JP4894045B2 - Insulated wire - Google Patents
Insulated wire Download PDFInfo
- Publication number
- JP4894045B2 JP4894045B2 JP2007174503A JP2007174503A JP4894045B2 JP 4894045 B2 JP4894045 B2 JP 4894045B2 JP 2007174503 A JP2007174503 A JP 2007174503A JP 2007174503 A JP2007174503 A JP 2007174503A JP 4894045 B2 JP4894045 B2 JP 4894045B2
- Authority
- JP
- Japan
- Prior art keywords
- insulated wire
- wire
- groove
- insulated
- radius
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011248 coating agent Substances 0.000 claims description 17
- 238000000576 coating method Methods 0.000 claims description 17
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 230000000694 effects Effects 0.000 description 18
- 239000004020 conductor Substances 0.000 description 13
- 238000009413 insulation Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229920003020 cross-linked polyethylene Polymers 0.000 description 1
- 239000004703 cross-linked polyethylene Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000010618 wire wrap Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/14—Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables
Landscapes
- Insulated Conductors (AREA)
Description
本発明は、架設される絶縁電線に関するものである。特に、本発明は、風圧荷重を低減する効果に加えて難着雪性を有する絶縁電線に関するものである。 The present invention relates to an insulated wire to be installed. In particular, the present invention relates to an insulated wire having a difficulty in snow accretion in addition to the effect of reducing wind pressure load.
架設される絶縁電線には、その運用時に種々の荷重が作用する。絶縁電線に作用する荷重としては、主として、電線の自重による荷重、電線の表面に付着する氷雪による荷重、風圧により電線に作用する荷重(風圧荷重)、の3つが挙げられる。このような荷重のうち、特に、風圧荷重は、絶縁電線が布設される場所(例えば、山間地や臨海地などの吹きさらしの場所)や天候の変動(例えば、台風や突風)により大きく変化するため、この風圧荷重を安定して小さくすることが重要である。また、降雪地帯では、絶縁電線の上に雪が付着したままとなって、電線の外径を大きくして風圧の作用する面積を大きくしたり、付着した雪の重量により絶縁電線に作用する荷重が大きくなるなど、氷雪による影響も大きい。 Various loads act on the installed insulated wires during operation. There are mainly three loads acting on the insulated wire: a load due to the weight of the wire, a load due to ice and snow adhering to the surface of the wire, and a load acting on the wire due to wind pressure (wind pressure load). Among these loads, especially wind pressure load greatly varies depending on the place where insulated wires are installed (for example, windy areas such as mountainous areas and coastal areas) and weather fluctuations (for example, typhoons and gusts). It is important to stably reduce the wind pressure load. Also, in snowy areas, snow remains on the insulated wires, increasing the outer diameter of the wires to increase the area where the wind pressure acts, and the load acting on the insulated wires due to the weight of the attached snow. The effects of ice and snow are also large.
上記のような問題を解決するために、特許文献1や特許文献2に記載の技術が開示されている。特許文献1や特許文献2に記載の絶縁電線は、図2に示すように、導体10の外周を絶縁被覆20で覆った絶縁電線である。そして、この絶縁電線の外周面に周方向に所定の間隔をあけて谷部40(溝部)が形成されており、この谷部40は、絶縁電線の長手方向に直線状に配置されている。このとき、電線の周方向に隣接する谷部40の間には電線の径方向に突出する山部30が形成されている。この谷部40と山部30は、滑らかな曲線により構成されており、図2に示すように絶縁電線の横断面から見たとき、山部30と谷部40とが交互に連続するようになっている。
In order to solve the above problems, techniques described in Patent Document 1 and
そして、これら特許文献1や2では、例えば、図2に示すように、山部30の外接円の半径Rや谷部40の内接円の半径r、隣り合う谷部の間の開き角θ、山部の高さhなどを限定することにより、風圧荷重を低減するとともに、絶縁電線表面に雪が付着しても、付着した雪を落下させることができる。
And in these
上記のような絶縁電線においては、その形状を限定することにより絶縁電線にかかる風圧荷重を低減することができたかを確認する目的で、絶縁電線の空力特性を調べることが行なわれている。特に、特許文献1では、抗力係数Cdを目安として、絶縁電線の空力特性を評価する技術思想が開示されている。そして、絶縁電線の空力特性は、抗力係数Cdと密接な関係にあり、抗力係数Cdが小さくなるほど風圧低減効果は大きくなることが明らかになっている。さらに、特許文献1では、風速40m/sでの抗力係数を測定することで、絶縁電線における実用的な風圧荷重を低減する効果を評価することができるとしている。 In the insulated wires as described above, the aerodynamic characteristics of the insulated wires are examined for the purpose of confirming whether the wind pressure load applied to the insulated wires can be reduced by limiting the shape thereof. In particular, Patent Literature 1 discloses a technical idea for evaluating the aerodynamic characteristics of an insulated wire using the drag coefficient Cd as a guide. The aerodynamic characteristics of the insulated wire are closely related to the drag coefficient Cd, and it has been clarified that the wind pressure reduction effect increases as the drag coefficient Cd decreases. Furthermore, Patent Document 1 describes that the effect of reducing a practical wind pressure load on an insulated wire can be evaluated by measuring a drag coefficient at a wind speed of 40 m / s.
