JPS6242421Y2 - - Google Patents
Info
- Publication number
- JPS6242421Y2 JPS6242421Y2 JP6976181U JP6976181U JPS6242421Y2 JP S6242421 Y2 JPS6242421 Y2 JP S6242421Y2 JP 6976181 U JP6976181 U JP 6976181U JP 6976181 U JP6976181 U JP 6976181U JP S6242421 Y2 JPS6242421 Y2 JP S6242421Y2
- Authority
- JP
- Japan
- Prior art keywords
- snow
- wire
- graphite
- wires
- stranded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 23
- 229910002804 graphite Inorganic materials 0.000 claims description 23
- 239000010439 graphite Substances 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 10
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 claims description 9
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000002195 synergetic effect Effects 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Non-Insulated Conductors (AREA)
- Suspension Of Electric Lines Or Cables (AREA)
Description
本考案は、空中に架線して送電線、配電線、架
空地線、支持線等として使用される裸電線におい
て、着雪を防止した電線に関するものである。
これらの架空電線として、通常複数本の金属線
を撚合せた撚線が使用されており、例えば送配電
用鋼心アルミニウム撚線(以下、ACSRと称す)
として第1図イ,ロに例を示すような撚線が使用
されている。
イ図に示すものは、鋼線1を撚合せた鋼心の周
りに硬アルミニウム(Al)線2を撚合せた通常
のACSRである。
又ロ図に示すものは、鋼線1を撚合せた鋼心の
周りに梯形状に成形した異形Al線3を撚合せる
か、Al線の外層を圧縮成型した圧縮型ACSRで、
撚線表面を平滑化すると共に、断面占積率を向上
させたものである。
このような電線では、降雪時に電線上に積つた
雪の偏心荷重により、偏心回転力を生じ、着雪が
電線の周りを回転したり、着雪と電線が一緒に回
転したりして次第に着雪量がふえ、大きな筒雪に
発達し、断線や支持物倒壊などの事故を惹き起
す。
このような着雪を防止するため、従来種々の提
案が成されており、例えば電線の長さ方向に一定
間隔でリングを取付けたり、電線の撚方向と反対
の方向に線をらせん状に巻付けたりすることによ
り、撚りに沿つてすべつて来た着雪をリング又は
線で止め、着雪自体の偏心荷重増大により脱落す
る効果をねらつた方法等がある。
しかしこれらの対策は、電線自体が金属体であ
り、金属の雪の付着力が大きいため、気温や雪の
密度等の気象条件によつては効果が発揮されず、
充分な対策とはなつていない。
本考案は、上述の問題を解決するため種々検討
の結果成されたもので、電線を構成する金属体の
最外面に、金属よりも雪の付着力が小さく、かつ
導電性の良い物質を被覆することにより、着雪が
容易に電線表面から脱落し、大きな筒雪に発達し
ない難着雪型電線を提供せんとするものである。
本考案は、複数本の金属素線を撚合せて成る撚
線において、撚線の最外面となる前記金属素線の
表面部分に、黒鉛、無定形炭素および/又はフツ
化黒鉛を塗着して成ることを特徴とする難着雪型
電線である。
本考案の対象となる電線は、空中に架線して送
電線、配電線、架空地線、支持線等として使用さ
れる裸電線であり、アルミニウム(Al)、銅
(Cu)もしくはそれらの合金線、鋼線(含めつき
した線)等の金属線、又はAl被鋼線、銅被鋼線
等の複合線を撚合せた金属撚線である。
以下、本考案を図面を用いて実施例により説明
する。第2図イ,ロおよび第3図イ,ロはそれぞ
れ本考案の実施例を示す横断面図である。図にお
いて第1図と同一の符号は同一の部分を示す。
第2図イ,ロに示すものは、第1図イ,ロと同
様のACSR又は圧縮型ACSRにおいて、最外層を
構成する硬Al線2′又は異型Al線3′を撚合せる
前に、予めその表面に、黒鉛、無定形炭素およ
び/又はフツ化黒鉛(以下、単に黒鉛等と称す)
4を強固に塗着したものである。
第3図イ,ロに示すものは、第1図イ,ロと同
様のACSR又は圧縮型ACSRにおいて、撚線後、
その最外面に、上述と同じ黒鉛等4を強固に塗着
したものである。2″,3″はそれぞれ最外層の
Al線、異形Al線である。
すなわち、本考案電線は、少なくとも撚線の最
外面となる金属素線の表面部分に、黒鉛等4が塗
着されたものであり、撚線の最外面となる前記表
面部分以外に黒鉛等が塗着されていても良い。
本考案に用いられる黒鉛、無定形炭素およびフ
ツ化黒鉛は、金属よりも雪の付着力が小さく、か
つ導電性の良い物質であり、これらのうちの1種
又は2種以上を混合したものが用いられる。
又黒鉛等を金属素線又は撚線の表面に塗着する
方法は、焼付け、粉体塗装、溶着等が適当で、上
記物質の潤滑性、導電性、安定性を損なう溶剤や
混合物が完成品に残らない方法を採る必要があ
る。
このような方法により塗着すると、黒鉛等の塗
膜と金属体は密着していて雨水等が入らず、剥が
れない。
かように構成された本考案による電線は次のよ
うな効果がある。
(イ) 物質の雪の付着力の指標として水の接触角が
用いられるが、黒鉛等の接触角は表1に示すよ
うに金属よりも非常に大きい(高分子学会編
「高分子と水分」、日本化学会編「化学便覧」参
照)。
The present invention relates to bare electric wires that are suspended in the air and used as power transmission lines, distribution lines, overhead ground wires, support wires, etc., and that prevent snow from accumulating on them. Stranded wires made by twisting multiple metal wires are usually used as these overhead power lines, such as steel-core aluminum stranded wires (hereinafter referred to as ACSR) for power transmission and distribution.
