JP4550218B2 - Optical fiber composite ground wire - Google Patents

Optical fiber composite ground wire Download PDF

Info

Publication number
JP4550218B2
JP4550218B2 JP2000106672A JP2000106672A JP4550218B2 JP 4550218 B2 JP4550218 B2 JP 4550218B2 JP 2000106672 A JP2000106672 A JP 2000106672A JP 2000106672 A JP2000106672 A JP 2000106672A JP 4550218 B2 JP4550218 B2 JP 4550218B2
Authority
JP
Japan
Prior art keywords
aluminum
fiber composite
carbon fiber
wire
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000106672A
Other languages
Japanese (ja)
Other versions
JP2001291429A (en
Inventor
宏司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2000106672A priority Critical patent/JP4550218B2/en
Publication of JP2001291429A publication Critical patent/JP2001291429A/en
Application granted granted Critical
Publication of JP4550218B2 publication Critical patent/JP4550218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)
  • Communication Cables (AREA)
  • Electric Cable Installation (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【0001】
本発明は、炭素繊維を抗張力体に用いた光ファイバ複合架空地線に関するものである。
【0002】
【従来の技術】
従来から、炭素繊維の集合体を中心抗張力体とし、その外周にアルミ素線を撚り合わせた架空送電線は公知である(特開平3−74008号公報、特開平4−308610号公報)。
【0003】
【発明が解決しようとする課題】
しかし従来のこの種の架空送電線は、中心抗張力体に炭素繊維を用いることにより架空送電線の温度が上昇したときの弛度の増大を防ぐことに主眼がおかれ、小径化という点では十分な考慮がなされていない。
【0004】
発明の目的は、炭素繊維を抗張力体に用いた光ファイバ複合架空地線を小径化することにある。
【0005】
【課題を解決するための手段】
本発明の関連技術に係る架空送電線は、セグメント形のアルミ被覆炭素繊維複合アルミ素線を断面円形に撚り合わせたものを中心抗張力体とし、この中心抗張力体の外周にアルミ被覆炭素繊維複合アルミ素線を撚り合わせて、すべての素線をアルミ被覆炭素繊維複合アルミ素線で構成し、前記アルミ被覆炭素繊維複合アルミ素線は、線状のアルミ母材の中に多数の炭素繊維が長手方向に埋め込まれた炭素繊維複合アルミ素線の外周にアルミ被覆を一体に形成したものからなることを特徴とするものである。
【0006】
このようにすると中心抗張力体の外径を小さくできるため、架空送電線全体の外径を小さくできる。中心抗張力体の外周のアルミ被覆炭素繊維複合アルミ素線は、断面円形でもセグメント形でもよいが、セグメント形の方が架空送電線の小径化には効果的である。
なおこの明細書でいう「アルミ」とは、アルミニウムだけでなく、アルミニウム合金をも含むものとする。
【0007】
また本発明の関連技術に係る架空送電線においては、中心抗張力体とその外周のアルミ被覆炭素繊維複合アルミ素線撚り合わせ層の間に防食グリースを介在させることが好ましい。
【0008】
発明に係る光ファイバ複合架空地線は、溝付きスペーサの溝に光ファイバ心線を収納し、その外周にアルミパイプを被せたものを中心ユニットとし、この中心ユニットの外周に、セグメント形のアルミ被覆炭素繊維複合アルミ素線を断面円形に撚り合わせなり、前記アルミ被覆炭素繊維複合アルミ素線は、線状のアルミ母材の中に多数の炭素繊維が長手方向に埋め込まれた炭素繊維複合アルミ素線の外周にアルミ被覆を一体に形成したものからなることを特徴とするものである。
このような構成にすると、光ファイバ複合架空地線を小径化できると共に、軽量化できる。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して詳細に説明する。
〔関連技術1〕
図1は本発明の一関連技術に係る架空送電線を示す。この架空送電線は、断面円形の炭素繊維複合アルミ素線1aのまわりにセグメント形の炭素繊維複合アルミ素線1bを複数本、断面円形に撚り合わせたものを中心抗張力体2とし、この中心抗張力体2の外周に断面円形のアルミ素線3を撚り合わせたものである。
【0010】
炭素繊維複合アルミ素線1a、1bは、線状のアルミ母材の中に多数の炭素繊維が長手方向に埋め込まれている形態のものである。このような炭素繊維複合アルミ素線1a、1bは、炭素繊維の束を溶融アルミの中に通し、炭素繊維の間に溶融アルミを充填した後、溶融アルミから引き上げるときに穴形が断面円形又はセグメント形のダイスに通してアルミを固化させることにより製造することができる。
【0011】
この架空送電線は、中心抗張力体が炭素繊維複合アルミ素線の撚線で構成されているため、中心抗張力体がインバ線の撚線で構成されている通常の超耐熱撚線(ZTACIR、XTACIR)より軽量であり、架線張力を低くできる。また中心抗張力体の線膨張係数が小さいため、通電により高温になったときの弛度増加を低く抑えることができる。さらにセグメント形の炭素繊維複合アルミ素線を撚り合わせているため、中心抗張力体の占積率が高く、外径が小さなり、したがって架空送電線の外径を小さくできることから、風圧荷重、着氷雪荷重を小さくできる。
以上のことから、架空送電線の鉄塔強度を低くすることができ、架空送電線路の建設コストを低減できる。
【0012】
〔関連技術2〕
図2は本発明の他の関連技術に係る架空送電線を示す。この架空送電線は、関連技術1と同様に構成された中心抗張力体2と、その上のアルミ素線3の撚り合わせ層との間に防食グリース4を介在させたものである。
【0013】
炭素繊維複合アルミ素線1a、1bは、降雨などにより水が付着すると、アルミが炭素に侵され、腐食するおそれがあるが、上記のように防食グリース4を介在させると、炭素繊維複合アルミ素線1a、1bに水が付着するのを防止でき、したがって関連技術1の架空送電線より耐食性を高めることができる。それ以外は関連技術1と同様である。
上記のような架空送電線を製造するには、中心抗張力体2の外周に防食グリース4を塗布してから、アルミ素線3を撚り合わせればよい。
【0014】
〔関連技術3〕
図3は本発明のさらに他の関連技術に係る架空送電線を示す。この架空送電線は、断面円形のアルミ被覆炭素繊維複合アルミ素線5aのまわりにセグメント形のアルミ被覆炭素繊維複合アルミ素線5bを複数本、断面円形に撚り合わせたものを中心抗張力体2とし、この中心抗張力体2の外周にアルミ素線3を撚り合わせたものである。
【0015】
このように中心抗張力体2に、アルミ被覆6を有する炭素繊維複合アルミ素線5a、5bを使用すると、炭素繊維とアルミの界面に水が付着するのを防止できるため、関連技術1の架空送電線より耐食性を高めることができる。それ以外は関連技術1と同様である。
【0016】
アルミ被覆炭素繊維複合アルミ素線5a、5bを製造する方法としては、(1) 実施形態1と同様にして製造した被覆のない炭素繊維複合アルミ素線の外周にコンフォーム法によりアルミ被覆を一体に形成する方法や、(2) 実施形態1と同様にして製造した被覆のない炭素繊維複合アルミ素線をアルミ溶湯に浸漬して、表面にアルミ被覆を付着させる方法などがある。いずれにしても、アルミ被覆6と炭素繊維複合アルミ素線のアルミ母材とは金属学的に一体化されていることが、アルミ被覆炭素繊維複合アルミ素線5a、5bの機械的強度を高め、長期信頼性を高める上で、好ましい。
【0017】
なお、関連技術3において、アルミ素線3の代わりにアルミ被覆炭素繊維複合アルミ素線5a又は5bを用いて、あるいはその両者を用いて、架空送電線の素線をすべてアルミ被覆炭素繊維複合アルミ素線で構成するようにすると、より機械的強度を高め、長期信頼性を高めることができ、好ましい。