ところで、上記のような被覆形状では、特に、径の細い絶縁電線の場合(例えば、図2に示すrが13mm以下、特に7mm以下の電線)、電線の有する抗力係数Cdがばらついて、安定して風圧荷重を低減する効果を得ることができなかった。そもそも、径の細い電線は、電線の自重が小さいため、従来は、高い風圧荷重低減効果を要求されておらず、具体的には、実用的な風速域である風速40m/sにおけるCd値は、平均して0.85程度であった。しかし、最近では、送電設備の構築・維持費用低減の観点から、径の細い電線を使用して、この電線を支持する電線支持物などを小型化することが検討されている。そのため、径の細い絶縁電線においても、従来の絶縁電線と同様に、安定して抗力係数Cdの小さく、優れた風圧荷重を低減する効果を有する絶縁電線の提供が期待されている。 By the way, with the covering shape as described above, particularly in the case of an insulated electric wire with a small diameter (for example, an electric wire having r of 13 mm or less, particularly 7 mm or less shown in FIG. 2), the drag coefficient Cd of the electric wire varies and is stable. Therefore, the effect of reducing the wind pressure load could not be obtained. In the first place, since the wire with a small diameter has a small weight of the wire, conventionally, a high wind load reduction effect has not been required.Specifically, the Cd value at a wind speed of 40 m / s, which is a practical wind speed range, is On average, it was about 0.85. However, recently, from the viewpoint of reducing the construction / maintenance costs of power transmission equipment, it has been studied to use a thin wire and reduce the size of a wire support that supports the wire. For this reason, even with an insulated wire having a small diameter, it is expected to provide an insulated wire having an effect of stably reducing the drag coefficient Cd and reducing an excellent wind pressure load as in the case of a conventional insulated wire.
また、架空布設される絶縁電線は、上記のような風圧荷重を低減する効果を有しているとともに、その被覆表面に雪が付着しても剥離しやすいことが要求されている。そして、このような絶縁電線を布設する際の作業性の観点から、その被覆を汎用の工具を使用して剥ぎ取り易いことも要求されている。 In addition, an insulated electric wire installed overhead is required to have the effect of reducing the wind pressure load as described above, and to be easily peeled off even when snow adheres to the coating surface. And from a viewpoint of workability | operativity at the time of laying such an insulated wire, it is also requested | required that the coating should be easy to strip off using a general purpose tool.
そこで、本発明の主目的は、径の細い絶縁電線であっても、風速40m/sにおける絶縁電線の抗力係数Cdが安定して低く、所望の風圧荷重の低減効果を有する絶縁電線を提供することにある。 Accordingly, the main object of the present invention is to provide an insulated wire that has a stably low drag coefficient Cd of the insulated wire at a wind speed of 40 m / s, and has a desired effect of reducing the wind pressure load, even if the insulated wire has a small diameter. There is.
また、本発明の他の目的は、上記の風圧荷重の低減効果に加えて、難着雪性の絶縁電線を提供することにある。 Another object of the present invention is to provide an insulated wire that is difficult to snow, in addition to the effect of reducing the wind pressure load described above.