As an example, stranded wires such as those shown in Fig. 1 A and B are used. What is shown in Figure A is a normal ACSR in which hard aluminum (Al) wires 2 are twisted around a steel core with steel wires 1 twisted together. The one shown in Fig. 2 is a compression type ACSR in which a deformed Al wire 3 formed into a ladder shape is twisted around a steel core with steel wires 1 twisted together, or the outer layer of the Al wire is compression molded.
The stranded wire surface is smoothed and the cross-sectional space factor is improved. In such electric wires, the eccentric load of the snow that accumulates on the wires during snowfall causes an eccentric rotational force, causing the snow to rotate around the wires, or the snow and the wires to rotate together, causing the snow to gradually accumulate. The amount of snow increases and develops into large snow pipes, causing accidents such as wire breaks and support collapses. Various proposals have been made in the past to prevent snow buildup, such as attaching rings at regular intervals along the length of the wire, or winding the wire in a spiral in the opposite direction to the twisting direction of the wire. There is a method that aims to have the effect of stopping the snow that has slipped along the twist with a ring or wire, and causing the snow to fall off due to an increase in the eccentric load of the snow itself. However, these measures are not effective depending on weather conditions such as temperature and snow density because the electric wire itself is a metal body and the snow adheres to the metal.
This is not a sufficient countermeasure. This invention was developed as a result of various studies to solve the above-mentioned problems.The outermost surface of the metal body that makes up the electric wire is coated with a material that has less snow adhesion than metal and has good conductivity. By doing so, it is intended to provide a snow-resistant electric wire in which accumulated snow easily falls off the surface of the electric wire and does not develop into a large pile of snow. The present invention involves applying graphite, amorphous carbon, and/or graphite fluoride to the outermost surface of the stranded wire, which is the outermost surface of the stranded wire. This is a snow-resistant electric wire that is characterized by the fact that it consists of: The electric wires covered by this invention are bare electric wires that are used as overhead wires in the air for power transmission lines, distribution lines, overhead ground wires, support wires, etc., and are wires made of aluminum (Al), copper (Cu), or their alloys. , metal wires such as steel wires (inclusive wires), or composite wires such as Al-coated wires and copper-coated wires. Hereinafter, the present invention will be explained with reference to the drawings and examples. FIGS. 2A and 2B and 3A and 3B are cross-sectional views showing embodiments of the present invention, respectively. In the figure, the same reference numerals as in FIG. 1 indicate the same parts. What is shown in Figure 2 A and B is an ACSR similar to Figure 1 A and B, or a compression type ACSR, in which hard Al wires 2' or deformed Al wires 3' constituting the outermost layer are twisted in advance. On the surface, graphite, amorphous carbon and/or graphite fluoride (hereinafter simply referred to as graphite etc.)