【0018】
〔関連技術4〕
図4は本発明のさらに他の関連技術に係る架空送電線を示す。この架空送電線は、関連技術3と同様に構成された中心抗張力体2と、その上のアルミ素線3の撚り合わせ層との間に防食グリース4を介在させたものである。
アルミ被覆炭素繊維複合アルミ素線5a、5bはアルミ被覆を有するため、十分な耐食性を有しているが、アルミ被覆にピンホール等が存在する場合もあり得るので、上記のように防食グリース4を介在させておけば、耐食性をより確実なものとすることができる。それ以外は関連技術3と同様である。
【0019】
〔関連技術5〕
図5は本発明のさらに他の関連技術に係る架空送電線を示す。この架空送電線は、関連技3と同様に構成された中心抗張力体2の外周に、セグメント形のアルミ素線7を撚り合わせたものである。
このようにすると、関連技術1〜4の架空送電線よりさらに外径の小さい架空送電線を得ることができる。それ以外は関連技術1〜4と同様である。
【0020】
〔実施形態
図6は本発明に係る光ファイバ複合架空地線の一実施形態を示す。この光ファイバ複合架空地線は、溝付きスペーサ8の溝に光ファイバ心線9を収納し、その外周にアルミパイプ10を被せたものを中心ユニット11とし、この中心ユニット11の外周にセグメント形のアルミ被覆炭素繊維複合アルミ素線5bを複数本、断面円形に撚り合わせたものである。アルミ被覆炭素繊維複合アルミ素線5bの撚り合わせ層の外周に、さらにアルミ素線を撚り合わせる場合もある。
【0021】
アルミ被覆炭素繊維複合アルミ素線5bは関連技術3で用いたものと同じであり、符号6がアルミ被覆である。このアルミ被覆炭素繊維複合アルミ素線5bは架空地線の抗張力体と導電体を兼ねるものである。
【0022】
この光ファイバ複合架空地線は、抗張力体兼導電体の層がアルミ被覆炭素繊維複合アルミ素線で構成されているため、同層がアルミ被覆鋼線で構成されている通常の光ファイバ複合架空地線より軽量であり、架線張力を低くできる。またアルミ被覆炭素繊維複合アルミ素線の線膨張係数が小さいため、雷撃電流等により架空地線が高温になっても弛度増加を低く抑えることができ、光ファイバをより確実に保護できる。さらにセグメント形のアルミ被覆炭素繊維複合アルミ素線を撚り合わせているため、架空地線の外径を小さくでき、風圧荷重、着氷雪荷重を小さくできる。
【0023】
【発明の効果】
以上説明したように本発明によれば、中心ユニットの外周に、セグメント形のアルミ被覆炭素繊維複合アルミ素線を断面円形に撚り合わせたことにより、軽量で、高温時の弛度増加が少なく、しかも外径の小さい光ファイバ複合架空地線を得ることができる。
【図面の簡単な説明】
【図1】 本発明の一関連技術に係る架空送電線を示す断面図。
【図2】 本発明の他の関連技術に係る架空送電線を示す断面図。
【図3】 本発明のさらに他の関連技術に係る架空送電線を示す断面図。
【図4】 本発明のさらに他の関連技術に係る架空送電線を示す断面図。
【図5】 本発明のさらに他の関連技術に係る架空送電線を示す断面図。
【図6】 本発明に係る光ファイバ複合架空地線の一実施形態を示す断面図。
【符号の説明】
1a:断面円形の炭素繊維複合アルミ素線
1b:セグメント形の炭素繊維複合アルミ素線
2:中心抗張力体
3:断面円形のアルミ素線
4:防食グリース
5a:断面円形のアルミ被覆炭素繊維複合アルミ素線
5b:セグメント形のアルミ被覆炭素繊維複合アルミ素線
6:アルミ被覆
7:セグメント形のアルミ素線
8:溝付きスペーサ
9:光ファイバ心線
10:アルミパイプ
11:中心ユニット
[0001]
The present invention relates to an optical fiber composite ground wire using carbon fiber as a tensile strength body.
[0002]
[Prior art]
Conventionally, an overhead power transmission line in which an aggregate of carbon fibers is used as a central tensile strength body and an aluminum element wire is twisted around the outer periphery is known (Japanese Patent Laid-Open Nos. 3-74008 and 4-308610).
[0003]
[Problems to be solved by the invention]
However, this type of conventional overhead power transmission line is mainly intended to prevent the increase in sag when the temperature of the overhead power transmission line rises by using carbon fiber as the central strength member, and it is sufficient in terms of reducing the diameter. There is no particular consideration.
[0004]
An object of the present invention is to reduce the diameter of an optical fiber composite ground wire using carbon fiber as a tensile body.
[0005]
[Means for Solving the Problems]
The overhead power transmission line according to the related art of the present invention is obtained by twisting a segment-shaped aluminum-coated carbon fiber composite aluminum strand into a circular cross section as a central strength member, and an aluminum-coated carbon fiber composite aluminum on the outer periphery of the central strength member. All the strands are composed of aluminum-coated carbon fiber composite aluminum strands by twisting the strands. The aluminum-coated carbon fiber composite aluminum strands have a number of carbon fibers in the length of a linear aluminum base material. The carbon fiber composite aluminum element wire embedded in the direction is formed by integrally forming an aluminum coating on the outer periphery.
[0006]
In this way, since the outer diameter of the central strength member can be reduced, the outer diameter of the entire overhead power transmission line can be reduced. The aluminum-coated carbon fiber composite aluminum strand on the outer periphery of the central strength member may have a circular cross section or a segment shape, but the segment shape is more effective in reducing the diameter of the overhead power transmission line.
In this specification, “aluminum” includes not only aluminum but also aluminum alloys.
