JPS58121694A - Fiber raman laser - Google Patents

Fiber raman laser

Info

Publication number
JPS58121694A
JPS58121694A JP379982A JP379982A JPS58121694A JP S58121694 A JPS58121694 A JP S58121694A JP 379982 A JP379982 A JP 379982A JP 379982 A JP379982 A JP 379982A JP S58121694 A JPS58121694 A JP S58121694A
Authority
JP
Japan
Prior art keywords
dispersion
designates
optical fiber
equalizer
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP379982A
Other languages
Japanese (ja)
Inventor
Yasuhiro Aoki
青木 泰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP379982A priority Critical patent/JPS58121694A/en
Publication of JPS58121694A publication Critical patent/JPS58121694A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To provide a fiber Raman laser which can simply vary an output waveform with low exciting input by providing an equalizer for compensating the refractive index dispersion of an optical fiber in a resonator. CONSTITUTION:In a drawing, numeral 6 designates a refractive index dispersion compensating equalizer, 7 designates a light delay line 8, designates a synthesizer, 9 designates a branching filter, and 10 designates an etalon. An exciting pulse light source 1 employs a mode synchronous laser having 1.06mum of several tens W of power, and the equalizer 6 employs gratong pairs 61, 62 and 63, 64 which are opposed to each other. The optical fiber exhibits ordinary dispersion at the short wavelength side from zero dispersion wavelength and exhibits abnormal dispersion at the maximum wavelength side. The equalizer which is formed of the grating pairs exhibits abnormal dispersion, and the dispersing amount can be regulated by the distance between the paired gratings, that is the distance between the pair 61 and 62 and the like.

Description

【発明の詳細な説明】 本発明は、ファイバラマンレーザに関し、さらに詳しく
は光ファイバの屈折率分散を補償する等化器を共振器内
に備えたパルス励起ファイバラマンレーザに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber Raman laser, and more particularly to a pulse pumped fiber Raman laser including an equalizer in a resonator to compensate for refractive index dispersion of an optical fiber.

低損失光ファイバ中では、光と物質の相互作用長が長く
とれ、特に、単一モード光7アイパではコア径がlOμ
m程度と小さい為、光子密度が大きくなり、誘導ラマン
散シ誘導四光子混合などによる誘導散乱光が比較的容易
に得られる。
In a low-loss optical fiber, the interaction length between light and matter can be long, and in particular, in a single mode optical 7-iper, the core diameter is 1Oμ.
Since the photon density is small, on the order of m, the photon density is high, and stimulated scattered light by stimulated Raman scattering, stimulated four-photon mixing, etc. can be obtained relatively easily.

ファイバラマンレーザとは、レーザ光を光7アイパに入
射し、誘導散乱光を生ぜしめる装置であり。
A fiber Raman laser is a device that injects laser light into a 7-eyeper to generate stimulated scattered light.

誘導ラマン散乱以外に誘導四光子混合も含めて、広義に
7アイバラマンレーザと呼んでいる。
In addition to stimulated Raman scattering, it also includes stimulated four-photon mixing and is broadly called a seven-eye Raman laser.

パルス励起ファイバラマンレーザでは、特に、光ファイ
バの屈折率分散が問題となる。とい5のは。
In pulse-pumped fiber Raman lasers, the refractive index dispersion of the optical fiber is particularly problematic. The number 5 is.

屈折率分散によって、光フアイバ中な伝送中に、波長の
異なるam光パルスと誘導散1Lftハルスの関に群遅
]1[よる走行時間差が生じ、長尺の光フアイバ中で進
行波励起を行なった場合、実質的な利得が低下し【、誘
導散乱光を高効率に発生できなくなるからである。
Due to refractive index dispersion, during transmission in an optical fiber, a difference in transit time occurs between the AM optical pulses of different wavelengths and the guided dispersion (1Lft Hals), which causes traveling wave excitation in a long optical fiber. In this case, the substantial gain decreases and stimulated scattered light cannot be generated with high efficiency.

周知のごとく、ファイバラマンレーザの誘導ラマン利得
は、10100t 〜1000ffi−’の広い利得帯
域を有するので、低損失、低分量なファイバを用いれば
、誘導う!ン散乱・霞導四光子梶合により。
As is well known, the stimulated Raman gain of a fiber Raman laser has a wide gain band of 10100t to 1000ffi-', so if a low-loss, low-volume fiber is used, the stimulated Raman gain can be easily stimulated! by light scattering and haze-guided four-photon combination.

広い波長域で出力を得ることが可能である。It is possible to obtain output in a wide wavelength range.