4 is firmly applied. What is shown in Figure 3 A and B is an ACSR or compression type ACSR similar to Figure 1 A and B, and after stranding,
The outermost surface is firmly coated with the same graphite material 4 as described above. 2″ and 3″ are the outermost layers, respectively.
Al wire, deformed Al wire. That is, in the electric wire of the present invention, graphite, etc. 4 is coated on at least the surface portion of the metal wire that is the outermost surface of the stranded wire, and graphite, etc. is coated on the surface portion that is the outermost surface of the stranded wire. It may be painted. The graphite, amorphous carbon, and graphite fluoride used in this invention are substances that have lower snow adhesion than metals and have good conductivity, and one or a mixture of two or more of these used. In addition, baking, powder coating, welding, etc. are suitable methods for applying graphite, etc. to the surface of metal wires or stranded wires, and solvents and mixtures that impair the lubricity, conductivity, and stability of the above substances may be used to prevent the finished product. It is necessary to adopt a method that does not leave any residue behind. When applied using this method, the coating film of graphite or the like and the metal body are in close contact with each other, preventing rainwater from entering and preventing them from peeling off. The electric wire constructed as above according to the present invention has the following effects. (b) The contact angle of water is used as an indicator of the adhesion force of snow on substances, but the contact angle of graphite, etc., is much larger than that of metals, as shown in Table 1. , ``Chemical Handbook'' edited by the Chemical Society of Japan).
【表】
又黒鉛、無定形炭素およびフツ化黒鉛は何れ
も固体潤滑剤として一般に使われていて潤滑性
が良いことは周知の事実であるが、比較的低温
でもその特性は維持され、上述の付着力の小さ
いことと合せて着雪の脱落を促進する。
従つて第2図、第3図に示すように、撚線の
最外面に黒鉛等4が塗着されていると、雪の電
線表面への付着力が小さく、着雪の偏心荷重に
より回転力が与えられると、着雪は容易に電線
表面から脱落し、大きな筒雪に発達しないの
で、着雪が有効に防止される効果がある。
従つて本考案電線は、積雪寒冷地において、
着氷雪による架空電線の断線や支持物倒壊など
の事故を未然に防止できる。
(ロ) 又送電線や絶縁ケーブルにおいて、導体上に
施す半導電層で部分放電を起さない限界の導電
性は、体積固有抵抗値で106Ω−cmが目安とさ
れている。
本考案に用いる黒鉛等の体積固有抵抗は表2
に示す通りで、上記値より遥かに導電性が良い
(岩波書店「理化学辞典」、日本化学会編「新し
いフツ素化学」参照)。[Table] It is a well-known fact that graphite, amorphous carbon, and graphite fluoride are all commonly used as solid lubricants and have good lubricity, but their properties are maintained even at relatively low temperatures, and the above-mentioned Combined with its low adhesion, it promotes the shedding of snow. Therefore, as shown in Figures 2 and 3, if the outermost surface of the stranded wire is coated with graphite, etc., the adhesion force of snow to the wire surface is small, and the eccentric load of the snow buildup reduces rotational force. If this is applied, the snow will easily fall off the surface of the wire and will not develop into a large snow pipe, which will effectively prevent snow from accumulating. Therefore, the electric wire of this invention can be used in snowy and cold regions.
Accidents such as disconnection of overhead power lines and collapse of supports due to ice and snow can be prevented. (b) Also, in power transmission lines and insulated cables, the limit conductivity that does not cause partial discharge in a semiconducting layer applied to a conductor is set at a volume resistivity of 10 6 Ω-cm. Table 2 shows the volume resistivity of graphite, etc. used in this invention.
As shown in , the conductivity is much better than the above value (see Iwanami Shoten's ``Physical and Chemistry Dictionary'' and ``New Fluorine Chemistry'' edited by the Chemical Society of Japan).