[0007]
Moreover, in the overhead power transmission line according to the related art of the present invention, it is preferable that an anticorrosive grease is interposed between the central strength member and the aluminum-coated carbon fiber composite aluminum strand twisted layer on the outer periphery thereof.
[0008]
The optical fiber composite ground wire according to the present invention stores the optical fiber core wire in the groove of the grooved spacer and covers the outer periphery with an aluminum pipe as a central unit. Aluminum coated carbon fiber composite aluminum strands are twisted into a circular cross section, and the aluminum coated carbon fiber composite aluminum strand is a carbon fiber composite in which a number of carbon fibers are embedded in the longitudinal direction in a linear aluminum base material. It is characterized by comprising an aluminum coating integrally formed on the outer circumference of the aluminum wire.
With such a configuration, the diameter of the optical fiber composite ground wire can be reduced and the weight can be reduced.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[Related technology 1]
FIG. 1 shows an aerial transmission line according to a related technique of the present invention. This overhead power transmission line has a central tensile strength member 2 formed by twisting a plurality of segment-shaped carbon fiber composite aluminum strands 1b around a carbon fiber composite aluminum strand 1a having a circular cross section, and twisting them in a circular cross section. The aluminum strand 3 having a circular cross section is twisted around the outer periphery of the body 2.
[0010]
The carbon fiber composite aluminum strands 1a and 1b have a form in which a large number of carbon fibers are embedded in a longitudinal direction in a linear aluminum base material. Such carbon fiber composite aluminum strands 1a and 1b have a hole-shaped circular shape when a bundle of carbon fibers is passed through molten aluminum and the molten aluminum is filled between the carbon fibers and then pulled out from the molten aluminum. It can be produced by solidifying aluminum through a segmented die.
[0011]
In this overhead power transmission line, the central strength member is composed of a stranded wire of a carbon fiber composite aluminum wire, and therefore, the normal super-heat-resistant stranded wire (ZTACIR, XTACIR) in which the central strength member is composed of an invar wire strand. ) Lighter weight and lower overhead wire tension. Moreover, since the coefficient of linear expansion of the center strength member is small, increase in the degree of sag when the temperature becomes high by energization can be suppressed. Furthermore, because the segment-shaped carbon fiber composite aluminum strands are twisted together, the space factor of the center tensile body is high and the outside diameter is small, so the outside diameter of the overhead power transmission line can be reduced. The load can be reduced.
From the above, the steel tower strength of the overhead power transmission line can be reduced, and the construction cost of the overhead power transmission line can be reduced.
[0012]
[Related technology 2]
FIG. 2 shows an overhead power transmission line according to another related technology of the present invention. In this overhead power transmission line, an anti-corrosion grease 4 is interposed between a central strength member 2 configured in the same manner as in the related art 1 and a twisted layer of an aluminum element wire 3 thereon.
[0013]