さらに、本発明の別の目的は、上記の特性に加えて、汎用の被覆剥取工具により被覆を剥ぎ取ることができる絶縁電線を提供することにある。 Furthermore, another object of the present invention is to provide an insulated wire capable of stripping the coating with a general-purpose coating stripping tool in addition to the above characteristics.
本発明者らは、絶縁電線の形状を種々検討した結果、溝部の形状を従来の形状と異なる形状にし、この溝部の寸法や数を限定することにより、風圧荷重を低減する効果に優れた絶縁電線を得ることができるとの知見を得た。上記知見に基づき本発明を規定する。 As a result of various studies on the shape of the insulated wire, the present inventors have made the shape of the groove different from the conventional shape, and by limiting the size and number of the groove, insulation with excellent effect of reducing wind pressure load is achieved. The knowledge that an electric wire can be obtained was acquired. This invention is prescribed | regulated based on the said knowledge.
本発明絶縁電線は、絶縁被覆の外周面の周方向に所定の間隔をあけて形成された断面三角型の溝部を有しており、この溝部が電線の長手方向に直線状に延びるように配置される。そして、本発明絶縁電線は、電線の半径をR、各溝部の底部をつなぐ仮想円の半径をr、溝部の数をN、溝部の幅をW、溝部の内面と電線外周面とを繋ぐ角部の曲率半径をOr、溝谷部の曲率半径をIrとしたとき、4.5mm≦r≦13mm、0.2mm≦R−r≦0.5mm、24≦N、0.6mm≦W≦1.1mm、Or≦0.1mm、Ir≦0.1mmの範囲にあることを特徴とする。 The insulated wire of the present invention has a triangular cross-sectional groove formed at a predetermined interval in the circumferential direction of the outer peripheral surface of the insulating coating, and is arranged so that the groove extends linearly in the longitudinal direction of the electric wire. Is done. The insulated wire according to the present invention has a radius of the wire R, a radius of a virtual circle connecting the bottoms of the grooves, r, a number of grooves N, a width W of the grooves, and an angle connecting the inner surface of the groove and the outer peripheral surface of the wire. When the curvature radius of the part is Or and the curvature radius of the groove is Ir, 4.5 mm ≦ r ≦ 13 mm, 0.2 mm ≦ R−r ≦ 0.5 mm, 24 ≦ N, 0.6 mm ≦ W ≦ 1.1 mm, Or ≦ 0.1 It is characterized by being in the range of mm, Ir ≦ 0.1 mm.
上記構成となすことにより、特に、外径の小さい電線において、従来の絶縁電線と比較してより優れた風圧荷重を低減する効果を奏することができる。加えて、絶縁電線の被覆表面に雪が付着しにくく、付着したとしても付着した雪が落下し易い絶縁電線とすることができる。 By adopting the above-described configuration, particularly in an electric wire having a small outer diameter, an effect of reducing wind pressure load superior to that of a conventional insulated wire can be achieved. In addition, it is possible to provide an insulated wire in which snow hardly adheres to the coated surface of the insulated wire, and even if it adheres, the attached snow easily falls.
以下、本発明を詳しく説明する。 The present invention will be described in detail below.
本発明絶縁電線は、導体の外周を絶縁被覆した電線である。ここで、導体の材料は、導電性の良いものであれば何でも良く、例えば、銅、銅合金、アルミ、アルミ合金などが挙げられる。また、絶縁被覆する導体は、単線でも良く、撚り線でもかまわない。一方、絶縁被覆に使用する材料は、絶縁性能を有していれば何でも良く、例えば、ポリエチレン樹脂や架橋ポリエチレン樹脂などが挙げられる。そして、この樹脂被覆の表面には、電線長手方向に直線状に延びる断面三角型の複数の溝部が形成されている。 The insulated wire of the present invention is a wire in which the outer periphery of a conductor is covered with insulation. Here, the conductor material may be anything as long as it has good conductivity. Examples thereof include copper, copper alloy, aluminum, and aluminum alloy. In addition, the conductor for insulation coating may be a single wire or a stranded wire. On the other hand, the material used for the insulating coating may be anything as long as it has insulating performance, and examples thereof include polyethylene resin and cross-linked polyethylene resin. And the surface of this resin coating is formed with a plurality of triangular cross-sectional grooves extending linearly in the longitudinal direction of the electric wire.
