JPS6242402A - Current limiting element - Google Patents

Current limiting element

Info

Publication number
JPS6242402A
JPS6242402A JP18820986A JP18820986A JPS6242402A JP S6242402 A JPS6242402 A JP S6242402A JP 18820986 A JP18820986 A JP 18820986A JP 18820986 A JP18820986 A JP 18820986A JP S6242402 A JPS6242402 A JP S6242402A
Authority
JP
Japan
Prior art keywords
temperature
current limiting
resistance value
graphite
limiting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18820986A
Other languages
Japanese (ja)
Inventor
山口 章夫
弘二 鈴木
陽三 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP18820986A priority Critical patent/JPS6242402A/en
Publication of JPS6242402A publication Critical patent/JPS6242402A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は正の抵抗温度係数を有する(所謂「PTC特性
」・ルミ流制限素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a Lumi flow limiting element having a positive temperature coefficient of resistance (so-called "PTC characteristic").

(従来の技術) 従来、電気回路の保護には過電流による溶断作用を利用
する電流ヒユーズが多用されているが、このヒユーズは
再度使用することができない欠点、かめる。
(Prior Art) Conventionally, current fuses that utilize the fusing action caused by overcurrent have been frequently used to protect electric circuits, but these fuses have the disadvantage that they cannot be used again.

又、近年、チタン酸バリウムを主成分とする磁気系PT
Cサーミスタが市販されるようになったが、この磁気系
サーミスタは初期抵抗値が高く(通常、20℃の抵抗値
が10000Ω−儂より高い)。
In addition, in recent years, magnetic PT whose main component is barium titanate has been developed.
Although C thermistors have become commercially available, these magnetic thermistors have a high initial resistance value (usually, the resistance value at 20° C. is higher than 10,000 Ω-me).

また小型のものが得られないため、小型化を指向してい
る電子回路の保護用としては不向きである。
Furthermore, since it cannot be made small, it is not suitable for protecting electronic circuits that are intended to be miniaturized.

一方、熱可塑性樹脂にニッケル、タングステン、モリブ
デンのような金属粒子およびカーボンブラックを配合し
た組成物が特開昭56−161464号公報に開示され
ている。この組成物により得られるサーミスタは実用温
度範囲における抵抗上昇が大きく、電気回路、電子回路
の電流制限素子とし、て用いた場合、雰囲気温度や自己
発熱により抵、抗値が変動し易いので1回路設計に支障
があった。
On the other hand, JP-A-56-161464 discloses a composition in which a thermoplastic resin is blended with metal particles such as nickel, tungsten, molybdenum, and carbon black. The thermistor obtained from this composition has a large resistance increase in the practical temperature range, and when used as a current limiting element in electric circuits and electronic circuits, the resistance and resistance value easily fluctuate due to ambient temperature and self-heating, so one circuit There was a problem with the design.

(発明が解決しようとする問題点) 電気・電子回#!I保護用の電流制限素子は、被保護回
路と直列に接続され、通常状態では、被保護回路の抵抗
に応じた電流(I)が該素子にも流れ、素子(抵抗値R
)にIHのジュール熱が発生する。
(The problem that the invention attempts to solve) Electricity/Electronics #! The current limiting element for I protection is connected in series with the protected circuit, and under normal conditions, a current (I) corresponding to the resistance of the protected circuit also flows through the element (resistance value R
), Joule heat of IH is generated.

素子の温度は雰囲気温度等の環境条件と放熱条件とこの
ジュール熱とが平衝し、一定温度に保たれる。
The temperature of the element is maintained at a constant temperature as environmental conditions such as ambient temperature, heat dissipation conditions, and this Joule heat are balanced.