【表】
従つて本考案電線は、表面が導電性であるの
で、従来の送電線の電気的機能を何等損うこと
なく、難着雪効果を発揮できる。
(ハ) 次に、無定形炭素がポリエチレン等の紫外線
劣化を防ぐために用いられていることで示され
るように、黒鉛および無定形炭素は、劣悪な環
境の中でも劣化せず、又フツ化黒鉛は熱的、化
学的に非常に安定であることが報告されてい
る。
従つて黒鉛等は化学的に安定であり、防食効
果があるので、防食効果があり、長寿命が期待
される。
さらに、黒鉛等は前述のように潤滑性が良
く、かつ摩耗量が小さいので、架線時の摩耗量
が少ない他、雨や氷雪による損耗が少なく、こ
の点でも長期の寿命が期待できる。
なお、本考案による難着雪電線は、従来の裸電
線やプラスチツク絶縁電線に対する難着雪方策と
組合せることにより、相乗的な効果を期待するこ
とができる。
例えば従来の裸電線に対して提案されている方
策と組合せると、第4図〜第6図に例を示すよう
になる。
第4図イ,ロに示すものは、第3図イに示す本
考案による電線5の長さ方向に間隔を開けてリン
グ6,6…を取付けたものであり、第5図イ,ロ
に示すものは、第3図ロに示すと同様の本考案に
よる2条の電線7,7′を間隔を開けて平行に配
置し、電線7,7′間を長さ方向に間隔を開けて
2つ割り型ハンガー8,8…により連結したもの
である。9は2つ割り型ハンガー8を合せて締付
けるボルトである。
第4図、第5図のように構成すると、電線5又
は7,7′に着雪した場合、電線表面の黒鉛等4
と偏心荷重により雪が撚りに沿つて容易にすべ
り、リング6又はハンガー8の所で止り、雪の付
着力が小さいため、着雪が小さいうちに容易に脱
落するので、着雪がより有効に防止される相乗効
果があり、従来の不充分な効果を補完することが
できる。なお第5図に示す2条の場合は、回転し
た着雪が2条の間で止る効果も期待される。
又第6図イ,ロに示すものは、第3図ロに示す
と同様の本考案による2条の撚り方向が異なる電
線7,7′を縦添えし、その外側にバインド線1
0をらせん状に巻付けたものである。この場合も
電線7,7′上の着雪が撚りに沿つて容易にすべ
り、バインド線10の所又は2条の電線の接触部
で止り、雪の付着力が小さいため、着雪が小さい
うちに容易に脱落するので、着雪がより有効に防
止される相乗効果がある。
又本考案の電線は、従来のプラスチツク絶縁電
線に対して成されている難着雪方策、例えば表面
にひれ等の突起を付けることと組合せることも可
能であり、この場合、突起のために着雪が回転せ
ず、表面の黒鉛等のために雪の付着力が小さいた
め、着雪が小さいうちに容易に脱落するので、着
雪がより有効に防止される相乗効果がある。
このように従来の雪の回転防止方策に本考案に
よる黒鉛等の塗着を組合せることにより、回転の
止つた雪を小さいうちに容易に脱落させるという
相乗効果を得ることができる。
上述の説明では主としてACSRを例にとつて本
考案を説明したが、本考案は、ACSR以外の、例
えば硬銅撚線、硬アルミニウム撚線、Al被鋼撚
線等より成る電線にも全く同様に適用し得るもの
である。[Table] Therefore, since the surface of the electric wire of the present invention is conductive, it can exhibit snow-repellent effects without impairing the electrical function of conventional power transmission lines. (c) Next, as shown by the fact that amorphous carbon is used to prevent UV deterioration of polyethylene, etc., graphite and amorphous carbon do not deteriorate even in harsh environments, and graphite fluoride It has been reported that it is very stable thermally and chemically. Therefore, graphite and the like are chemically stable and have an anticorrosion effect, so they are expected to have a long life. Furthermore, as mentioned above, graphite and the like have good lubricity and a small amount of abrasion, so not only is there less abrasion during overhead contact lines, but there is also less wear due to rain, ice and snow, and in this respect, a long service life can be expected. It should be noted that a synergistic effect can be expected by combining the anti-snow accretion electric wire according to the present invention with anti-snow measures for conventional bare electric wires and plastic insulated electric wires. For example, when combined with the measures proposed for conventional bare electric wires, examples are shown in FIGS. 4 to 6. 4A and 4B are rings 6, 6, etc. attached at intervals in the length direction of the electric wire 5 according to the present invention shown in FIG. What is shown is that two electric wires 7, 7' according to the present invention similar to those shown in FIG. They are connected by split type hangers 8, 8... Numeral 9 is a bolt for tightening the two halves of the hanger 8 together. With the configuration shown in Figures 4 and 5, if snow falls on the electric wire 5 or 7, 7', graphite etc. on the surface of the electric wire 4
Due to the eccentric load, the snow easily slides along the strands and stops at the ring 6 or the hanger 8, and since the adhesion of the snow is small, it easily falls off while the snow is small, so snow accretion is more effectively prevented. It has a synergistic effect and can supplement the insufficient effects of conventional methods. In addition, in the case of two rows as shown in Fig. 5, it is expected that rotating snow will stop between the two rows. In addition, in the case shown in FIG. 6A and B, two electric wires 7 and 7' of the present invention, which are similar to those shown in FIG.
