced in 2013. In other words, when alpha rays, which are generated when naturally radioactive elements such as uranium and thorium that exist in ppm units in the package material decay, pass through the memory array area, electron-hole pairs are formed in the Si substrate, and these electrons Inversion of memory cell information occurs to lower the stored positive potential.

スタテイツクメモリセルに書き込まれた直後は
いずれかのノードはアドレス電位の一段落ちの電
位になつており負荷によりさらに高電位に上げら
れる前にα線が当ると、もしこの蓄積電荷が小さ
い場合はフリツプフロツプトランジスタのゲート
閾値電圧より小さくなりフリツプフロツプ回路が
反転してしまうことが起る。即ち負荷抵抗が大き
いと、ある期間ではスタテイツク型メモリもダイ
ナミツク型メモリと同じように考えることが出来
る。
Immediately after writing to a static memory cell, any node is at a potential that is one step lower than the address potential, and if alpha rays hit it before the potential is raised to a higher potential by a load, if this accumulated charge is small, There is a possibility that the gate threshold voltage of the flip-flop transistor becomes smaller than that of the flip-flop transistor, causing the flip-flop circuit to be inverted. That is, if the load resistance is large, a static type memory can be considered in the same way as a dynamic type memory for a certain period of time.

Si中の電離は拡散層下にできた空乏層中及びバ
ルクのいずれでも起こるが1979年のIEEE
Transation on Electron DevicesのVol ED−
26P10に述べられているようにα線により発生す
る電荷量は空乏量の巾に比例して大きくなり、か
つ発生した電荷は短時間のうちに拡散層に吸収さ
れる。従つてα線によるソフトエラー防止の一手
段としてこの空乏層の巾を小さくすることが挙げ
られる。
Ionization in Si occurs both in the depletion layer formed under the diffusion layer and in the bulk, but in 1979 IEEE
Translation on Electron Devices Vol ED−
As stated in 26P10, the amount of charge generated by α rays increases in proportion to the width of the depletion amount, and the generated charge is absorbed into the diffusion layer within a short time. Therefore, one way to prevent soft errors caused by α rays is to reduce the width of this depletion layer.

空乏層の巾はSi基板の濃度が高い程小さくな
る。しかしメモリセル以外の周辺回路も高濃度基
板中に形成すると接合容量及び基板バイアス依存
性の増大を招き、周辺回路の高速動作を防げる。
The width of the depletion layer becomes smaller as the concentration of the Si substrate increases. However, if peripheral circuits other than memory cells are also formed in a highly doped substrate, junction capacitance and dependence on substrate bias will increase, preventing high-speed operation of the peripheral circuits.

従つて本発明の目的は周辺回路の高速動作を防
げずにα線に対して強いメモリセルを有する記憶
回路装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a memory circuit device having memory cells that are resistant to alpha rays without preventing high-speed operation of peripheral circuits.

本発明の特徴はメモリセル部のみ基板と同一導
電型でかつ該基板より高濃度の不純物のウエル内
に形成することである。
A feature of the present invention is that only the memory cell portion is formed in a well containing an impurity of the same conductivity type as the substrate and at a higher concentration than the substrate.

次に本発明をよりよく理解するために実施例に
つき図面を用いて説明する。
Next, in order to better understand the present invention, examples will be described using drawings.

第1図は本発明の実施例を示す記憶回路装置の
断面図である。Aの領域がメモリセル部、Bがメ
モリセル以外の周辺部である。ここでメモリセル
部とはトランスフアーケントトランジスタ2ケ、
フリツプフロツプトランジスタ2ケ、負荷素子2
ケ、桁線、行線で構成される1メモリセルをマト
リツクス状に配置したメモリセルアレイ部をさ
す。高速動作を可能にする為に基板101には2
×1014/cm3のボロンを含む低不純物濃度P型Siを
用いた。Aの領域は1×1015〜1×1016/cm3のボ
ロンを含むPウエル102内に形成されている。
本Pウエルは第2図aに示すようにSi酸化膜10
4を通して5×1011〜5×1012cm2のボロンをSi基
板101にイオン注入105したのち1200℃で熱
処理を行ない形成した。本方法により5μの厚さ
に亘りほゞ均一な濃度を有するPウエル領域10
2を形成することができる。第2図bに示す基板
を出発基体としその後のパターンニング工程をを
経てトランジスタ103等の素子を形成すること
により第1図に示す実施例を得る。
FIG. 1 is a sectional view of a memory circuit device showing an embodiment of the present invention. Area A is the memory cell portion, and area B is the peripheral area other than the memory cells. Here, the memory cell section includes two transferred transistors,
2 flip-flop transistors, 2 load elements
This refers to a memory cell array section in which one memory cell consisting of column lines and row lines is arranged in a matrix. In order to enable high-speed operation, the board 101 has two
P-type Si with a low impurity concentration containing ×10 14 /cm 3 of boron was used. Region A is formed in the P well 102 containing boron of 1×10 15 to 1×10 16 /cm 3 .
This P-well has a Si oxide film 10 as shown in Figure 2a.
After ion implantation of 5×10 11 to 5×10 12 cm 2 of boron into the Si substrate 101 through a Si substrate 101, heat treatment was performed at 1200° C. to form the silicon substrate. By this method, a P-well region 10 having a substantially uniform concentration over a thickness of 5 μm is obtained.
2 can be formed. The embodiment shown in FIG. 1 is obtained by using the substrate shown in FIG. 2b as a starting substrate and forming elements such as the transistor 103 through a subsequent patterning process.