一方、素子は正の抵抗温度特性を有しているため、平衡
温度時の固有抵抗値は、初期抵抗値に比して増加してい
るが、平衡温度時の抵抗値が初期抵抗値に比べて大きく
なりすぎると被保護回路への電流値が減少してしまい通
常状態で限流状態におちいることがしばしばあった4、 他方、初期抵抗値を低くした場合には上記の欠点は無く
なるが、被保護回路の電流値(即ち素子の電流)が限流
しない範囲が存在する。しかし、短絡等で異常電流が流
れた場合、電流制限素子がジュール熱を利用する以と、
抵抗値の大きさに発熱量が依存するため、被保護回路に
適した抵抗温度特性を有する組成物が必要であった。し
かるに、一方で実際の被保護回路の抵抗値、電流制限素
子に作用する電圧はまちまちであり、かような撞々の条
件に適応し得る電流制限素子の出現が待望されでいる。
On the other hand, since the element has a positive resistance-temperature characteristic, the specific resistance value at equilibrium temperature increases compared to the initial resistance value, but the resistance value at equilibrium temperature increases compared to the initial resistance value. If the initial resistance value becomes too large, the current value to the protected circuit decreases, often resulting in a current-limiting state under normal conditions4.On the other hand, if the initial resistance value is lowered, the above disadvantages disappear, but There is a range in which the current value of the protected circuit (ie, the current of the element) is not limited. However, when an abnormal current flows due to a short circuit, etc., the current limiting element uses Joule heat.
Since the amount of heat generated depends on the magnitude of the resistance value, a composition having resistance-temperature characteristics suitable for the circuit to be protected was required. However, on the other hand, the actual resistance value of the circuit to be protected and the voltage acting on the current limiting element vary, and the appearance of a current limiting element that can adapt to such various conditions has been eagerly awaited.

(問題点と解決するための手段) 本発明者達は上記現状に鑑み鋭意検討の結果、熱可塑性
樹脂に対し特定量の導電性粒子を混合するに際し、導電
性粒子として特定範囲の表面積を有するカーボンブラッ
クと特定数値以下の平均粒子径を有するグラファイトを
用いること、および導電性粒子合計量中に占めるグラフ
ァイトの割合を特定範囲とすることにより、初期抵抗値
が低く且つ所定温度において抵抗値が急速に増加し得る
ことを見出し、本発明を完成する【至ったものである。
(Problems and Means for Solving the Problems) In view of the above-mentioned current situation, the inventors of the present invention have conducted intensive studies and found that when mixing a specific amount of conductive particles into a thermoplastic resin, the conductive particles have a surface area within a specific range. By using carbon black and graphite having an average particle diameter below a specific value, and by setting the proportion of graphite in the total amount of conductive particles within a specific range, the initial resistance value is low and the resistance value rapidly increases at a specified temperature. The present invention has been completed.

即ち1本発明は熱DJ塑性樹脂11) 0重址部に対し
導電性粒子40〜100瓜量部が配合されており、前記
導電性粒子は表面積20〜100rr//、Fのカーボ
ンブラックおよび平均粒子径toALm以下のグラファ
イトであシ、該グラファイトは導電性粒子合計量に占め
る存在比が0.1〜0.6とされた導電性樹脂組成物が
所定形状に成形されており、該成形物表面に互いに隔離
された2個以上の電極が設けられて成るm電流制限素子
に係るものである。
That is, in the present invention, 40 to 100 parts of conductive particles are blended to 0 parts of thermal DJ plastic resin11), and the conductive particles have a surface area of 20 to 100rr//, carbon black of F and an average A conductive resin composition is formed of graphite having a particle diameter toALm or less, and the graphite has an abundance ratio of 0.1 to 0.6 in the total amount of conductive particles, and the molded product is formed into a predetermined shape. This invention relates to a current limiting element having two or more electrodes separated from each other on its surface.

本発明に係る電流制限素子は、例えば熱可塑性樹脂、カ
ーボンブラックおよびグラファイトの所定量をミキシン
グロールで均一に混練し、この混合物をシート状、フィ
ルム状、板状等の所定形状に成形し、この成形物の表面
に互いに隔離された2個以上の!極を設ける方法等によ
り得ることができる。
The current limiting element according to the present invention can be produced by uniformly kneading a predetermined amount of thermoplastic resin, carbon black, and graphite using a mixing roll, forming the mixture into a predetermined shape such as a sheet, film, or plate. Two or more pieces isolated from each other on the surface of the molded product! It can be obtained by a method of providing poles, etc.