上記断面三角型の溝部を形成した絶縁電線の寸法のうち、本発明に規定する各部の寸法を図1に示すように定義する。ここで、図1は、後述する実施の形態に示す本発明絶縁電線の概略構成図である。図のように、本発明絶縁電線は、導体1の外周に絶縁被覆2を有し、この被覆2の外周に複数の溝部3が設けられている。
Of the dimensions of the insulated wire formed with the triangular cross-section groove, the dimensions of each part defined in the present invention are defined as shown in FIG. Here, FIG. 1 is a schematic configuration diagram of the insulated wire of the present invention shown in an embodiment described later. As shown in the figure, the insulated wire of the present invention has an
図1に示すように、Rは、被覆(シースを含む)を含めた絶縁電線の半径を示し、rは、絶縁被覆の表面に形成される溝部の底部を全てつなぎ合わせたときに形成される仮想円の半径を示す。このとき、Rとrの中心は一致している。本発明の絶縁電線は、径の細い絶縁電線を想定しており、rは4.5mm以上13mm以下、R-rは0.2mm以上0.5mm以下とする。即ち、絶縁電線の半径Rは4.7mm以上13.5mm以下である。さらに、径の細い絶縁電線、具体的には、rが4.5mm以上7.0mm以下の絶縁電線であっても、後述するように溝部の形状や数を限定することで、抗力係数Cdを安定して低くすることができる。 As shown in FIG. 1, R indicates the radius of the insulated wire including the covering (including the sheath), and r is formed when all the bottoms of the grooves formed on the surface of the insulating covering are joined together. Indicates the radius of the virtual circle. At this time, the centers of R and r coincide. The insulated wire of the present invention is assumed to be an insulated wire with a small diameter, and r is 4.5 mm to 13 mm, and R-r is 0.2 mm to 0.5 mm. That is, the radius R of the insulated wire is not less than 4.7 mm and not more than 13.5 mm. Furthermore, even for insulated wires with a small diameter, specifically, insulated wires with r of 4.5 mm to 7.0 mm, the drag coefficient Cd can be stabilized by limiting the shape and number of grooves as described later. Can be lowered.
また、Nは、絶縁電線の横断面において絶縁電線の外周側に設けられる三角溝(溝部)の数である。この三角溝の数Nは、24以上とする。絶縁電線に形成される三角溝の数が少なすぎると、絶縁電線の風速40m/sにおける抗力係数Cdは大きくなり、絶縁電線における実用的な風圧荷重を低減する効果が得られ難い。絶縁電線に形成される三角溝の数が多すぎても同様に、風圧荷重を低減する効果が得られ難い。好ましい溝部の数の上限値は、45以下である。 N is the number of triangular grooves (grooves) provided on the outer peripheral side of the insulated wire in the cross section of the insulated wire. The number N of the triangular grooves is 24 or more. If the number of triangular grooves formed in the insulated wire is too small, the drag coefficient Cd at a wind speed of 40 m / s of the insulated wire becomes large, and it is difficult to obtain an effect of reducing a practical wind pressure load on the insulated wire. Similarly, even if the number of triangular grooves formed in the insulated wire is too large, it is difficult to obtain the effect of reducing the wind pressure load. A preferable upper limit of the number of grooves is 45 or less.
Wは、絶縁電線の横断面における三角溝の幅である。ここで、溝部は、絶縁電線のうち、外径Rよりも径の小さな部分を指す。本発明の絶縁電線においては、Wを、0.6mm以上1.1mm以下とする。Wが小さすぎると、溝部に埃が入り込んで取れなくなり、溝部による抗力係数Cdの低減効果が発揮され難くなる。また、Wが大きすぎると、絶縁電線の風速40m/sにおける抗力係数Cdが高くなる傾向にある。W is the width of the triangular groove in the cross section of the insulated wire. Here, the groove portion refers to a portion of the insulated wire having a diameter smaller than the outer diameter R. In the insulated wire of the present invention, W is 0.6 mm or more and 1.1 mm or less. When W is too small, dust enters the groove and cannot be removed, and the effect of reducing the drag coefficient Cd by the groove is difficult to be exhibited. If W is too large, the drag coefficient Cd of the insulated wire at a wind speed of 40 m / s tends to increase.