The carbon fiber composite aluminum wires 1a and 1b may be corroded and corroded by water when water adheres due to rain or the like. However, when the anticorrosion grease 4 is interposed as described above, the carbon fiber composite aluminum wires It is possible to prevent water from adhering to the lines 1a and 1b, and therefore, the corrosion resistance can be improved compared to the overhead power transmission line of the related art 1. Other than that, it is the same as the related art 1.
In order to manufacture the overhead power transmission line as described above, the aluminum wire 3 may be twisted after the anticorrosion grease 4 is applied to the outer periphery of the center strength member 2.
[0014]
[Related technology 3]
FIG. 3 shows an overhead power transmission line according to still another related technique of the present invention. This overhead power transmission line is formed by twisting a plurality of segment-shaped aluminum-coated carbon fiber composite aluminum strands 5b around an aluminum-coated carbon fiber composite aluminum strand 5a having a circular cross section and twisting it into a circular cross-section as a central strength member 2. The aluminum strand 3 is twisted around the outer periphery of the center strength member 2.
[0015]
Thus the center strength member 2, a carbon fiber composite aluminum element wires 5a having an aluminum coating 6, using 5b, it is possible to prevent from adhering water at the interface of the carbon fiber and aluminum, feeding imaginary related art 1 Corrosion resistance can be increased compared to electric wires. Other than that, it is the same as the related art 1.
[0016]
The method of manufacturing the aluminum coated carbon fiber composite aluminum strands 5a and 5b is as follows: (1) The aluminum coating is integrally formed on the outer periphery of the uncoated carbon fiber composite aluminum strand manufactured in the same manner as in Embodiment 1 by the conform method. And (2) a method of immersing an uncoated carbon fiber composite aluminum strand manufactured in the same manner as in Embodiment 1 in molten aluminum and attaching an aluminum coating to the surface. In any case, the aluminum coating 6 and the aluminum base material of the carbon fiber composite aluminum wire are integrated metallurgically, which increases the mechanical strength of the aluminum coated carbon fiber composite aluminum wires 5a and 5b. It is preferable in terms of improving long-term reliability.
[0017]
In Related Technology 3, instead of the aluminum wire 3, the aluminum-coated carbon fiber composite aluminum wire 5a or 5b is used, or both of them are used, and all the wires of the overhead transmission line are made of aluminum-coated carbon fiber composite aluminum. It is preferable to use a bare wire because the mechanical strength can be increased and the long-term reliability can be improved.
[0018]
[Related technology 4]
FIG. 4 shows an overhead power transmission line according to still another related technique of the present invention. In this overhead power transmission line, an anti-corrosion grease 4 is interposed between a central strength member 2 configured in the same manner as in the related art 3 and a twisted layer of an aluminum element wire 3 thereon.
Since the aluminum-coated carbon fiber composite aluminum strands 5a and 5b have an aluminum coating, the aluminum-coated carbon fiber composite wires 5a and 5b have sufficient corrosion resistance. However, there may be pinholes or the like in the aluminum coating. By interposing, the corrosion resistance can be made more reliable. Other than that, it is the same as the related art 3.
[0019]
[Related technology 5]
FIG. 5 shows an overhead transmission line according to still another related technique of the present invention. The overhead lines are those on the outer circumference of the central strength member 2 having the same structure as the related technology 3, by twisting aluminum wires 7 of segmented.