この電流制限素子は初期抵抗値、即ち20℃における固
有抵抗値(R2O)が1〜10000Ω−口と低く、ま
たR (TP−2o )/R2Gが1〜10で、且ツR
TP/R20が少なくとも1000を示すものである。
This current limiting element has a low initial resistance value, that is, a specific resistance value (R2O) at 20°C of 1 to 10,000 Ω, and a low R (TP-2o)/R2G of 1 to 10.
TP/R20 is at least 1000.

なお、TPは電流制限素子が最大抵抗値即ち、ピーク抵
抗値(RTP)を示す温度CC)を、R(TP −20
)は温度TP (℃)よりも20℃低い温度における固
有抵抗値を各々示している。
Note that TP is the temperature CC) at which the current limiting element exhibits the maximum resistance value, that is, the peak resistance value (RTP), and R(TP -20
) indicates the specific resistance value at a temperature 20° C. lower than the temperature TP (° C.).

本発明の如き、PTC特性を有する電流制限素子におけ
る抵抗温度特性は、TP未満の温度では、抵抗変化が無
く、TPで急峻に抵抗が上昇するものが理想的であるが
、現実には、TPより低い温度から抵抗の上昇が始まる
のが通常である。PTC電流制限素子の良否を判定する
上で、 TPよりT。
Ideally, the resistance-temperature characteristic of a current limiting element having PTC characteristics as in the present invention is such that there is no change in resistance at temperatures below TP, and the resistance rises steeply at TP. It is normal for resistance to start increasing at lower temperatures. In determining the quality of the PTC current limiting element, T is better than TP.

低い温度(TP4’o)での抵抗値と、RzoO比即ち
Resistance value at low temperature (TP4'o) and RzoO ratio, ie.

抵抗温度特性に於て20℃から(TP−To)の温度範
囲の抵抗上昇勾配と、R20とTPO温度時での抵抗値
(FTP )の比、即ち抵抗変化倍数を示すのが最も通
常用いられる手段である。ここでToが10℃以下では
、現実的に急峻に抵抗と昇が始まる領域に入ってしまい
良否判定の基礎とするには不都合であり、またToが3
0℃以上では、TPで急峻に抵抗値が上昇する事を示す
道標としては、余りにもTPと差がありすぎるため、T
oを20℃とした。
In resistance temperature characteristics, it is most commonly used to indicate the resistance increase slope in the temperature range from 20°C to (TP-To) and the ratio of the resistance value at R20 and TPO temperature (FTP), that is, the resistance change multiple. It is a means. If To is below 10°C, the resistance and rise will realistically start steeply, making it inconvenient to use as a basis for pass/fail judgment.
At temperatures above 0°C, T
o was set to 20°C.

従って、R(TP −20)/R20は、20℃〜(T
P−20)℃間の抵抗と昇の勾配を示し、RTP/R2
0は、20℃時の抵抗値とTP時の抵抗値の比即ち、抵
抗の変化倍数を示すものである。
Therefore, R(TP -20)/R20 is from 20°C to (T
RTP/R2
0 indicates the ratio of the resistance value at 20° C. and the resistance value at TP, that is, the multiple of change in resistance.

R(TP −20)/R2Gの値が1未満の場合は、温
度上昇で抵抗値がR20に比較して小さくなシ、負の抵
抗温度係数を示すことになり、PTC素子に課電した場
合、昇温に伴って抵抗値が下がシ、電流が増加するとい
う甚だ不都合な結果となる。さらに10を超える場合、
実用時の素子の温度変化により、著るしく抵抗値が変化
することになり、素子を応用した電気回路の設計が非常
に困難になる。
If the value of R(TP -20)/R2G is less than 1, the resistance value will be smaller than R20 due to temperature rise, and it will show a negative temperature coefficient of resistance, and when a voltage is applied to the PTC element. As the temperature rises, the resistance value decreases and the current increases, which is a very inconvenient result. Furthermore, if it exceeds 10,
Temperature changes in the element during practical use will cause significant changes in resistance, making it extremely difficult to design electrical circuits using the element.