メモリセルが周辺部と全く同一の低濃度上に形
成された場合と1×1016/cm3のPウエル内に形成
された場合では、同一電圧が接合に印加されたと
仮定して空乏層の巾に7倍の差がある。
In the case where the memory cell is formed on the same low concentration as the periphery and in the case where it is formed in a P-well of 1×10 16 /cm 3 , the depletion layer is There is a seven times difference in width.

このように本発明を用いることにより周辺回路
の高速動作を犠牲にせずにα線に強いメモリセル
を形成することができる。
As described above, by using the present invention, a memory cell that is resistant to alpha rays can be formed without sacrificing high-speed operation of peripheral circuits.

本実施例ではすべての工程の前にPウエルを形
成したがゲート絶縁膜を形成後前述のようにボロ
ンをイオン注入しさらに押込を行うことも可能で
ある。
In this embodiment, the P well is formed before all the steps, but after forming the gate insulating film, boron ions can be implanted and further pushed in as described above.

また本実施例ではスタテイツクメモリについて
説明したが本発明は1トランジスタ1容量から構
成されたダイナミツクメモリの場合も適用され
る。
Further, in this embodiment, a static memory has been described, but the present invention is also applicable to a dynamic memory composed of one transistor and one capacitor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す半導体装置の断
面図である。第2図a,bはPウエルを形成する
ための1方法を示す図である。 101はP型のSi基板、102は基板より高濃
度のP型不純物で形成したPウエル、103はト
ランジスタを示す。同図に於て、Aの領域が情報
を蓄えるためのメモリ記憶手段、これを選択する
ための行線、行線下に、形成されるトランジスタ
及びこのトランジスタに連なる桁線から構成され
る1メモリセルがマトリツクス状に配置されたメ
モリセル部、Bの領域がメモリセル部以外の周辺
回路部である。
FIG. 1 is a sectional view of a semiconductor device showing an embodiment of the present invention. Figures 2a and 2b illustrate one method for forming a P-well. 101 is a P-type Si substrate, 102 is a P-well formed with a P-type impurity at a higher concentration than the substrate, and 103 is a transistor. In the figure, an area A is a memory storage means for storing information, a row line for selecting the information, a transistor formed below the row line, and a column line connected to the transistor. A memory cell portion in which cells are arranged in a matrix, and region B is a peripheral circuit portion other than the memory cell portion.

Claims (1)

【特許請求の範囲】[Claims] 1 電界効果トランジスタを用いて記憶手段を構
成したメモリセルを多数配置したメモリセル部及
び該メモリセルの制御回路を含む半導体記憶回路
装置において、該メモリセル部のみが基板と同一
導電型でかつ該基板より高濃度の不純物のウエル
内に形成され、該制御回路が該ウエル外の該ウエ
ルより低不純物濃度の基板部分に形成されたこと
を特徴とする半導体記憶回路装置。
1. In a semiconductor memory circuit device including a memory cell section in which a large number of memory cells each of which constitutes a storage means using field effect transistors are arranged, and a control circuit for the memory cells, only the memory cell section is of the same conductivity type as the substrate and of the same conductivity type as the substrate. 1. A semiconductor memory circuit device, characterized in that the control circuit is formed in a well having an impurity concentration higher than that of a substrate, and the control circuit is formed outside the well in a portion of the substrate having a lower impurity concentration than the well.
JP116280A 1980-01-09 1980-01-09 Semiconductor memory device Granted JPS5698855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP116280A JPS5698855A (en) 1980-01-09 1980-01-09 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP116280A JPS5698855A (en) 1980-01-09 1980-01-09 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS5698855A JPS5698855A (en) 1981-08-08
JPH0245341B2 true JPH0245341B2 (en) 1990-10-09

Family

ID=11493736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP116280A Granted JPS5698855A (en) 1980-01-09 1980-01-09 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS5698855A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148451A (en) * 1982-02-26 1983-09-03 Mitsubishi Electric Corp Semiconductor integrated circuit
JPS58148450A (en) * 1982-02-26 1983-09-03 Mitsubishi Electric Corp Semiconductor integrated circuit

Also Published As

Publication number Publication date
JPS5698855A (en) 1981-08-08

Similar Documents

Publication Publication Date Title
JP2770759B2 (en) Volatile memory cells
US6909135B2 (en) Semiconductor memory device
US6271568B1 (en) Voltage controlled resistance modulation for single event upset immunity
EP0216570A1 (en) Semiconductor memory device and method of manufacturing a semiconductor memory device
US6507511B1 (en) Secure and dense SRAM cells in EDRAM technology
JP2634163B2 (en) Semiconductor storage device
US4833645A (en) Semiconductor memory device having improved resistance to alpha particle induced soft errors
EP0018764B1 (en) A semiconductor memory device in which soft errors due to alpha particles are prevented
JPH0245341B2 (en)
JPH0440865B2 (en)
US5268321A (en) Method of making DRAM cell having improved radiation protection
US4910161A (en) Method of making a semiconductor memory device
US4702796A (en) Method for fabricting a semiconductor device
JP2702999B2 (en) Semiconductor storage device
JPS62145859A (en) Semiconductor memory
US4152779A (en) MOS ram cell having improved refresh time
JPS6298765A (en) Dynamic random access memory
JPS628559A (en) Semiconductor integrated circuit device
JPS60113462A (en) Semiconductor memory device
JPS602780B2 (en) semiconductor equipment
JPH0590540A (en) Semiconductor storage device
KR900002887B1 (en) Semiconductor memory device
JPH043465A (en) Semiconductor static memory device and manufacture thereof
Ozaki et al. New Dynamic RAM Cell Combined with Hi–C Structure
JP2655150B2 (en) Semiconductor storage device