Orは、溝部内面と絶縁電線の外周面とを繋ぐ角部(溝角部)の曲率半径である。本発明の絶縁電線においては、この溝角部の曲率半径Orを0.1mm以下しており、この溝角部が、絶縁電線の抗力係数Cdを安定して低くすることに寄与する。Orが大きいと、絶縁電線の風速40m/sにおける抗力係数Cdが高くなる傾向にある。また、Orが大きいと、電線外周面に筒状に雪が付着し易く、その結果、風圧の作用する面積が大きくなって、風圧荷重が増加する。電線外周面に筒状に着雪するメカニズムは、電線の上部に積もった雪が、その自重で電線下部に回り込み、この状態で、さらに電線上部に雪が積もることでおこる。ここで、電線に付着した雪は、表面張力により電線から落下し難いため、電線下部に回り込むことができる。そこで、本発明では、電線の溝角部の曲率半径Orを規定しており、上記Orを規定することで、電線下部に回り込もうとした雪を電線から落下させ易くすることができ、その結果、電線の周方向全面に筒状に雪が付着し難くすることができる。 Or is a radius of curvature of a corner (groove corner) connecting the inner surface of the groove and the outer peripheral surface of the insulated wire. In the insulated wire of the present invention, the radius of curvature Or of the groove corner is 0.1 mm or less, and the groove corner contributes to stably reducing the drag coefficient Cd of the insulated wire. When Or is large, the drag coefficient Cd at a wind speed of 40 m / s tends to increase. Moreover, when Or is large, snow is likely to adhere to the outer peripheral surface of the electric wire in a cylindrical shape. As a result, the area on which the wind pressure acts increases and the wind pressure load increases. The mechanism that snows in a cylindrical shape on the outer peripheral surface of the electric wire is caused by the snow that has accumulated on the upper part of the electric wire wraps around the lower part of the electric wire due to its own weight, and in this state, snow further accumulates on the upper part of the electric wire. Here, the snow adhering to the electric wire is unlikely to fall from the electric wire due to surface tension, and thus can wrap around the lower portion of the electric wire. Therefore, in the present invention, the radius of curvature Or of the groove corner of the electric wire is defined, and by defining the above Or, it is possible to make it easier to drop snow from the electric wire to fall from the electric wire, As a result, it is possible to make it difficult for snow to adhere to the entire circumferential surface of the electric wire in a cylindrical shape.
Irは、溝谷部の曲率半径である。より詳しくは、三角溝の2つの内面を繋ぐ曲面の曲率半径である。本発明においては、溝谷部の曲率半径Irを0.1mm以下としており、この溝谷部が、絶縁電線の抗力係数Cdを安定して低くすることに寄与する。 Ir is the radius of curvature of the groove. More specifically, the radius of curvature of the curved surface connecting the two inner surfaces of the triangular groove. In the present invention, the curvature radius Ir of the groove valley portion is set to 0.1 mm or less, and this groove valley portion contributes to stably reducing the drag coefficient Cd of the insulated wire.
本発明の構成となすことにより、以下の効果を奏することができる。
[1] 風速40m/sでのCd値を安定して小さくすることができる。
[2] 絶縁電線の被覆表面に雪が付着しにくく、付着した場合でも電線から落下し易い。
[3] 絶縁電線の被覆表面を汎用の剥取工具により剥ぎ取ることができる。
With the configuration of the present invention, the following effects can be obtained.
[1] The Cd value at a wind speed of 40 m / s can be reduced stably.
[2] Snow does not easily adhere to the coated surface of insulated wires, and even if it adheres, it can easily fall off the wires.
[3] The coated surface of the insulated wire can be stripped with a general-purpose stripping tool.