場合によりでは、素子温度会一定に保つ付滞装置が必要
になることもある。
In some cases, a retention device may be required to keep the element temperature constant.

又% Rrp/ R20は出来るだけ大きい方がよいが
、1000禾調では実用時電流を流した場合、自己発熱
により温度過昇が生じて素子の許容温度を超えることが
あり、また素子自体は抵抗の温度変化を利用するもので
6D、抵抗変化倍数の小さいものは用途が限定されるた
めである。
Also, it is better to have % Rrp/R20 as large as possible, but when a current of 1000 mm is applied in practical use, the temperature may rise due to self-heating and exceed the allowable temperature of the element, and the element itself has a resistance. This is because the use of 6D and small resistance change multipliers that utilize temperature changes is limited.

R20を1〜10000Ω−儂にした理由は、実用時の
設計に係るものであり、素子の形状に係る問題により限
定される。即ち、1Ω−口未虜の場合は電極間の距離が
長くなり、10000Ω−αを超える場合は電極が大き
くなる。
The reason why R20 is set to 1 to 10,000 Ω-us is related to practical design, and is limited by problems related to the shape of the element. That is, when the resistance is 1 Ω-α, the distance between the electrodes becomes long, and when it exceeds 10000 Ω-α, the electrodes become large.

次に、図面により本発明に係る電流制限素子の実例を説
明する。第1図〜第4図は電流制限素子の実例を示して
おり、第1図においては導電性樹脂組成物から成るシー
ト状の成形物11流制限素子本体)の表面および裏面の
全面ヲ覆うように銅箔のような金属箔電極2.3が熱融
着、導電性接着剤による接着等の手段により設けられて
いる。
Next, an example of the current limiting element according to the present invention will be explained with reference to the drawings. Figures 1 to 4 show examples of current limiting elements, and in Figure 1, a sheet-like molded material 11 (flow limiting element body) made of a conductive resin composition is shown so as to cover the entire surface and back surface of the current limiting element. A metal foil electrode 2.3, such as a copper foil, is provided by means of heat fusion, adhesion with a conductive adhesive, or the like.

第2図および第3図は他の実例を示しており。Figures 2 and 3 show other examples.

第2図は成形物10表面の両側端に沿って帯状の電極2
.3が設けられ、第3図においては成形物1の表面およ
び裏面に各々帯状の電極2.3が設けられている。
FIG. 2 shows band-shaped electrodes 2 along both sides of the surface of the molded product 10.
.. 3, and in FIG. 3, strip-shaped electrodes 2.3 are provided on the front and back surfaces of the molded product 1, respectively.

第4図は更に他の実例を示しており、成形物lの表面の
両側端に沿って帯状の電極2.3が設けられると共に裏
面にはその全面を覆う電極4が設けられている。
FIG. 4 shows yet another example, in which band-shaped electrodes 2.3 are provided along both sides of the front surface of the molded product 1, and an electrode 4 is provided on the back surface to cover the entire surface thereof.

本発明において、熱可塑性樹脂は特に制限されることな
く種々のものが使用できるが、実用上ポリエチレン、エ
チレン−酢酸ビニル共重合体、エチレン−アクリル酸エ
チル共爪合体等が好ましいものである。この熱可塑性樹
脂は電子線照射等によシ架橋することができる。
In the present invention, various thermoplastic resins can be used without particular limitation, but polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, and the like are practically preferred. This thermoplastic resin can be crosslinked by electron beam irradiation or the like.