If it does in this way, an aerial transmission line with an outer diameter smaller than the aerial transmission line of related techniques 1-4 can be obtained. Other than that is the same as the related arts 1-4.
[0020]
[Embodiment 1 ]
FIG. 6 shows one embodiment of the optical fiber composite ground wire according to the present invention. In this optical fiber composite ground wire, the optical fiber core wire 9 is housed in the groove of the grooved spacer 8 and the outer periphery of the optical fiber core wire 9 is covered with an aluminum pipe 10 as a central unit 11. A plurality of aluminum-coated carbon fiber composite aluminum strands 5b are twisted into a circular cross section. In some cases, an aluminum strand is further twisted around the outer periphery of the twisted layer of the aluminum-coated carbon fiber composite aluminum strand 5b.
[0021]
The aluminum-coated carbon fiber composite aluminum strand 5b is the same as that used in the related art 3, and the reference numeral 6 is an aluminum coating. This aluminum-coated carbon fiber composite aluminum strand 5b serves both as a tensile body and an electrical conductor for the overhead ground wire.
[0022]
This optical fiber composite ground wire is a normal optical fiber composite aerial wire in which the layer of tensile strength and conductor is made of an aluminum-coated carbon fiber composite aluminum wire, and the same layer is made of an aluminum-coated steel wire. It is lighter than the ground wire and can reduce overhead wire tension. Moreover, since the linear expansion coefficient of the aluminum-coated carbon fiber composite aluminum strand is small, increase in the slackness can be kept low even when the overhead ground wire becomes hot due to a lightning strike current or the like, and the optical fiber can be more reliably protected. Furthermore, since the segment-shaped aluminum-coated carbon fiber composite aluminum strands are twisted together, the outer diameter of the overhead ground wire can be reduced, and the wind pressure load and the icing snow load can be reduced.
[0023]
【The invention's effect】
According to the present invention described above, the outer periphery of the central unit, the aluminum-coated carbon fiber composite aluminum wire segments form by a kite twisted into a circular cross section, light weight, less sag increase at high temperature, Moreover it is possible to obtain an optical fiber composite overhead ground wire has small outer diameter.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an overhead power transmission line according to a related technique of the present invention.
FIG. 2 is a cross-sectional view showing an overhead power transmission line according to another related technology of the present invention.
FIG. 3 is a cross-sectional view showing an overhead power transmission line according to still another related technique of the present invention.
FIG. 4 is a cross-sectional view showing an overhead power transmission line according to still another related technique of the present invention.
FIG. 5 is a cross-sectional view showing an overhead power transmission line according to still another related technique of the present invention.
FIG. 6 is a sectional view showing an embodiment of an optical fiber composite ground wire according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a: Carbon fiber composite aluminum strand 1b with a circular cross section 1b: Carbon fiber composite aluminum strand with a segment shape 2: Central strength member 3: Aluminum strand 4 with a circular cross section: Anticorrosive grease 5a: Aluminum coated carbon fiber composite aluminum with a circular cross section Wire 5b: Segment-shaped aluminum-coated carbon fiber composite aluminum wire 6: Aluminum-coated 7: Segment-shaped aluminum wire 8: Grooved spacer 9: Optical fiber core wire
10: Aluminum pipe
11: Central unit