<実施の形態>
本実施の形態においては、アルミ撚り線を導体として、その外周にポリエチレン被覆した絶縁電線を作製した。図1は、本実施の形態における絶縁電線の横断面を示す図である。なお、本発明絶縁電線は、本実施の形態に限定されない。例えば、導体は、単線であっても良いし、導体の材料は導電性の高い他の金属であってもかまわない。もちろん、導体に被覆される絶縁材料は、ポリエチレンに限定されない。
<Embodiment>
In the present embodiment, an insulated wire in which an aluminum stranded wire was used as a conductor and the outer periphery thereof was covered with polyethylene was produced. FIG. 1 is a diagram showing a cross section of an insulated wire in the present embodiment. In addition, this invention insulated wire is not limited to this Embodiment. For example, the conductor may be a single wire, and the conductor material may be another metal having high conductivity. Of course, the insulating material coated on the conductor is not limited to polyethylene.
ポリエチレンの被覆には、ワイヤードラムから送り出された導体をクロスヘッドダイの後部から送り込み、ダイ内で押出機から押し出されたポリエチレンを導体の周囲に溶着する方法を使用した。このとき、クロスヘッドダイの形状がほぼ絶縁電線の被覆形状に一致している。 For the coating of polyethylene, a method was used in which the conductor fed from the wire drum was fed from the back of the crosshead die, and the polyethylene extruded from the extruder in the die was welded around the conductor. At this time, the shape of the crosshead die substantially matches the covering shape of the insulated wire.
上記のようにして形成された絶縁電線の被覆形状は、断面三角型の溝部が、電線の長手方向に直線状に形成される。そして、この被覆形状にかかる各部の寸法などを以下のように定義する(図1を参照)。 As for the covering shape of the insulated wire formed as described above, the groove section having a triangular cross section is formed linearly in the longitudinal direction of the wire. And the dimension of each part concerning this covering shape is defined as follows (refer to FIG. 1).
絶縁電線の外径 R
溝部の底部をつないだ仮想円の半径 r
溝部の数 N
溝部の幅 W
溝角部の曲率半径 Or
溝谷部の曲率半径 Ir
Insulated wire outer diameter R
Radius r of the virtual circle connecting the bottom of the groove r
Number of grooves N
Groove width W
Curvature radius of groove Or
Groove radius of curvature Ir
<試験例>
本試験例においては、実施の形態で説明した絶縁電線の各部の寸法(R、r、N、W、Or、Ir)を変化させた複数の絶縁電線(試作例1〜24)を試作し、その特性を調べた。具体的には、絶縁電線に形成される溝部の形状を断面三角型とし、この溝部を含む絶縁電線の各部の寸法R、r、N、W、Or、Irが以下の範囲にあるもの(試作例4,6〜8,11〜23)と、以下の範囲を外れるもの(試作例1〜3,5,9)とを作製した。また、山部と谷部とが丸みのある形状、即ち、図2に示す従来の形状を有する絶縁電線(試作例10と24)を作製した。
4.7≦R≦13.5 (単位はmm)
4.5≦r≦13 (単位はmm)
0.2≦R−r≦0.5 (単位はmm)
24≦N≦45 (単位は個数)
0.6≦W≦1.1 (単位はmm)
Or≦0.1 (単位はmm)
Ir≦0.1 (単位はmm)
<Test example>
In this test example, a plurality of insulated wires (prototype examples 1 to 24) in which the dimensions (R, r, N, W, Or, Ir) of each part of the insulated wire described in the embodiment were changed were prototyped, Its characteristics were investigated. Specifically, the shape of the groove formed on the insulated wire is triangular, and the dimensions R, r, N, W, Or, Ir of each part of the insulated wire including this groove are in the following ranges (prototype Examples 4, 6-8, 11-23) and those outside the following range (prototype examples 1-3, 5, 9) were produced. In addition, an insulated wire (prototype examples 10 and 24) having a shape with rounded peaks and valleys, that is, a conventional shape shown in FIG. 2, was produced.