この熱可塑性樹脂には導電性粒子としてカーボンブラッ
クおよびグラファイト両者の合計量が、樹脂100重量
部に対し40〜100重量部になるよう配合される。導
電性粒子の配合量が少なすぎると初期抵抗値が高くなり
、また配合量が多過ぎると樹脂組成物をシート状等の所
定形状に成形した場合、該成形物の機械的強度が小さく
なるので。
This thermoplastic resin contains carbon black and graphite as conductive particles in a total amount of 40 to 100 parts by weight based on 100 parts by weight of the resin. If the amount of conductive particles blended is too small, the initial resistance value will be high, and if the blended amount is too large, when the resin composition is molded into a predetermined shape such as a sheet, the mechanical strength of the molded product will be reduced. .

いずれも好ましくない。Both are unfavorable.

本発明においては、と記のように導電性粒子として、カ
ーボンブラックおよびグラファイトの両者が併用される
が、グラファイトは導電性粒子合計量中に占める存在比
が0.1〜0.6とされる。グラファイトの存在比が0
.1に満たない場合には、 R20およびR(TP−2
0)/ R20が大きく、存在比が0.6を超えるとR
TP/R20が小さくなるのでいずれも好ましくない。
In the present invention, both carbon black and graphite are used in combination as conductive particles as described above, and the abundance ratio of graphite in the total amount of conductive particles is 0.1 to 0.6. . The abundance ratio of graphite is 0
.. If it is less than 1, R20 and R(TP-2
0)/R20 is large and the abundance ratio exceeds 0.6, R
Both are unfavorable since TP/R20 becomes small.

なお、グラフディトの存在比は下記式により算出する。In addition, the abundance ratio of graphite is calculated by the following formula.

また1本発明において用いるカーボンブラックは表面積
が20〜100rrl/i (J3ET法による測定値
)であり、グラファイトは平均粒子径が10μm以下で
ある。カーボンブラックの表面積が20d/jiよpも
小さい場合には、該カーボンブラックの谷すよがかさば
)、樹脂pよびグラファイトとの均一混合が困難になる
ばかりでなく、この混合物を成形しても実用的な機械的
強度を有する成形物が得られず、1oOyr//gを超
えるとRT))/R20が小さくなるのでいずれも好ま
しくない、、また、グラファイトの平均粒子径が10μ
鴨よりも大きいと、R(TP−xo ) /R20が小
さくなるので好ましくない。
Further, the carbon black used in the present invention has a surface area of 20 to 100 rrl/i (measured value by J3ET method), and the average particle diameter of graphite is 10 μm or less. If the surface area of carbon black is as small as 20 d/ji, the valleys of the carbon black become bulky, which not only makes it difficult to mix uniformly with the resin and graphite, but also makes it difficult to mold this mixture. If it exceeds 1oOyr//g, RT))/R20 becomes small, so neither is preferable.Also, if the average particle size of graphite is 10μ
If it is larger than a duck, R(TP-xo)/R20 becomes small, which is not preferable.

(実施例) 以下、実施例により本発明を更に詳細に説明する。なお
、実施例中の「部」は「重量部」である。
(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that "parts" in the examples are "parts by weight."

実施例 高密度ポリエチレンベレット(三井石油化学社製、商品
名H2−5300E)100部に対し、表面積45rl
/j9のカーボンブラック40部2よび平均粒子径4μ
mのグラファイト30部を温度165℃のミキシングロ
ールにより30分間混111fル(ポリエチレンを溶融
せしめると共に三者を均一に混合する)。
Example: Surface area: 45 rl for 100 parts of high-density polyethylene pellets (manufactured by Mitsui Petrochemicals, trade name: H2-5300E)
/j9 carbon black 40 parts 2 and average particle size 4μ
Mix 30 parts of graphite (111f) for 30 minutes using a mixing roll at a temperature of 165° C. (to melt the polyethylene and mix the three components uniformly).

次に、この混合物を電熱式プレス機により温度165℃
、圧力5 kP/c14の条件で30分加熱加圧する。
Next, this mixture was heated to 165°C using an electric heating press.
, heat and pressurize for 30 minutes at a pressure of 5 kP/c14.