Claims (1)

溝付きスペーサの溝に光ファイバ心線を収納し、その外周にアルミパイプを被せたものを中心ユニットとし、この中心ユニットの外周に、セグメント形のアルミ被覆炭素繊維複合アルミ素線を断面円形に撚り合わせなり、前記アルミ被覆炭素繊維複合アルミ素線は、線状のアルミ母材の中に多数の炭素繊維が長手方向に埋め込まれた炭素繊維複合アルミ素線の外周にアルミ被覆を一体に形成したものからなることを特徴とする光ファイバ複合架空地線。  The optical fiber core wire is housed in the groove of the grooved spacer and the outer periphery is covered with an aluminum pipe as the central unit, and the segment-shaped aluminum-coated carbon fiber composite aluminum strand is circular in cross section on the outer periphery of the central unit. The aluminum-coated carbon fiber composite aluminum wire is twisted together, and an aluminum coating is integrally formed on the outer periphery of the carbon fiber composite aluminum wire in which a large number of carbon fibers are embedded in the longitudinal direction in a linear aluminum base material. An optical fiber composite ground wire characterized by comprising
JP2000106672A 2000-04-07 2000-04-07 Optical fiber composite ground wire Expired - Lifetime JP4550218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106672A JP4550218B2 (en) 2000-04-07 2000-04-07 Optical fiber composite ground wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106672A JP4550218B2 (en) 2000-04-07 2000-04-07 Optical fiber composite ground wire

Publications (2)

Publication Number Publication Date
JP2001291429A JP2001291429A (en) 2001-10-19
JP4550218B2 true JP4550218B2 (en) 2010-09-22

Family

ID=18619805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106672A Expired - Lifetime JP4550218B2 (en) 2000-04-07 2000-04-07 Optical fiber composite ground wire

Country Status (1)

Country Link
JP (1) JP4550218B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104517684A (en) * 2013-10-08 2015-04-15 国家电网公司 Production method of aluminum-based carbon fiber composite core wire

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5458707B2 (en) * 2009-07-08 2014-04-02 日立金属株式会社 cable
CN102568687A (en) * 2012-03-05 2012-07-11 河南科信电缆有限公司 Optical fiber composite overhead ground wire and construction method
CN104425079A (en) * 2013-09-10 2015-03-18 国家电网公司 Carbon fiber enhanced aluminum alloy conductor temperature self-measuring variable frequency cable
CN104517667A (en) * 2013-10-08 2015-04-15 国家电网公司 Aluminum-based carbon fiber composite core wire with real-time temperature measuring function
CN104751966A (en) * 2013-12-31 2015-07-01 河南中录电缆有限公司 Carbon fiber reinforced aluminum alloy conductor cable
CN104752002A (en) * 2013-12-31 2015-07-01 河南中录电缆有限公司 Carbon fiber aluminum alloy temperature self-measurement photoelectric composite cable
CN104752004A (en) * 2013-12-31 2015-07-01 河南中录电缆有限公司 Carbon fiber reinforced self-temperature-measurement composite cable with aluminum alloy conductors
CN104752001A (en) * 2013-12-31 2015-07-01 河南中录电缆有限公司 Carbon fiber reinforced temperature self-measurement aluminum alloy composite cable
CN104752003A (en) * 2013-12-31 2015-07-01 河南中录电缆有限公司 Carbon fiber reinforced temperature self-measurement aluminum alloy lead cable
JP2015225835A (en) * 2014-05-30 2015-12-14 株式会社ビスキャス Overhead transmission line and production method of overhead transmission wire
JP6240030B2 (en) * 2014-06-16 2017-11-29 住友電気工業株式会社 Overhead power line
KR101658049B1 (en) * 2014-09-04 2016-09-30 한국생산기술연구원 Overhead electric cable and method of fabricating the same
CN104409140A (en) * 2014-11-27 2015-03-11 天津市新玻电力复合绝缘子制造股份有限公司 Carbon fiber composite core wire applicable to voltage below 220kV
CN105869697A (en) * 2015-01-22 2016-08-17 德尔福派克电气系统有限公司 High strength high-conductivity automobile aluminum wire
KR101785890B1 (en) 2016-08-29 2017-10-17 엘에스전선 주식회사 Central tension member for an overhead cable and the overhead cable comprising the same
KR102461640B1 (en) * 2017-02-14 2022-10-31 엘에스전선 주식회사 Central tension member for an overhead cable and the overhead cable comprising the same
KR102449183B1 (en) * 2017-09-29 2022-09-28 엘에스전선 주식회사 Central tension member for an overhead cable and the overhead cable comprising the same
KR102449116B1 (en) * 2017-09-29 2022-09-28 엘에스전선 주식회사 Ovehead transmission system having an overrhead cable and construction method thereof
CN108631246B (en) * 2018-06-12 2024-05-10 国网辽宁省电力有限公司沈阳供电公司 Pre-twisted strain clamp for carbon fiber composite core wire
CN111128449B (en) * 2019-11-11 2021-12-24 重庆泰山电缆有限公司 Built-in optical fiber low-voltage cable and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374008A (en) * 1989-08-14 1991-03-28 Furukawa Electric Co Ltd:The Aerial transmission line
JPH05120935A (en) * 1991-10-30 1993-05-18 Furukawa Electric Co Ltd:The Manufacture of optical fiber composite overhead earth wire
JPH05314819A (en) * 1992-05-12 1993-11-26 Hitachi Cable Ltd Overhead transmission cable
JPH067112U (en) * 1992-06-30 1994-01-28 古河電気工業株式会社 Overhead wire
JPH0831234A (en) * 1994-07-21 1996-02-02 Fujikura Ltd Increasing capacity overhead transmission line