4.7 ≦ R ≦ 13.5 (Unit: mm)
4.5 ≦ r ≦ 13 (Unit is mm)
0.2 ≦ R−r ≦ 0.5 (Unit: mm)
24 ≦ N ≦ 45 (Unit is number)
0.6 ≦ W ≦ 1.1 (Unit: mm)
Or ≦ 0.1 (Unit is mm)
Ir ≦ 0.1 (Unit: mm)
作製した絶縁電線において調べた特性は、風速40m/s時のCd値、難着雪性能、被覆剥取性、トラッキング性能である。ここで、難着雪性能の評価は、人工降雪機により絶縁電線に湿潤雪を20分間降雪させたときに、絶縁電線の周方向全面に筒状に雪が付着したものを評価×、筒状になる前に雪が落下したものを評価○とした。また、被覆剥取性の評価は、汎用の被覆剥取工具を使用して絶縁被覆を剥ぎ取ることができたものを評価○、剥ぎ取ることができないか、または、剥ぎ取ったときに導線に損傷が生じた場合を評価×とした。さらに、耐トラッキング性能は、JIS C3005に規定された試験方法により試験し、同方法に規定される評価基準により評価した。その結果を表1および2に示す。なお、耐トラッキング性能については、全ての試作例で、電線として問題ないとの評価であったので、表1および2には記載しなかった。 The characteristics examined for the manufactured insulated wires are Cd value at wind speed of 40 m / s, hard-to-fall snow performance, stripping property, and tracking performance. Here, the evaluation of the difficult snowfall performance was evaluated by evaluating the case where snow was attached to the entire surface in the circumferential direction of the insulated wire when wet snow was snowed on the insulated wire for 20 minutes with an artificial snowfall machine. Evaluation was made that the snow fell before the evaluation. In addition, the evaluation of the stripping property is evaluated by evaluating that the insulation coating can be stripped off using a general-purpose stripping tool. The case where damage occurred was evaluated as x. Furthermore, the anti-tracking performance was tested by a test method defined in JIS C3005 and evaluated according to an evaluation standard defined in the method. The results are shown in Tables 1 and 2. The tracking resistance performance was not listed in Tables 1 and 2 because it was evaluated that there was no problem as an electric wire in all prototypes.
表1、2の結果から明らかなように、本発明に規定するように断面三角型の溝部を有し、且つ、本発明に規定する寸法を満たす絶縁電線(試作例4,6〜8,11〜23)は、風速40m/sでのCd値が安定して小さく、その他の特性(難着雪性能・被覆剥取性)においても優れたものであった。 As is clear from the results of Tables 1 and 2, insulated wires having a triangular cross section as defined in the present invention and satisfying the dimensions defined in the present invention (prototype examples 4, 6-8, 11 -23) had a stable and small Cd value at a wind speed of 40 m / s, and was excellent in other characteristics (snow-resistant snow-covering performance / coating stripping property).
一方、三角溝の角部の曲率半径が大きい、即ち、図2に示すような断面形状の試作例10および24は、抗力係数Cdが高く、風圧荷重を低減する効果が小さかった。また、溝部の深さ(半径差R−r)が浅い試作例1及び2は、難着雪性能が悪く、同深さが深い試作例3は、被覆剥取性が悪かった。そして、溝部の幅Wが規定値を超える試作例5及び9は、風速40m/s時のCd値がそれぞれ1.0および0.9であり、十分な風圧荷重の低減効果を有していなかった。
On the other hand, the
本発明は、架設される絶縁電線に好適に利用することができる。 The present invention can be suitably used for an insulated wire to be installed.