0 spirally wound. In this case as well, the snow on the wires 7 and 7' easily slides along the strands and stops at the bind wire 10 or the contact point between the two wires, and since the adhesion force of the snow is small, the snow can easily slide while the snow is small. This has a synergistic effect that more effectively prevents snow from accumulating. The electric wire of the present invention can also be combined with measures to prevent snow from accumulating on conventional plastic insulated electric wires, such as adding protrusions such as fins to the surface. Since the snow does not rotate and the adhesion of the snow is small due to the graphite on the surface, the snow falls off easily while the snow is small, so there is a synergistic effect of more effectively preventing snow from accumulating. In this way, by combining the coating of graphite or the like according to the present invention with the conventional snow rotation prevention measures, a synergistic effect can be obtained in which snow that has stopped rotating can be easily removed while it is still small. In the above explanation, the present invention was mainly explained using ACSR as an example, but the present invention is equally applicable to electric wires other than ACSR, such as hard copper stranded wire, hard aluminum stranded wire, Al-coated steel stranded wire, etc. It can be applied to
第1図イ,ロはそれぞれ従来のACSRおよび圧
縮型ACSRの例を示す横断面図である。第2図
イ,ロおよび第3図イ,ロはそれぞれ本考案の実
施例を示す横断面図である。第4図〜第6図はそ
れぞれ本考案の他の実施例を示す図で、イ図はそ
れぞれ側面図、ロはそれぞれ横断面図である。
1……鋼線、2,2′,2″……硬アルミニウム
線、3,3′,3″……異形Al線、4……黒鉛、
無定形炭素および/又はフツ化黒鉛(黒鉛等)、
5,7,7′……電線、6……リング、8……ハ
ンガー、9……ボルト、10……バインド線。
FIGS. 1A and 1B are cross-sectional views showing examples of a conventional ACSR and a compression type ACSR, respectively. FIGS. 2A and 2B and 3A and 3B are cross-sectional views showing embodiments of the present invention, respectively. Figures 4 to 6 are views showing other embodiments of the present invention, in which Figure A is a side view and Figure B is a cross-sectional view. 1... Steel wire, 2, 2', 2''... Hard aluminum wire, 3, 3', 3''... Deformed Al wire, 4... Graphite,
Amorphous carbon and/or graphite fluoride (graphite, etc.),
5, 7, 7'...Electric wire, 6...Ring, 8...Hanger, 9...Bolt, 10...Binding wire.