その後、圧力5kfi’/cAに保持したまま室温まで
冷却し、厚さQ、5ms+、縦および横が各々20(m
のシート状成形物を得る。
Thereafter, the pressure was maintained at 5 kfi'/cA and cooled to room temperature.
A sheet-like molded product is obtained.

このシート状物に10Mradの電子線を照射してポリ
エチレンを架橋した後、表裏両面に厚さ0.5mm、;
縦および横が各々20CrILの銅箔を配置し、温度1
65℃、圧力5kl//cAの条件で熱融着せしめた後
冷却し、第1図と同構造の電流制限素子(試料番号1)
を得た。
After crosslinking the polyethylene by irradiating this sheet-like material with an electron beam of 10 Mrad, a thickness of 0.5 mm was formed on both the front and back surfaces;
Copper foils of 20 CrIL are arranged vertically and horizontally, and the temperature is 1.
A current limiting element (sample number 1) having the same structure as that shown in Fig. 1 was obtained by heat-sealing at 65°C and a pressure of 5 kl//cA and then cooling.
I got it.

更に、カーボンブラックおよびグラファイトの配合1、
カーボンブラックの表面積、グラファイトの平均粒子径
を第1表に示すように設定する以外は全て試料番号1の
場合と同様に作業して、試料番号2〜7の電流制限素子
を得た。
Furthermore, carbon black and graphite formulation 1,
Current limiting elements of Sample Nos. 2 to 7 were obtained by carrying out the same operations as for Sample No. 1 except that the surface area of carbon black and the average particle diameter of graphite were set as shown in Table 1.

これら電流制限素子におけるR20 % R(TP−2
0)、RTPおよびTPの測定データ、これらデータに
基いて算出したR (TP−20)/ R20,RTP
/ R20の値を第1表に示す0なお、 R2(l s
 R(TP−20)およびRTPけディジタルマルチメ
ーターにて測定した。
R20% R(TP-2
0), RTP and TP measurement data, R (TP-20)/R20,RTP calculated based on these data
/ The value of R20 is shown in Table 1. In addition, R2(l s
Measurements were made using R (TP-20) and RTP digital multimeters.

比較のため、カーボンブラックの平均粒子径、グラファ
イトの表面積および両者の配合fk第1表に示すように
設定する以外は、全て試料番号1と同様に作業して得た
試料番号8〜16の電流制限素子のデータを同時に示す
For comparison, the currents of sample numbers 8 to 16 were obtained by performing the same operations as sample number 1 except for setting the average particle diameter of carbon black, the surface area of graphite, and the combination of both fk as shown in Table 1. The data of the limiting elements are shown at the same time.

(発明の効果) 本発明は上記実施例からも判るように、初期抵抗値(R
20)が低いはかシでなく 、 R(TP−20)/R
z。
(Effects of the Invention) As can be seen from the above embodiments, the present invention has an initial resistance value (R
20) is not a low value, but R(TP-20)/R
z.

が小さく且つRTp / R20が大きく、顕著なPT
C特性を示す特徴を有する。
is small and RTp/R20 is large, with remarkable PT
It has characteristics showing C characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はいずれも本発明に係る電流制限素子の
実例を示す側面図である。
1 to 4 are side views showing examples of the current limiting element according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 熱可塑性樹脂100重量部に対し導電性粒子40〜10
0重量部が配合されており、前記導電性粒子は表面積2
0〜100m^2/gのカーボンブラックおよび平均粒
子径10μm以下のグラファイトであり、該グラファイ
トは導電性粒子合計量に占める存在比が0.1〜0.6
とされた導電性樹脂組成物が所定形状に成形されており
、該成形物表面に互いに隔離された2個以上の電極が設
けられていることを特徴とする電流制限素子。
40-10 parts by weight of conductive particles per 100 parts by weight of thermoplastic resin
0 parts by weight is blended, and the conductive particles have a surface area of 2
0 to 100 m^2/g of carbon black and graphite with an average particle diameter of 10 μm or less, and the graphite has an abundance ratio of 0.1 to 0.6 in the total amount of conductive particles.
1. A current limiting element, characterized in that a conductive resin composition is molded into a predetermined shape, and two or more electrodes isolated from each other are provided on the surface of the molded product.
JP18820986A 1986-08-11 1986-08-11 Current limiting element Pending JPS6242402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18820986A JPS6242402A (en) 1986-08-11 1986-08-11 Current limiting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18820986A JPS6242402A (en) 1986-08-11 1986-08-11 Current limiting element