ファイバラマンレーザには、−回通過温のものと共振器
構成のものがある。第1図は従来の7アイバラマンレー
ザの構成例を示す模式図で、lは励起用パルス光源、2
は光ファイバ、3はレンズ4は反射鏡、5は分光プリズ
ムである。なお、λ。
Fiber Raman lasers include those with a -pass temperature and those with a resonator configuration. Figure 1 is a schematic diagram showing an example of the configuration of a conventional 7-eye Brahman laser, where l is an excitation pulse light source, and 2
3 is an optical fiber, 3 is a lens 4 is a reflecting mirror, and 5 is a spectroscopic prism. In addition, λ.

は励起光の波長、λ、は誘導散乱光の波長を示す。is the wavelength of the excitation light, and λ is the wavelength of the stimulated scattering light.

第1図(6)の例では、最近、単一モード光ファイバを
1.32μmQスイッチYAGレーザで励起して、光フ
ァイバがその付近で超低損失、低分散であることを利用
して1.0μm〜1.6μmの広範囲な波長域で誘導散
乱光パルスが得られている。しかしながら、第1図囚の
方法は、構成&1最も簡単であるが、前述の屈折率分散
のため、光ファイバを長尺化することによって励起入力
を下げることができず、また、共振器構成のものに比べ
て大きな励起入力を必要とするとい5欠点を有している
In the example shown in FIG. 1 (6), a single mode optical fiber has recently been pumped with a 1.32 μm Q-switched YAG laser, and using the fact that the optical fiber has ultra-low loss and low dispersion in the vicinity, 1. Stimulated scattered light pulses have been obtained in a wide wavelength range from 0 μm to 1.6 μm. However, although the method shown in Figure 1 has the simplest configuration &1, due to the refractive index dispersion mentioned above, the excitation input cannot be lowered by lengthening the optical fiber, and the resonator configuration It has five drawbacks, including that it requires a larger excitation input than the conventional one.

W、1図■の例では、共振器反射鏡を用いた共振器構成
としJ・つ、励起光パルスと誘導散乱光パルスをプリズ
ムで分離して、各々の波長における光フアイバ走行中に
生じた時間差だけ光路長に差を設けることにより、励起
光パルスと誘導散乱光パルスを同期させ、励起入力の低
下を図っている。
In the example shown in Figure 1 ■, a resonator configuration using a resonator reflector is used, and the excitation light pulse and stimulated scattered light pulse are separated by a prism, and the light generated during the optical fiber travel at each wavelength is By providing a difference in optical path length by the time difference, the excitation light pulse and the stimulated scattering light pulse are synchronized, thereby reducing the excitation input.

この例では、励起用光源として1.06μmモード同期
YAGI/−ザを用い、1.07μm 〜1.32μm
の誘導2マン散乱光を得ている。しかしながら、第2図
(ハ)の方法では、多波長の出力を得る場合、何枚もの
反射鏡な必要とし、構成が煩雑になるという欠点を有す
る。また、励起光な折り返していないので、−回通過製
のものと同様に励起光を十分には活用していないという
欠点な有する。
In this example, a 1.06 μm mode-locked YAGI laser is used as the excitation light source, and a 1.07 μm to 1.32 μm
The stimulated 2-Man scattered light is obtained. However, the method shown in FIG. 2(c) has the disadvantage that, in order to obtain multi-wavelength output, a number of reflecting mirrors are required, making the configuration complicated. In addition, since the excitation light is not folded back, it has the disadvantage that the excitation light is not fully utilized, similar to the one-time pass type.

本発明の目的は、前記の欠点をなくし、低励起入力で、
しかも、簡単に出力波長を可変できるファイパラオンレ
ーザを提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks and, at low excitation inputs, to
Moreover, it is an object of the present invention to provide a fiber-optic laser whose output wavelength can be easily varied.

本発明は、共振器構成とし、かつ光ファイバの屈折率分
散を補償する光ファイバと逆の分散を待った等化量とを
共振器内部に含むことを特徴とする。
The present invention is characterized in that it has a resonator configuration and includes inside the resonator an optical fiber that compensates for the refractive index dispersion of the optical fiber and an equalization amount that waits for the opposite dispersion.

次に、本発明によるファイパラオンレーザについて図面
を参照して詳細に説明する。第2図は本発明の一実施例
の構成を示した配置構成図であり、6は屈折率分散補償
等化量、7は光遅延路、8は合波器、9は分波器、10
はエタロンである。
Next, a fiber-on laser according to the present invention will be described in detail with reference to the drawings. FIG. 2 is a layout configuration diagram showing the configuration of an embodiment of the present invention, where 6 is an index dispersion compensation equalization amount, 7 is an optical delay path, 8 is a multiplexer, 9 is a demultiplexer, and 10 is an optical delay path.
is an etalon.

