JP2000235901A - Ptc resistive element - Google Patents

Ptc resistive element

Info

Publication number
JP2000235901A
JP2000235901A JP3550699A JP3550699A JP2000235901A JP 2000235901 A JP2000235901 A JP 2000235901A JP 3550699 A JP3550699 A JP 3550699A JP 3550699 A JP3550699 A JP 3550699A JP 2000235901 A JP2000235901 A JP 2000235901A
Authority
JP
Japan
Prior art keywords
ptc
conductive filler
resistance element
conductive composition
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3550699A
Other languages
Japanese (ja)
Inventor
Mitsumune Kataoka
光宗 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP3550699A priority Critical patent/JP2000235901A/en
Publication of JP2000235901A publication Critical patent/JP2000235901A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a PTC resistive element which is stable with respect to repeated use, satisfactory in reproducibility and has positive temperature coefficient(PTC) characteristics. SOLUTION: In this PTC resistive element, thermosetting resin and conductive composition containing carbon interstitial metal-based conductive filler are used as the material. The conductive composition is molded in a sheet shape, and the mean grain diameter of the metal-based conductive filler is 0.5-50 μm. The aspect ratio of the conductive filler is desirably at least 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、PTC抵抗素子に
関し、特に、PTC(Positive Temperature Coeffic
ient;正温度係数)特性を示す導電性組成物を用いた電
気回路保護用PTC抵抗素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a PTC resistance element, and more particularly, to a PTC (Positive Temperature Coeffic).
The present invention relates to a PTC resistance element for protecting an electric circuit using a conductive composition having a characteristic of a positive temperature coefficient.

【0002】[0002]

【従来の技術】二次電池を始め、電気機器、電子機器に
用いられている電気回路保護素子としては、カーボン系
導電性フィラーを結晶性高分子マトリックスに分散させ
た有機導電性組成物が知られている。
2. Description of the Related Art As an electric circuit protection element used in electric equipment and electronic equipment including secondary batteries, an organic conductive composition in which a carbon-based conductive filler is dispersed in a crystalline polymer matrix is known. Have been.

【0003】有機導電性組成物は、結晶性高分子マトリ
ックスの結晶融点よりも低い温度にある間は、カーボン
系導電性フィラーが結晶性高分子マトリックスの非結晶
領域のみに存在し、連鎖状構造をとり導電性フィラーを
通し電子が移動する導電機構により低い抵抗率を示す。
[0003] In the organic conductive composition, while the temperature is lower than the crystal melting point of the crystalline polymer matrix, the carbon-based conductive filler is present only in the non-crystalline region of the crystalline polymer matrix. And exhibits a low resistivity due to a conductive mechanism in which electrons move through the conductive filler.

【0004】また、温度が上昇し、結晶性高分子マトリ
ックスが融解し始めると、結晶性高分子マトリックスの
体積が増加するため、結晶性高分子マトリックスの中の
カーボン系導電性フィラー間の距離が広がり、その結
果、導電経路の破壊が進み抵抗が上昇する。
When the temperature rises and the crystalline polymer matrix begins to melt, the volume of the crystalline polymer matrix increases, so that the distance between the carbon-based conductive fillers in the crystalline polymer matrix decreases. As a result, the conductive path is broken and the resistance increases.

【0005】 以上の動作原理を応用した電気回路保護
素子には、室温で低抵抗であり温度上昇とともに抵抗が
増大して電流を制限する導電性組成物、特に所望のスイ
ッチング温度(抵抗が急激に上昇する温度)で急激に抵
抗が大きくなるPTC導電性組成物が用いられる。
An electric circuit protection element using the above operation principle includes a conductive composition which has a low resistance at room temperature and increases the resistance as the temperature rises to limit the current, particularly a desired switching temperature (the resistance is rapidly increased). A PTC conductive composition whose resistance rapidly increases at a rising temperature) is used.

【0006】[0006]

【発明が解決しようとする課題】しかし、結晶性高分子
マトリックスを利用した従来のPTC導電性組成物は、
熱可塑性樹脂を利用しているので、耐熱性に限界があ
り、繰り返し使用に耐えられない。そこで、熱硬化型樹
脂を高分子マトリックスとして利用することが考えられ
るが、熱硬化型樹脂は、加熱成形時に熱膨張と架橋によ
る体積収縮が複雑に関連し、PTC特性の抑制を困難に
していた。
However, a conventional PTC conductive composition using a crystalline polymer matrix is:
Since a thermoplastic resin is used, the heat resistance is limited and cannot be used repeatedly. Therefore, it is conceivable to use a thermosetting resin as a polymer matrix. However, the thermosetting resin has a complicated relationship between thermal expansion and volume shrinkage due to cross-linking during heat molding, which makes it difficult to suppress PTC characteristics. .

【0007】そこで、本発明の目的は、繰り返し使用に
対して安定で、かつ、再現性の良好なPTC特性を有す
る電気回路保護用PTC抵抗素子を提供することにあ
る。
An object of the present invention is to provide a PTC resistance element for protecting an electric circuit, which is stable against repeated use and has PTC characteristics with good reproducibility.

【0008】[0008]

【課題を解決するための手段】本発明のPTC抵抗素子
は、熱硬化性樹脂と平均粒径が0.5〜50μmの導電
性フィラーを含むPTC導電性組成物を熱硬化させたも
のであり、導電性フィラーの体積分率と熱硬化性樹脂の
体積分率との比を35対64から65対35としてい
る。これにより、PTC抵抗素子の20℃における抵抗
率は、30Ωcm以下となり、また、スイッチング温度
以上で抵抗率が10Ωcm以上を示す。
The PTC resistance element of the present invention is obtained by thermosetting a PTC conductive composition containing a thermosetting resin and a conductive filler having an average particle size of 0.5 to 50 μm. The ratio between the volume fraction of the conductive filler and the volume fraction of the thermosetting resin is from 35:64 to 65:35. Thereby, the resistivity at 20 ° C. of the PTC resistance element becomes 30 Ωcm or less, and the resistivity shows 10 3 Ωcm or more at a switching temperature or higher.

【0009】PTC抵抗素子の作製時、所望するスイッ
チング温度以上に加熱して熱硬化させることが好まし
い。
When the PTC resistance element is manufactured, it is preferable that the PTC resistance element is heated to a desired switching temperature or more to be thermally cured.

【0010】本発明では、使用する熱硬化性樹脂及び硬
化剤の種類を所望のスイッチング温度に基づき選定し、
利用目的に応じて熱可塑性充填剤を併用することで、7
0〜135℃の中温領域に安定なPTC特性を示す導電
性組成物が得られることを見い出した。
In the present invention, the type of thermosetting resin and curing agent to be used is selected based on a desired switching temperature,
By using a thermoplastic filler according to the purpose of use, 7
It has been found that a conductive composition exhibiting stable PTC characteristics in a medium temperature range of 0 to 135 ° C. can be obtained.

【0011】導電性フィラーは、体積変化を起こしやす
い高分子成分を少なくして、粒径が不揃いの材料を併用
すると安定な導電性を示すが、PTC導電性組成物で
は、PTCスイッチングが瞬時に起こることが好まし
い。
The conductive filler exhibits stable conductivity when used together with a material having an irregular particle diameter by reducing a polymer component which is liable to change in volume. However, in the case of a PTC conductive composition, PTC switching is instantaneous. Preferably it occurs.

【0012】本発明では、導電性フィラーの粒径が大き
いものほど、成形時、抵抗源となる高分子成分で形成さ
れる粒子間距離にばらつきが生じ、短絡箇所ができやす
く、しかも、粒子が大きいと、高分子の熱変形に敏感に
反応せず、スイッチング効果が鈍くなること、また、粒
子が小さすぎると、高分子の熱変形が分散され、抵抗変
化が小さくなり、PTC効果が小さくなることより、導
電性フィラーの粒径は揃ったものを用いると、効果的で
あることを見い出した。また、導電性フィラーとしてア
スペクト比を3以上のものを用いることで、導電性及び
PTC特性が改善されることも見い出した。
In the present invention, as the particle size of the conductive filler is larger, the distance between the particles formed by the polymer component serving as a resistance source is more varied during molding, and a short-circuit portion is more likely to occur. If it is large, it does not react sensitively to the thermal deformation of the polymer, and the switching effect becomes dull. If the particle is too small, the thermal deformation of the polymer is dispersed, the resistance change becomes small, and the PTC effect becomes small. Accordingly, it has been found that it is effective to use conductive fillers having a uniform particle size. It has also been found that the use of a conductive filler having an aspect ratio of 3 or more improves the conductivity and PTC characteristics.

【0013】即ち、本発明は、PTC抵抗素子であっ
て、その材質を熱硬化性樹脂とカーボン侵入型金属系導
電性フィラーを含む導電性組成物としており、前記導電
性組成物をシート状に成形したPTC抵抗素子である。
That is, the present invention relates to a PTC resistance element, in which the material is a conductive composition containing a thermosetting resin and a carbon intrusion type metal-based conductive filler, and the conductive composition is formed into a sheet. It is a molded PTC resistance element.

【0014】また、本発明は、前記導電性フィラーを、
その平均粒径が0.5〜50μmとするPTC抵抗素子
である。
Further, the present invention provides the above-mentioned conductive filler,
The PTC resistance element has an average particle size of 0.5 to 50 μm.

【0015】また、本発明は、前記導電性フィラーのア
スペクト比を3以上とするPTC抵抗素子である。
Further, the present invention is a PTC resistance element in which the conductive filler has an aspect ratio of 3 or more.

【0016】[0016]

【発明の実施の形態】本発明の実施の形態によるPTC
抵抗素子について、実施例により、以下に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS PTC according to an embodiment of the present invention
An example of the resistance element will be described below.

【0017】[0017]

【実施例】(実施例1)ビスフェノール系エポキシ樹脂
(商品名;アダルライト)36重量部とエポキシ用硬化
剤4重量部を混合し、さらに、針状導電性フィラー;T
iC60重量部を加え、3本ロールにより均質に分散さ
せて、本発明の導電性組成物を製造した。
(Example 1) 36 parts by weight of a bisphenol-based epoxy resin (trade name: Adallite) and 4 parts by weight of a curing agent for epoxy were mixed, and a needle-shaped conductive filler;
60 parts by weight of iC was added, and the mixture was uniformly dispersed with a three-roll mill to produce a conductive composition of the present invention.

【0018】次いで、片面を粗面加工した厚さ25μm
のニッケル箔2枚の粗面間に前記導電性組成物を挟み、
厚さ300μmになるように加圧、延展後150℃で1
5分熱硬化させた。
Then, one side is roughened to a thickness of 25 μm.
Sandwiching the conductive composition between two rough surfaces of nickel foil of
Pressed to a thickness of 300 μm.
Heat cured for 5 minutes.

【0019】PTC抵抗素子は、ニッケル箔に接合され
た前記導電性組成物を外径10mmφ:内径6mmφの
リング状に切り出し作製した。
The PTC resistance element was produced by cutting out the conductive composition bonded to the nickel foil into a ring shape having an outer diameter of 10 mmφ and an inner diameter of 6 mmφ.

【0020】このPTC抵抗素子の繰り返し電流遮断時
の抵抗変化を測定した。その結果をを表1、表2に示
す。
The resistance change of the PTC resistance element when the current was repeatedly interrupted was measured. The results are shown in Tables 1 and 2.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】即ち、室温における抵抗率が10Ωcmで
あり、電圧30V、電流5Aを通電し、3秒でスイチィ
ングし、繰り返し電流遮断を10回施した場合でも、自
然冷却して室温まで下がったときの抵抗値は、初期抵抗
の2倍以内であることが確認された。
That is, even when the resistivity at room temperature is 10 Ωcm, a voltage of 30 V and a current of 5 A are applied, switching is performed in 3 seconds, and the current is repeatedly interrupted 10 times, the temperature is lowered when cooled down to room temperature naturally. It was confirmed that the resistance value was within twice the initial resistance.

【0024】(実施例2)ビスフェノール系エポキシ樹
脂(商品名;アダルライト)36重量部とエポキシ用硬
化剤4重量部を混合し、さらに、分級により平均粒径
1.5μmとした導電性フィラー;TiC60重量部を
加え、3本ロールにより均質に分散させて、本発明の導
電性組成物を製造した。
(Example 2) 36 parts by weight of a bisphenol-based epoxy resin (trade name: Adallite) and 4 parts by weight of a curing agent for epoxy were mixed, and further, a conductive filler having an average particle size of 1.5 μm by classification; 60 parts by weight of TiC was added, and the mixture was uniformly dispersed with a three-roll mill to produce a conductive composition of the present invention.

【0025】次いで、片面を粗面加工した厚さ25μm
のニッケル箔2枚の粗面間に前記導電性組成物を挟み、
厚さ300μmになるように加圧、延展後150℃で1
5分熱硬化させた。
Next, one side is roughened to a thickness of 25 μm.
Sandwiching the conductive composition between two rough surfaces of nickel foil of
Pressed to a thickness of 300 μm.
Heat cured for 5 minutes.

【0026】PTC抵抗素子は、ニッケル箔に接合され
た前記導電性組成物を外径10mmφ:内径6mmφの
リング状に切り出し作製した。
The PTC resistance element was prepared by cutting the conductive composition bonded to the nickel foil into a ring shape having an outer diameter of 10 mmφ and an inner diameter of 6 mmφ.

【0027】このPTC抵抗素子の繰り返し電流遮断時
の抵抗変化を測定した。その結果をを表3、表4に示
す。
The resistance change of the PTC resistance element when the current was repeatedly interrupted was measured. The results are shown in Tables 3 and 4.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】即ち、室温における抵抗率が10Ωcmで
あり、電圧30V、電流5Aを通電すると、3秒でスイ
チィングし、繰り返し電流遮断を10回施した場合で
も、自然冷却して室温まで下がったときの抵抗値は、初
期抵抗の1.55倍以内と分級粉を用いない時に比べて
30%程度PTC特性が向上し、安定な繰り返し電流遮
断を行えることが確認された。
That is, when a resistivity at room temperature is 10 Ωcm, a voltage of 30 V and a current of 5 A are applied, switching is performed in 3 seconds. The resistance value was within 1.55 times the initial resistance, and the PTC characteristic was improved by about 30% as compared with the case where the classifying powder was not used, and it was confirmed that stable repetitive current interruption was possible.

【0031】(実施例3)ビスフェノール系エポキシ樹
脂(商品名;アダルライト)36重量部とエポキシ用硬
化剤4重量部を混合し、さらに、長軸が3μm、短軸が
1μmのアスペクト比3の導電性フィラー;TiC60
重量部を加え、3本ロールにより均質に分散させて、本
発明の導電性組成物を製造した。
Example 3 36 parts by weight of a bisphenol-based epoxy resin (trade name: Adallite) and 4 parts by weight of a curing agent for epoxy were mixed, and the major axis was 3 μm, and the minor axis was 1 μm. Conductive filler; TiC60
The conductive composition of the present invention was produced by adding a part by weight and uniformly dispersing the mixture using a three-roll mill.

【0032】次いで、片面を粗面加工した厚さ25μm
のニッケル箔2枚の粗面間に前記導電性組成物を挟み、
厚さ300μmになるように加圧、延展後、150℃で
15分熱硬化させた。
Then, one side is roughened to a thickness of 25 μm.
Sandwiching the conductive composition between two rough surfaces of nickel foil of
After being pressurized and spread to a thickness of 300 μm, it was thermally cured at 150 ° C. for 15 minutes.

【0033】PTC抵抗素子は、ニッケル箔に接合され
た前記導電性組成物を外径10mmφ:内径6mmφの
リング状に切り出し作製した。
The PTC resistance element was prepared by cutting the conductive composition bonded to the nickel foil into a ring shape having an outer diameter of 10 mmφ and an inner diameter of 6 mmφ.

【0034】このPTC抵抗素子の初期抵抗値を測定し
た結果、室温における抵抗率が8Ωcmとなり、球状粒
(平均粒径;1.5μm)を用いて作製したPTC抵抗
素子よりも抵抗値を20%程度低減させることができ
た。
As a result of measuring the initial resistance value of this PTC resistance element, the resistivity at room temperature was 8 Ωcm, and the resistance value was 20% higher than that of a PTC resistance element manufactured using spherical particles (average particle size: 1.5 μm). It could be reduced to a degree.

【0035】[0035]

【発明の効果】以上、本発明によれば、繰り返し使用に
対して安定で、かつ、再現性の良好なPTC特性を有す
るPTC抵抗素子を提供できる。
As described above, according to the present invention, it is possible to provide a PTC resistance element which is stable against repeated use and has good PTC characteristics with good reproducibility.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 PTC抵抗素子であって、その材質を熱
硬化性樹脂とカーボン侵入型金属系導電性フィラーを含
む導電性組成物としており、前記導電性組成物をシート
状に成形してなることを特徴とするPTC抵抗素子。
1. A PTC resistor element comprising a conductive composition containing a thermosetting resin and a carbon interstitial metal-based conductive filler, wherein the conductive composition is formed into a sheet. A PTC resistance element characterized by the above-mentioned.
【請求項2】 前記導電性フィラーは、その平均粒径が
0.5〜50μmであることを特徴とする請求項1記載
のPTC抵抗素子。
2. The PTC resistance element according to claim 1, wherein the conductive filler has an average particle size of 0.5 to 50 μm.
【請求項3】 前記導電性フィラーのアスペクト比が3
以上であることを特徴とする請求項1または2記載のP
TC抵抗素子。
3. An aspect ratio of the conductive filler is 3
The P according to claim 1 or 2, wherein
TC resistance element.
JP3550699A 1999-02-15 1999-02-15 Ptc resistive element Pending JP2000235901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3550699A JP2000235901A (en) 1999-02-15 1999-02-15 Ptc resistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3550699A JP2000235901A (en) 1999-02-15 1999-02-15 Ptc resistive element

Publications (1)

Publication Number Publication Date
JP2000235901A true JP2000235901A (en) 2000-08-29

Family

ID=12443657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3550699A Pending JP2000235901A (en) 1999-02-15 1999-02-15 Ptc resistive element

Country Status (1)

Country Link
JP (1) JP2000235901A (en)

Similar Documents

Publication Publication Date Title
US5985182A (en) High temperature PTC device and conductive polymer composition
JP3930905B2 (en) Conductive polymer composition and device
US5837164A (en) High temperature PTC device comprising a conductive polymer composition
US4545926A (en) Conductive polymer compositions and devices
JP3785415B2 (en) Conductive polymer composition
JP3930904B2 (en) Electrical device
US6074576A (en) Conductive polymer materials for high voltage PTC devices
WO2012003661A1 (en) Conductive composite material with positive temperature coefficient of resistance and over-current protection component
JPH0819174A (en) Protective circuit with ptc device
JP2007221119A (en) Overcurrent protection element
US5817423A (en) PTC element and process for producing the same
TW513730B (en) Method for producing conductive polymeric composition
JP2000235901A (en) Ptc resistive element
JP2002012777A (en) Electroconductive polymer composition containing fibril fiber and its element using the same
CN107141665A (en) A kind of high temperature modification resistive element and preparation method thereof
JP2000235902A (en) Ptc resistive element
JP2001085203A (en) Ptc composition
JPS63244702A (en) Ptc device and manufacture of the same
JPS6242402A (en) Current limiting element
US6895660B2 (en) Manufacturing method of over-current protection devices
KR100985965B1 (en) Manufacturing method of polymer ptc thermistor which has fast recovery time back to post trip resistance level
JPH1187106A (en) Manufacture of ptc element
JP2003243205A (en) Ptc element
JP2001085202A (en) Ptc composition
JPH11329675A (en) Ptc composition