Publications (1)

Publication Number Publication Date
JPS6242402A true JPS6242402A (en) 1987-02-24

Family

ID=16219675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18820986A Pending JPS6242402A (en) 1986-08-11 1986-08-11 Current limiting element

Country Status (1)

Country Link
JP (1) JPS6242402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110702A (en) * 1987-07-24 1989-04-27 Daito Tsushinki Kk Manufacture of self-recovery type excess current protective element by grafting method
JP2008235943A (en) * 1993-09-15 2008-10-02 Raychem Corp Electrical assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568443A (en) * 1979-07-03 1981-01-28 Hitachi Cable Ltd Electrically conductive polymer composition having positive temperature coefficient characteristic and heater employing the same
JPS56150802A (en) * 1980-04-23 1981-11-21 Tdk Electronics Co Ltd Chip type ptc thermistor and method of manufacturing same
JPS5982701A (en) * 1982-11-04 1984-05-12 株式会社日立製作所 Current limiting element and method of producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568443A (en) * 1979-07-03 1981-01-28 Hitachi Cable Ltd Electrically conductive polymer composition having positive temperature coefficient characteristic and heater employing the same
JPS56150802A (en) * 1980-04-23 1981-11-21 Tdk Electronics Co Ltd Chip type ptc thermistor and method of manufacturing same
JPS5982701A (en) * 1982-11-04 1984-05-12 株式会社日立製作所 Current limiting element and method of producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110702A (en) * 1987-07-24 1989-04-27 Daito Tsushinki Kk Manufacture of self-recovery type excess current protective element by grafting method
JP2008235943A (en) * 1993-09-15 2008-10-02 Raychem Corp Electrical assembly
JP4511614B2 (en) * 1993-09-15 2010-07-28 レイケム・コーポレイション Electrical assembly

Similar Documents

Publication Publication Date Title
JP3930905B2 (en) Conductive polymer composition and device
JP3333913B2 (en) Conductive polymer composition and PTC device
JP3692141B2 (en) Conductive polymer composition
JP3930904B2 (en) Electrical device
KR100308445B1 (en) Conductive polymer composition
US5140297A (en) PTC conductive polymer compositions
US5227946A (en) Electrical device comprising a PTC conductive polymer
US4845838A (en) Method of making a PTC conductive polymer electrical device
US5195013A (en) PTC conductive polymer compositions
EP0454422A2 (en) PTC device
US4955267A (en) Method of making a PTC conductive polymer electrical device
US6074576A (en) Conductive polymer materials for high voltage PTC devices
JPH11176610A (en) Ptc element, protection device and circuit board
US4951382A (en) Method of making a PTC conductive polymer electrical device
JPS6242402A (en) Current limiting element
JP3122000B2 (en) PTC element, protection circuit and circuit board using the same
JP3622676B2 (en) Thermal material and thermal element
JPS6140360A (en) Electrically conductive resin composition, and current limiting element using said composition
EP1042765B1 (en) Method of making an electrical device
WO1994006128A1 (en) An electric device which utilizes conductive polymers having a positive temperature coefficient characteristic
JPS63244702A (en) Ptc device and manufacture of the same
JP2002175903A (en) Organic positive temperature coefficient thermistor element
US6895660B2 (en) Manufacturing method of over-current protection devices
JPH09161952A (en) Sheet-form heating body
JP2000235901A (en) Ptc resistive element