この実施例におい【は、リング共振器構成を用いている
。リング共振器では、共振器−往復に対し、光ファイバ
の入力するための結合は1カ所なので、結合損失は第1
図0の7アブリペロ共振器に対して半分で済むという利
点がある。
In this embodiment, a ring resonator configuration is used. In a ring resonator, there is only one coupling point for the input of the optical fiber for the round trip between the resonator and the resonator, so the coupling loss is the first
There is an advantage that the number of resonators required is half that of the seven Abry-Perot resonators shown in FIG.

本発明の実施例においては、励起用パルス光源1として
は、出力数十Wの1.06μmモート同期レーザ、光フ
ァイバ2としては、コア径10μm零分散波長1.4μ
m程度、長さは数mから数百mのGeO□−8i0□単
一モード光フアイバな世いている。等化量6としては、
各々61と62.63と64が対になりたグレーティン
グベアを対向させて用いている。周知のごとく、光ファ
イバは゛零分散、波長よりも短波長側では正常分散、長
波長側では異常分散を示す。前記のブレーティング、よ
りなる等化量は異常分散を示し、分散量は、対になっ℃
いるグレーティング間の距離、すなわち61と62間な
どの距離によって調整でき、溝の本数、グレーティング
の大きさなどにも依るが、数ps/nmである。したが
って、零分散波長よりも短波長側では、前記グレーティ
ングよりなる等化量により、十分補償できる。
In the embodiment of the present invention, the excitation pulse light source 1 is a 1.06 μm mote-synchronous laser with an output of several tens of W, and the optical fiber 2 has a core diameter of 10 μm and a zero dispersion wavelength of 1.4 μm.
GeO□-8i0□ single-mode optical fibers with lengths of several meters to several hundred meters are currently available. As the equalization amount 6,
A pair of grating bears 61, 62, 63, and 64 are used facing each other. As is well known, an optical fiber exhibits zero dispersion, normal dispersion at shorter wavelengths, and anomalous dispersion at longer wavelengths. The amount of equalization consisting of the above-mentioned brating shows anomalous dispersion, and the amount of dispersion is
The distance between the gratings 61 and 62 can be adjusted to several ps/nm, depending on the number of grooves, the size of the gratings, etc. Therefore, on the wavelength side shorter than the zero dispersion wavelength, sufficient compensation can be achieved by the equalization amount formed by the grating.

93図は本実施例での分散特性の一例な示す図であり、
λ、は励起光の波長、λ。は光ファイバの零分散波長で
ある。笑劇は元ファイバの分散、点線はグレーディング
等化量の分散、一点鎖線はこれらの和の分散である。第
3図において、相の分散はほぼ零である。即)、光フア
イバ出射直後には、励起光パルスと誘導散乱光パルスの
波贅差に応じた走行時間差が生じているが、等化量6を
通過後には、この時間差が補償されている。光遅延路7
は4枚の全反射鏡を用いており、その間隔励起光パルス
を同期させる為の共振器長調整用であるが、光ファイバ
の分散が大きい場合には、光ファイバ畏をある程度まで
短くして分散の量を減らし、その分、光遅延を大きくす
ることができるという一石二鳥の利点を有している。エ
タロン10は出力波長の選択用であり、挿入しない場合
には、酵導ラマン利得に対応した波長域で散乱光が得ら
れる。合波器8は励起パルス光入力用、分波器9は出力
取出用の半透鏡である。
Figure 93 is a diagram showing an example of the dispersion characteristics in this example,
λ is the wavelength of the excitation light, λ. is the zero dispersion wavelength of the optical fiber. The comedy line is the dispersion of the original fiber, the dotted line is the dispersion of the grading equalization amount, and the dash-dotted line is the dispersion of the sum of these. In FIG. 3, the phase dispersion is approximately zero. Immediately after exiting the optical fiber, there is a travel time difference between the excitation light pulse and the stimulated scattering light pulse depending on the wave difference, but after passing through the equalization amount 6, this time difference is compensated. Optical delay path 7
uses four total reflection mirrors, and is used to adjust the resonator length to synchronize the interval excitation light pulses. However, if the optical fiber has a large dispersion, the length of the optical fiber may be shortened to a certain extent. This has the advantage of killing two birds with one stone by reducing the amount of dispersion and increasing the optical delay accordingly. The etalon 10 is for selecting the output wavelength, and when it is not inserted, scattered light is obtained in a wavelength range corresponding to the fermentation Raman gain. The multiplexer 8 is a semi-transparent mirror for inputting excitation pulse light, and the demultiplexer 9 is a semi-transparent mirror for output extraction.