Claims (1)
て、撚線の最外面となる前記金属素線の表面部
分に、黒鉛、無定形炭素および/又はフツ化黒
鉛を塗着して成ることを特徴とする難着雪型電
線。 (2) 黒鉛、無定形炭素および/又はフツ化黒鉛の
塗着が、撚線前の最外層用金属素線の表面に行
なわれた実用新案登録請求の範囲第1項記載の
難着雪型電線。 (3) 黒鉛、無定形炭素および/又はフツ化黒鉛の
塗着が、撚線後の外表面に行なわれた実用新案
登録請求の範囲第1項記載の難着雪型電線。 (4) 撚線が、長手方向に間隔を開けてリングを取
付けたものである実用新案登録請求の範囲第1
項、第2項又は第3項記載の難着雪型電線。 (5) 撚線が、間隔を開けて平行に配置した2条の
撚線を、長さ方向に間隔を開けてハンガーによ
り連結して成るものである実用新案登録請求の
範囲第1項、第2項又は第3項記載の難着雪型
電線。 (6) 撚線が、2条の撚線を縦添えし、その外側に
バインド線をらせん状に巻付けて成るものであ
る実用新案登録請求の範囲第1項、第2項又は
第3項記載の難着雪型電線。[Claims for Utility Model Registration] (1) In a stranded wire made by twisting a plurality of metal strands, graphite, amorphous carbon and/or A snow-resistant electric wire characterized by being coated with graphite fluoride. (2) The anti-snow accretion type according to claim 1 of the utility model registration claim, in which graphite, amorphous carbon, and/or graphite fluoride is applied to the surface of the metal wire for the outermost layer before twisting. Electrical wire. (3) The snow-resistant electric wire according to claim 1, wherein graphite, amorphous carbon, and/or graphite fluoride is coated on the outer surface of the twisted wire. (4) Utility model registration claim No. 1 in which the stranded wire has rings attached at intervals in the longitudinal direction.
The snow-resistant electric wire according to item 2, item 2, or item 3. (5) The stranded wire is formed by connecting two stranded wires arranged parallel to each other with an interval in the length direction using a hanger. The snow-resistant electric wire described in item 2 or 3. (6) Utility model registration claims Paragraph 1, Paragraph 2, or Paragraph 3, in which the stranded wire consists of two stranded wires arranged vertically and a binding wire wound spirally around the outside of the stranded wire. The listed snow-resistant electric wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6976181U JPS6242421Y2 (en) | 1981-05-13 | 1981-05-13 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6976181U JPS6242421Y2 (en) | 1981-05-13 | 1981-05-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57180911U JPS57180911U (en) | 1982-11-16 |
JPS6242421Y2 true JPS6242421Y2 (en) | 1987-10-30 |
Family
ID=29865626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6976181U Expired JPS6242421Y2 (en) | 1981-05-13 | 1981-05-13 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6242421Y2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999048182A1 (en) * | 1998-03-14 | 1999-09-23 | The Furukawa Electric Co., Ltd. | Heat dissipating device for transmission line, transmission line with heat dissipating device, and method for fitting heat dissipating device to transmission line |
-
1981
- 1981-05-13 JP JP6976181U patent/JPS6242421Y2/ja not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999048182A1 (en) * | 1998-03-14 | 1999-09-23 | The Furukawa Electric Co., Ltd. | Heat dissipating device for transmission line, transmission line with heat dissipating device, and method for fitting heat dissipating device to transmission line |
Also Published As
Publication number | Publication date |
---|---|
JPS57180911U (en) | 1982-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4550218B2 (en) | Optical fiber composite ground wire | |
JP2001501356A (en) | Power cable | |
JPS6242421Y2 (en) | ||
JP3307469B2 (en) | Snow melting equipment for overhead transmission lines | |
RU98121005A (en) | SELF-SUPPORTED CABLE AND METHOD FOR ITS MANUFACTURE | |
GB2037060A (en) | Electric power cables | |
JP2001507507A (en) | Power cable | |
JP4894045B2 (en) | Insulated wire | |
JP2004327254A (en) | Highly corrosion resistant aluminum cable steel reinforced | |
CA1270045A (en) | Low loss alminum stranded wire with a steel core member | |
JPS63119110A (en) | Aerial cable | |
CN216250095U (en) | Corrosion-resistant cable for 5G | |
JPS58130714A (en) | Method of forming snow deposition resistance for trolley wire | |
JP3949625B2 (en) | Overhead insulated wire | |
CN220137973U (en) | Insulated cable structure | |
CN221304308U (en) | Multicore anticorrosion cable | |
CN214847829U (en) | Steel-cored aluminum pipeline | |
JP2670342B2 (en) | Difficult snow ring | |
JPH043367Y2 (en) | ||
JPS6013227Y2 (en) | Messenger wire for overhead cables | |
CN206574521U (en) | A kind of anti-ice cover aerial insulated cable | |
JPH0117767Y2 (en) | ||
JPS591385Y2 (en) | Snow prevention ring | |
JP2004362988A (en) | Slow snow accretion wire | |
JPS58130715A (en) | Device for preventing snow from depositing on wire |