1 導体 2 絶縁被覆 3 溝部
10 導体 20 絶縁被覆 30 山部 40谷部
1
10
Claims (3)
溝部の形状は、断面三角型であり、
電線の半径をR、各溝部の底部をつなぐ仮想円の半径をr、溝部の数をN、溝部の幅をW、溝部の内面と電線外周面とを繋ぐ角部の曲率半径をOr、溝谷部の曲率半径をIrとしたとき、
4.5mm≦r≦13mm、0.2mm≦R−r≦0.5mm、24≦N、0.6mm≦W≦1.1mm、Or≦0.1mm、Ir≦0.1mmの範囲にあることを特徴とする絶縁電線。 A groove is formed at a predetermined interval in the circumferential direction on the outer peripheral surface of the insulating coating, and the insulated wire is arranged so that the groove extends linearly in the longitudinal direction of the wire,
The shape of the groove is a triangular cross section,
The radius of the wire is R, the radius of the virtual circle connecting the bottom of each groove is r, the number of grooves is N, the width of the groove is W, the radius of curvature of the corner connecting the inner surface of the groove and the outer periphery of the wire is Or, and the groove When the curvature radius of the part is Ir
An insulated wire characterized by being in the range of 4.5 mm ≦ r ≦ 13 mm, 0.2 mm ≦ R−r ≦ 0.5 mm, 24 ≦ N, 0.6 mm ≦ W ≦ 1.1 mm, Or ≦ 0.1 mm, Ir ≦ 0.1 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007174503A JP4894045B2 (en) | 2007-07-02 | 2007-07-02 | Insulated wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007174503A JP4894045B2 (en) | 2007-07-02 | 2007-07-02 | Insulated wire |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2009016088A JP2009016088A (en) | 2009-01-22 |
JP2009016088A5 JP2009016088A5 (en) | 2012-01-05 |
JP4894045B2 true JP4894045B2 (en) | 2012-03-07 |
Family
ID=40356766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007174503A Active JP4894045B2 (en) | 2007-07-02 | 2007-07-02 | Insulated wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4894045B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013222529A1 (en) * | 2013-11-06 | 2015-05-07 | Leoni Kabel Holding Gmbh | Stranded conductor and method for producing stranded conductors |
CN107958727A (en) * | 2017-10-13 | 2018-04-24 | 安徽庆华电缆有限公司 | A kind of fluoroplastic insulation silicon-rubber sheath high-temperature-resistant power cable |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01146006A (en) * | 1987-12-03 | 1989-06-08 | Sumitomo Heavy Ind Ltd | Obliquely stretched bridge cable aerodynamic unstable vibration overall vibration damper |
JP2922079B2 (en) * | 1993-03-23 | 1999-07-19 | 新日本製鐵株式会社 | Damping cable |
JP3725408B2 (en) * | 1999-08-09 | 2005-12-14 | 古河電気工業株式会社 | Low wind pressure insulated wire |
JP4095242B2 (en) * | 2000-11-21 | 2008-06-04 | 日立電線株式会社 | Low wind noise and low wind pressure distribution line |
-
2007
- 2007-07-02 JP JP2007174503A patent/JP4894045B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009016088A (en) | 2009-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4550218B2 (en) | Optical fiber composite ground wire | |
CN113808787B (en) | High single-core overhead insulated cable | |
US20130105058A1 (en) | Method for making a power cable with microduct | |
JP4894045B2 (en) | Insulated wire | |
GB2156095A (en) | An improved flexible elongate optical fibre cable | |
EP2923364B1 (en) | Self-supporting cable and combination comprising a suspension arrangement and such self-supporting cable | |
JP5555667B2 (en) | Overhead power line | |
WO2012005638A1 (en) | Self-supporting cable | |
JP3725408B2 (en) | Low wind pressure insulated wire | |
JP3540720B2 (en) | Overhead line | |
JP3949625B2 (en) | Overhead insulated wire | |
JP4128984B2 (en) | Overhead insulated wire | |
EP2410534A1 (en) | Cord for high voltage overhead electrical lines, with high thermal limit and with 3 load-bearing cables | |
JP4279323B2 (en) | Optical cable | |
JP4383038B2 (en) | Low wind pressure resistant snow insulated wire | |
CA1270045A (en) | Low loss alminum stranded wire with a steel core member | |
CN215417612U (en) | Low wind pressure aerial insulated cable | |
CN215417569U (en) | Low wind pressure low noise aerial insulated cable | |
CN217640707U (en) | Optical fiber overhead composite ground wire capable of automatically preventing ice coating | |
CN216250095U (en) | Corrosion-resistant cable for 5G | |
JP3857806B2 (en) | Tracking resistant low wind pressure insulated wire | |
JP4851303B2 (en) | Aerial covering long object | |
CN216902335U (en) | Anti-freezing and anti-frosting cable | |
CN218100729U (en) | Self-monitoring intelligent polypropylene insulation medium-voltage cable | |
CN220065212U (en) | FFC line, battery package and vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110428 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111130 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4894045 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |