JPS6242245B2 - - Google Patents

Info

Publication number
JPS6242245B2
JPS6242245B2 JP55165580A JP16558080A JPS6242245B2 JP S6242245 B2 JPS6242245 B2 JP S6242245B2 JP 55165580 A JP55165580 A JP 55165580A JP 16558080 A JP16558080 A JP 16558080A JP S6242245 B2 JPS6242245 B2 JP S6242245B2
Authority
JP
Japan
Prior art keywords
wavelength
optical fiber
light
optical
chromatic dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55165580A
Other languages
Japanese (ja)
Other versions
JPS5789704A (en
Inventor
Nobuyuki Imoto
Sunao Uesugi
Masahiro Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP55165580A priority Critical patent/JPS5789704A/en
Publication of JPS5789704A publication Critical patent/JPS5789704A/en
Publication of JPS6242245B2 publication Critical patent/JPS6242245B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/2519Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using Bragg gratings

Description

【発明の詳細な説明】 この発明は光フアイバ伝送において、波長スペ
クトルの拡がりを持つ光が、波長分散を持つ光フ
アイバを伝搬したときに生ずる遅延時間差を打消
す等化方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an equalization method for canceling delay time differences that occur when light with a spread wavelength spectrum propagates through an optical fiber with wavelength dispersion in optical fiber transmission.

単一モード光フアイバの伝送帯域は主に波長分
散により制限される。光フアイバは波長1.1〜1.6
μmで低損失となるので、この波長域で波長分散
を除去することが望ましい。フアイバのコア径や
比屈折率差を変化させることにより波長分散が零
となる波長をある程度制御することはできる。し
かし、精度良く、その制御を行うことは困難であ
り、接続損失も増加する。従来光フアイバの外部
で波長分散を等化するものとして、回折格子や複
屈折フイルタの分波特性を利用し、光源の波長域
をいくつかに分離し、各波長毎に異る遅延を与え
た後合流するものがあつた。これらの装置は大が
かりになり、挿入損失も大きいので、この発明者
は先に導波路中のグレーテイングの波長選択反射
特性を利用した等化器を考案した(特願昭55−
67061、特願昭55−115840)。
The transmission band of single mode optical fibers is mainly limited by chromatic dispersion. Optical fiber has a wavelength of 1.1 to 1.6
Since the loss is low in μm, it is desirable to remove chromatic dispersion in this wavelength range. The wavelength at which wavelength dispersion becomes zero can be controlled to some extent by changing the core diameter and relative refractive index difference of the fiber. However, it is difficult to control this with high precision, and connection loss also increases. Conventionally, wavelength dispersion is equalized outside the optical fiber by using the demultiplexing characteristics of a diffraction grating or birefringence filter, dividing the wavelength range of the light source into several, and applying a different delay to each wavelength. After that, there was something to join. Since these devices are large-scale and have large insertion losses, the inventor first devised an equalizer that utilized the wavelength-selective reflection characteristics of the grating in the waveguide (Japanese Patent Application No. 1983-
67061, patent application No. 115840).

第1図にその等化器の構造を示す。この等化器
は導波路を構成するコア1とクラツド2とよりな
り、その導波路1にグレーテイング4,5,6が
設けられ、そのグレーテイング4,5,6の周期
は波長λ,λ,λを選択的に反射するよう
に選定されている。波長λ,λ,λの混合
した光源よりの光7は光サーキユレータ3を通じ
て導波路1の一端に入射され、波長λ,λ
λの各成分はグレーテイング4,5,6の位置
により異る遅延を受けて反射し、光サーキユレー
タ3に戻り、これより外部へ出射光8として導か
れる。従つて光源の波長λ,λ,λ及び伝
送用光フアイバの波長分散の値から決まる遅延量
を打消す位置にグレーテイング4,5,6を設け
ることにより、波長分散を等化することができ
る。
Figure 1 shows the structure of the equalizer. This equalizer consists of a core 1 and a cladding 2 that constitute a waveguide, and the waveguide 1 is provided with gratings 4, 5, and 6, and the periods of the gratings 4, 5, and 6 are equal to the wavelength λ 1 , It is selected to selectively reflect λ 2 and λ 3 . Light 7 from a light source with mixed wavelengths λ 1 , λ 2 , λ 3 is incident on one end of the waveguide 1 through an optical circulator 3 , and the light 7 with wavelengths λ 1 , λ 2 , λ 3 is input to one end of the waveguide 1 .
Each component of λ 3 is reflected with a different delay depending on the position of the gratings 4, 5, and 6, returns to the optical circulator 3, and is guided to the outside as an output light 8. Therefore, by providing the gratings 4, 5, and 6 at positions that cancel the amount of delay determined by the wavelengths λ 1 , λ 2 , and λ 3 of the light source and the chromatic dispersion value of the transmission optical fiber, the chromatic dispersion is equalized. be able to.

以上の各種の等化器は、一定の波長域及び波長
間隔の光源を仮定して設計されるので、光源の種
類又は経時変化に対する適応性が悪い。特に光源
の波長の変動に対応する構造の実現が難しく、設
置時の微調整も難しいという欠点があつた。
The various equalizers described above are designed assuming a light source with a fixed wavelength range and wavelength interval, and therefore have poor adaptability to the type of light source or changes over time. In particular, it was difficult to create a structure that could accommodate variations in the wavelength of the light source, and it was also difficult to make fine adjustments during installation.

この発明はこれらの欠点を除去するため伝送光
のスペクトルを反転することにより遅延時間を等
化するもので、特にそのスペクトル反転に誘導ラ
マン効果を利用する波長分散等化方式を提供する
ものである。
In order to eliminate these drawbacks, this invention equalizes the delay time by inverting the spectrum of transmitted light, and in particular provides a wavelength dispersion equalization method that utilizes the stimulated Raman effect for spectrum inversion. .

第2図はこの発明の原理を説明する光フアイバ
伝送系を示す図である。長さL1及びL2の伝送用
光フアイバ11及び12はスペクトル反転器13
を通じて互に接続されている。光フアイバ11及
び12はそれぞれ考えている波長域でs1及びs2
(ps/Km・nm)の波長分散を持つ。また、光源の
波長拡がりを説明を簡単にするためλ,λ
λの3本の波長で代表させる。例えば光源とし
て半導体レーザを用いれば、λ,λ,λ
その縦モードとなる。光フアイバ11に同時に入
射したλ,λ,λの光パルス7は伝搬後に
λ,λ,λ毎に時間差を持ち、S1>0の場
合はλ,λ,λの順に到着する。次にスペ
クトル反転器13によりλはλ′に、λ
λ′に、λはλ′に変換される。λ′
λ′,λ′の波長順序は逆転しているので、光
フアイバ12の波長分散S2により3つの波長の時
間差が無くなる方向に遅延が与えられる。実際に
は光フアイバ11及び12の波長分散及び長さは
異る。このとき光フアイバ12の伝搬後に生ずる
時間差Tは次のように計算される。
FIG. 2 is a diagram showing an optical fiber transmission system for explaining the principle of the present invention. Transmission optical fibers 11 and 12 with lengths L 1 and L 2 are connected to a spectral inverter 13
are interconnected through. The optical fibers 11 and 12 are s 1 and s 2 in the considered wavelength range, respectively.
It has wavelength dispersion of (ps/Km・nm). Also, in order to simplify the explanation of the wavelength spread of the light source, λ 1 , λ 2 ,
It is represented by three wavelengths of λ3 . For example, if a semiconductor laser is used as a light source, λ 1 , λ 2 , and λ 3 are its longitudinal modes. The optical pulses 7 of λ 1 , λ 2 , λ 3 that are simultaneously incident on the optical fiber 11 have a time difference for each λ 1 , λ 2 , λ 3 after propagation, and in the case of S 1 >0, the optical pulses 7 of λ 1 , λ 2 , λ They arrive in the order of 3 . Next, the spectrum inverter 13 converts λ 1 into λ' 1 , λ 2 into λ' 2 , and λ 3 into λ' 3 . λ′ 1 ,
Since the wavelength order of λ' 2 and λ' 3 is reversed, the chromatic dispersion S 2 of the optical fiber 12 provides a delay in the direction of eliminating the time difference between the three wavelengths. In reality, the wavelength dispersion and length of optical fibers 11 and 12 are different. At this time, the time difference T that occurs after propagation through the optical fiber 12 is calculated as follows.

T=△λ(L1s1+L2s2) (1) ここで {T:λ′とλ′の光の遅延時間
差 △λ=λ′−λ′=λ−λ} 従つて波長分散が完全に等化される条件は L1s1=L2s2 (2) となる。
T=△λ(L 1s1 +L 2s2 ) (1) Here, {T: delay time difference between the lights of λ′ 1 and λ′ 2 △λ=λ′ 1 −λ′ 22 −λ 1 } Therefore, the wavelength The condition for completely equalizing the variance is L 1s1 =L 2s2 (2).

この発明ではスペクトル反転器13を誘導ラマ
ン効果により実現するものである。第3図に誘導
ラマン散乱によるスペクトル反転器13の構成を
示す。ラマン散乱を起す媒質14は後述のラマン
ゲインが広い波長範囲で存在すること及び媒質長
が長くできることから、石英系光フアイバが適し
ている。波長λ,λ,λの信号光は大出力
レーザ15からの波長λpの励起光と半透鏡16
で混合して媒質14の一端に入射させる。大出力
レーザ15は例えばYAGレーザ(波長1.06μ
m,1.32μm)、Er 8+−CaF2レーザ(1.56μ
m)、光パラメトリツク発振器(1〜2μmを含
む波長範囲)等が利用できる。媒質14の出力光
は光学フイルタ17でスペクトル変換後のλ′
,λ′,λ′成分光と他の波長成分光とに分
離される。信号光、励起光、アンチーストークス
(anti−Stokes)光の間隔を0.02μm程度に選べ
ば、これらを分離する光学フイルタ17は誘電体
多層膜フイルタにより容易に得られる。また半透
鏡16も、信号光を100%透過し、励起光を100%
反射するフイルタとすることにより、高効率の混
合が達成される。
In this invention, the spectrum inverter 13 is realized by the stimulated Raman effect. FIG. 3 shows the configuration of the spectrum inverter 13 using stimulated Raman scattering. As the medium 14 that causes Raman scattering, a silica-based optical fiber is suitable because the Raman gain described below exists in a wide wavelength range and the medium length can be made long. Signal lights with wavelengths λ 1 , λ 2 , and λ 3 are combined with excitation light of wavelength λ p from a high-power laser 15 and a semi-transparent mirror 16 .
The mixture is mixed with the ion beam and introduced into one end of the medium 14. The high output laser 15 is, for example, a YAG laser (wavelength 1.06μ
m, 1.32 μm), E r 8+ −C a F 2 laser (1.56 μm
m), an optical parametric oscillator (wavelength range including 1 to 2 μm), etc. can be used. The output light of the medium 14 is spectral-converted by the optical filter 17 and becomes λ'.
1 , λ' 2 , λ ' component light and other wavelength component lights. If the interval between the signal light, the excitation light, and the anti-Stokes light is selected to be about 0.02 μm, the optical filter 17 that separates them can be easily obtained by using a dielectric multilayer film filter. The semi-transparent mirror 16 also transmits 100% of the signal light and 100% of the excitation light.
By using a reflective filter, highly efficient mixing is achieved.

公知のように、光フアイバのラマンゲインの波
長特性は、励起光Pの波長λpを中心に約0.3μm
程度広がつている。励起光より長波長側に信号光
Sを注入すると、信号光S自身が増幅される
(Stokes光の増幅)と同時に、短波長側にanti−
Stokes光ASが発生する。第4図aにはラマンゲ
インの波長特性第4図bには励起光Pと信号光S
とanti−Stokes光ASとの波長関係を示した。光
ASは本来は光周波数軸上で励起光Pに関して信
号光Sを反転した位置に生ずる。従つて光P,
S,ASの各波長をλp,λs,λAsとすれば、λp
=2/(1/λ+1/λAs)となる。今これらの波
長が 接近している場合を扱つているので、波長軸上で
光S,P,ASが等間隔になると考えてよい。従
つて第3図の場合のように信号光Sとして波長λ
,λ,λの成分が同時に入射すると、波長
順序が入れ替つてanti−Stokes光ASとして波長
λ′,λ′,λ′の成分が発生する。これら
の波長関係を第5図に示す。λ′,λ′,λ′
の成分を新たに伝送用の信号光とすることによ
り、波長反転を行うことができる。
As is well known, the wavelength characteristic of the Raman gain of an optical fiber is approximately 0.3 μm around the wavelength λ p of the pumping light P.
It is becoming more and more widespread. When the signal light S is injected into the longer wavelength side than the pumping light, the signal light S itself is amplified (Stokes light amplification), and at the same time anti-
Stokes light AS occurs. Figure 4a shows the wavelength characteristics of Raman gain. Figure 4b shows the pumping light P and the signal light S.
The wavelength relationship between this and anti-Stokes optical AS is shown. light
AS originally occurs at a position where the signal light S is inverted with respect to the pumping light P on the optical frequency axis. Therefore, light P,
If the wavelengths of S and AS are λ p , λ s , and λ As , then λ p
=2/(1/λ s +1/λ As ). Since we are now dealing with the case where these wavelengths are close to each other, it can be assumed that the lights S, P, and AS are equally spaced on the wavelength axis. Therefore, as in the case of Fig. 3, the wavelength λ is used as the signal light S.
When the components of wavelengths 1 , λ 2 and λ 3 are incident simultaneously, the wavelength order is switched and components of wavelengths λ' 3 , λ' 2 and λ' 1 are generated as anti-Stokes light AS. The relationship between these wavelengths is shown in FIG. λ′ 3 , λ′ 2 , λ′
Wavelength inversion can be performed by newly using component 1 as signal light for transmission.

数値例として、光源の半導体レーザの縦モード
が1.60,1.598,1.596,1.594,1.592,1.590μm
の6つの波長で発振しているとし、伝送用光フア
イバの波長分散を20ps/Km・nmとするとき、第
1の伝送用光フアイバ11を20Km伝搬した後4ns
の時間差を生ずる。これをラマン媒質である長さ
約5〜50mの光フアイバに入射し、励起光として
光パラメトリツク発振器による波長1.55μmの光
を同時に入射すれば、波長1.50,1.502,1.504,
1.506,1.508μmのanti−Stokes光を発生する。
1.5μm近傍の波長で20ps/Km・nmの波長分散を
持つ第2の伝送用フアイバ12の長さを20Kmとす
れば、第2の光フアイバ伝搬後には遅延時間差は
零となる。
As a numerical example, the longitudinal mode of the semiconductor laser of the light source is 1.60, 1.598, 1.596, 1.594, 1.592, 1.590 μm.
If the wavelength dispersion of the transmission optical fiber is 20 ps/Km・nm, then after propagating 20 km through the first transmission optical fiber 11, the oscillation time is 4 ns.
This causes a time difference. If this is input into an optical fiber with a length of about 5 to 50 m, which is a Raman medium, and light with a wavelength of 1.55 μm from an optical parametric oscillator is simultaneously input as excitation light, wavelengths of 1.50, 1.502, 1.504,
Generates anti-Stokes light of 1.506 and 1.508 μm.
If the length of the second transmission fiber 12 having a chromatic dispersion of 20 ps/Km·nm at a wavelength near 1.5 μm is 20 km, the delay time difference becomes zero after propagation through the second optical fiber.

この発明においてラマンゲインの大きな媒質1
4を用いるか或いは励起光強度を増せば、注入し
た信号光より強いanti−Stokes光が得られるの
で、光信号の増幅と等化を同時に行うことが可能
である。
In this invention, medium 1 with large Raman gain
4 or by increasing the pumping light intensity, anti-Stokes light stronger than the injected signal light can be obtained, so it is possible to amplify and equalize the optical signal at the same time.

以上説明したように、この発明は波長スペクト
ルを反転する等化方式であるので、伝送距離や波
長分散の異るフアイバに対しても同じ装置を一ケ
所のみに挿入するだけでよい。またラマンゲイン
は波長拡がりが広いので、光源の波長が変化して
もスペクトル反転の性質は不変であり、等化能力
は変化しない。さらに、ゲインのある媒質を用い
るので増幅も同時に行うことが可能であるなどの
利点がある。
As explained above, since the present invention is an equalization method that inverts the wavelength spectrum, it is only necessary to insert the same device at one location even for fibers with different transmission distances and wavelength dispersions. Furthermore, since Raman gain has a wide wavelength spread, the property of spectrum inversion remains unchanged even if the wavelength of the light source changes, and the equalization ability does not change. Furthermore, since a medium with gain is used, there is an advantage that amplification can be performed at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のグレーテイング付導波路による
遅延等化器を示す平面図、第2図はこの発明の原
理を説明する光フアイバ伝送系を示す図、第3図
は第2図におけるスペクトル反転器の構成を示す
図、第4図は光フアイバのラマンゲイン及び、励
起光P、信号光Sとanti−Stokes光ASの波長関
係を示す図、第5図は信号光とanti−Stokes光の
波長反転の関係を示す図である。 11,12:伝送用光フアイバ、13:スペク
トル反転器、14:ラマン媒質用フアイバ、1
5:励起光源としての大出力レーザ、16:半透
鏡、17:光学フイルタ。
Figure 1 is a plan view showing a delay equalizer using a conventional grating waveguide, Figure 2 is a diagram showing an optical fiber transmission system explaining the principle of this invention, and Figure 3 is spectrum inversion in Figure 2. Figure 4 shows the Raman gain of the optical fiber and the wavelength relationship between pumping light P, signal light S and anti-Stokes light AS, and Figure 5 shows the wavelengths of signal light and anti-Stokes light. FIG. 3 is a diagram showing an inversion relationship. 11, 12: Transmission optical fiber, 13: Spectral inverter, 14: Raman medium fiber, 1
5: High power laser as excitation light source, 16: Semi-transparent mirror, 17: Optical filter.

Claims (1)

【特許請求の範囲】 1 中心波長λaのまわりに波長幅を有する光が
伝送用光フアイバを伝搬し、その光フアイバの波
長分散により生ずる波長毎の遅延時間差を等化す
る伝送方式において、伝送用光フアイバの或る地
点P以前の長さをL1、P以前の光フアイバの波
長λaにおける波長分散をs1、P以後の長さを
L2、P以後の光フアイバの波長λbにおける波長
分散をs2とするとき、L1s1=L2s2をほゞ満足す
るような地点Pにおいて、P以前のフアイバによ
り遅延時間差を生じた中心波長λaの光信号を、
その波長幅より離れた波長λp=2/(1/λ+ 1/λ)、(ただしλa≠λb)の励起光により励起さ れたラマン媒質中に入射し、その誘導ラマン効果
により上記光信号のスペクトルを上記λpに対し
て対称な波長域に反転変換し、そのスペクトルを
反転された中心波長λbのアンチ−ストークス
(anti−Stokes)光を新たに信号光とし、λa及び
λpの成分は除去してP以後の光フアイバに伝送
させることを特徴とする光フアイバ波長分散の等
化方式。
[Scope of Claims] 1. In a transmission system in which light having a wavelength width around a center wavelength λ a propagates through a transmission optical fiber and equalizes delay time differences for each wavelength caused by wavelength dispersion of the optical fiber, The length of the optical fiber before a certain point P is L 1 , the chromatic dispersion at wavelength λ a of the optical fiber before P is s 1 , and the length after P is
L 2 , when the chromatic dispersion at the wavelength λ b of the optical fiber after P is s 2 , at a point P that substantially satisfies L 1s1 = L 2s2 , the center wavelength at which a delay time difference has occurred due to the fiber before P The optical signal of λ a ,
It enters the Raman medium excited by excitation light with a wavelength λ p = 2/(1/λ a + 1/λ b ) (where λ a ≠ λ b ), which is further away from the wavelength width, and its stimulated Raman effect The spectrum of the optical signal is inverted converted to a wavelength range symmetric with respect to λ p , and the inverted anti-Stokes light with the center wavelength λ b is used as a new signal light, and λ An optical fiber chromatic dispersion equalization method characterized in that components a and λ p are removed and transmitted to the optical fiber after P.
JP55165580A 1980-11-25 1980-11-25 Equalization system for optical-fiber wavelength dispersion Granted JPS5789704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55165580A JPS5789704A (en) 1980-11-25 1980-11-25 Equalization system for optical-fiber wavelength dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55165580A JPS5789704A (en) 1980-11-25 1980-11-25 Equalization system for optical-fiber wavelength dispersion

Publications (2)

Publication Number Publication Date
JPS5789704A JPS5789704A (en) 1982-06-04
JPS6242245B2 true JPS6242245B2 (en) 1987-09-07

Family

ID=15815050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55165580A Granted JPS5789704A (en) 1980-11-25 1980-11-25 Equalization system for optical-fiber wavelength dispersion

Country Status (1)

Country Link
JP (1) JPS5789704A (en)

Also Published As

Publication number Publication date
JPS5789704A (en) 1982-06-04

Similar Documents

Publication Publication Date Title
JP3751542B2 (en) Optical fiber transmission system using polarization multiplexing to suppress stimulated Brillouin scattering.
JP2000010129A (en) Optical gate device, production of this device and system having this device
RU2166839C2 (en) Device for damping optical noise caused by four-wave displacement
JP4301822B2 (en) Optical amplifier with polarization mode dispersion compensation function
JP3613378B2 (en) Light dispersion compensation
JPS62502818A (en) Coherent radiation generation method and device
US7242517B2 (en) Optical devices comprising series of birefringent waveplates
JPS6242244B2 (en)
JPH11514103A (en) Periodic Mach-Zehnder optical filter
JPS5885588A (en) Wavelength multiplex light amplifying device
JPS6242245B2 (en)
JP2002506281A (en) Ultra-wideband low noise gain flattened rare earth doped fiber amplifier
JPS6157744B2 (en)
KR100585016B1 (en) Single mode optical fiber structure having high-order mode extinction filtering function
JP2003090918A (en) Optical band pass filter using long-period grating
JPH01196189A (en) Tunable optical fiber raman laser
JPS58121694A (en) Fiber raman laser
KR100281642B1 (en) Inductive Brillouin Scattering and Erbium Multi Wavelength Generator
JPS5834407A (en) Light transmission line
JPH02153327A (en) Light amplification module
JPS624688B2 (en)
JPH05206546A (en) Light amplifier
JPS63202085A (en) Optical fiber raman soliton laser
JPS60120585A (en) Light amplifying method and device
JPH0230233A (en) Method for compensating wavelength dispersion in optical transmission line