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374008A (en) * 1989-08-14 1991-03-28 Furukawa Electric Co Ltd:The Aerial transmission line
JPH05120935A (en) * 1991-10-30 1993-05-18 Furukawa Electric Co Ltd:The Manufacture of optical fiber composite overhead earth wire
JPH05314819A (en) * 1992-05-12 1993-11-26 Hitachi Cable Ltd Overhead transmission cable
JPH067112U (en) * 1992-06-30 1994-01-28 古河電気工業株式会社 Overhead wire
JPH0831234A (en) * 1994-07-21 1996-02-02 Fujikura Ltd Increasing capacity overhead transmission line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104517684A (en) * 2013-10-08 2015-04-15 国家电网公司 Production method of aluminum-based carbon fiber composite core wire

Also Published As

Publication number Publication date
JP2001291429A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
JP4550218B2 (en) Optical fiber composite ground wire
US10102941B2 (en) Flexible fiber and resin composite core overhead wire and production method thereof
US10886036B2 (en) Energy efficient conductors with reduced thermal knee points and the method of manufacture thereof
CN105788738A (en) Energy efficient wire with reduced thermal knee points and the method of manufacture thereof
JPH08273439A (en) Overhead power transmission line
CN209488131U (en) The preformed conduction wire clamp of carbon fiber core conducting wire
CN216561131U (en) Anti-flashover pre-twisted wire type strain clamp
JP2847787B2 (en) Overhead transmission line
JPH07250418A (en) Anchor end part for stranded wire
JP3146450B2 (en) Lightning resistant optical fiber composite overhead ground wire
JPH10321049A (en) Composite strand and manufacture thereof and lightweight/low slackness overhead wire using the compound stand
CN219591148U (en) Ice and snow resistant and anti-freezing wire and cable
JP2588486Y2 (en) Overhead wire
JP3271491B2 (en) Optical fiber composite overhead ground wire for overhead distribution line
EP3297000A1 (en) Flexible fiber and resin composite core overhead wire and production method thereof
JP3191913B2 (en) Overhead wire
JP2819385B2 (en) Split wire and prefabricated wire series for complete prefabricated overhead wire method
CN220553317U (en) Light stranded wire
CN211319817U (en) Composite overhead conductor
CN211507207U (en) Overhead conductor with tile-shaped structure
JPH08124429A (en) Electric wire for melting ice and snow
JPS59171407A (en) Method of accelerating snowfall resistance of aerial ground wire
JPH0831234A (en) Increasing capacity overhead transmission line
JP4593027B2 (en) Self-supporting aerial optical cable and its terminal retaining structure
JP2529882Y2 (en) Power cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R151 Written notification of patent or utility model registration

Ref document number: 4550218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

EXPY Cancellation because of completion of term