次に、周知のごとく、鰐導四光子混合光が得られる条件
は、 2kp = ks 十kAI   +++ +++−o
)ただし、kp・・・・・・・・・励起光の波数に5・
・・・・・・・・ストークス光の波数kAs・・・・・
・・・・アンチストークス光の波数である。
Next, as is well known, the conditions for obtaining crocodile-guided four-photon mixed light are: 2kp = ks 10kAI +++ +++-o
) However, kp......5.
・・・・・・Wave number kAs of Stokes light・・・・・・
...This is the wave number of anti-Stokes light.

したがって、本発明では、183図より明らかな様に、
容易に(1)式を満たすことができるので、励起光より
短波長側にも誘導四光子混合により出力が得られる。
Therefore, in the present invention, as is clear from Figure 183,
Since equation (1) can be easily satisfied, output can be obtained by stimulated four-photon mixing even on the shorter wavelength side than the excitation light.

なお、以上は励起光が零分散波長よりも短波長側につい
ての例であるが、励起波長が零分散波長よりも長波長の
場合には、等化量6として、正常分散媒質を用いればよ
い。第4図は正常分散を持った等化量の一例を示す図で
あり、屈折率”1m”!がそれぞれ異なるプリズムを用
いている。材質としては、分散の大きいBK、PKなど
を用いればよい。
Note that the above is an example in which the excitation light has a wavelength shorter than the zero-dispersion wavelength, but if the excitation wavelength is longer than the zero-dispersion wavelength, a normal dispersion medium may be used as the equalization amount 6. . Figure 4 is a diagram showing an example of an equalization amount with normal dispersion, and the refractive index is "1m"! Each uses a different prism. As the material, BK, PK, etc. with large dispersion may be used.

上記におい【は、本発明の一実施例について説明したが
、本発明の目的を逸脱することなく、構成要素の各種の
置換変換等が可能であることはもちろんである。例えば
、励起用パルス光源lとして、高出力色素レーザや、ガ
ラスレーザなどの他の固体レーザな用いても良いし、光
ファイバ2とし【、GeO2ファイバやベンゼンなどの
液体をコアにしたファイバを用いてもよい。また、等化
量とし℃逆符号の分散を持っ7アイパや、あるいは複屈
折フィルタ分波器を用いてもよい。
Although one embodiment of the present invention has been described above, it goes without saying that various substitutions and transformations of the constituent elements can be made without departing from the purpose of the present invention. For example, a high-power dye laser or other solid-state laser such as a glass laser may be used as the excitation pulse light source 1, or a GeO2 fiber or a fiber with a liquid core such as benzene may be used as the optical fiber 2. It's okay. Alternatively, a 7-eyeper with dispersion of the opposite sign in degrees Celsius or a birefringent filter splitter may be used as the equalization amount.

以上述べたごとく、本発明によれば、共振器構成とし、
かつ、光ファイバの屈折率分散補償等化量を含むことに
よって、低励起入力で簡単に出力波長の選択が可能なフ
ァイバ7vンレーザが得られる。
As described above, according to the present invention, the resonator configuration is used,
In addition, by including the refractive index dispersion compensation equalization amount of the optical fiber, a fiber 7v laser can be obtained in which the output wavelength can be easily selected with a low pumping input.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の構成の一例を示す模式図、第2図は本発
明の一実施例の構成を示す模式図、#13図は第2図に
おける屈折率分散補償の説明図、第4図は正常分散を持
りた等化量の一例を示す図である。 第1図から第4図におい【、lは励起用パルス光源、2
は光ファイバ、3はレンズ、4は反射鏡5は分光プリズ
ム、6は等化量、7は光遅延路、8は合波器、9は分波
器、10はエタロン、11は屈折率n1のプリズム、1
2は屈折率町のプリズムである。
Fig. 1 is a schematic diagram showing an example of a conventional configuration, Fig. 2 is a schematic diagram showing a configuration of an embodiment of the present invention, Fig. #13 is an explanatory diagram of refractive index dispersion compensation in Fig. 2, and Fig. 4 is a diagram showing an example of an equalization amount having normal variance. In Figures 1 to 4, [, l is the excitation pulse light source, 2
is an optical fiber, 3 is a lens, 4 is a reflecting mirror 5 is a spectroscopic prism, 6 is an equalization amount, 7 is an optical delay path, 8 is a multiplexer, 9 is a demultiplexer, 10 is an etalon, and 11 is a refractive index n1 prism, 1
2 is a prism with a refractive index.

Claims (1)

【特許請求の範囲】[Claims] 共振器構成をなしたパルス励起ファイバラマンレーザに
おいて、共振器内部に励起パルス光と誘導散乱光を同期
させるための光遅延路と屈折率分散補償等化器とt含む
ことを特徴とするファイバラマンレーザ。
A pulse-pumped fiber Raman laser having a resonator configuration, characterized in that the resonator includes an optical delay path for synchronizing the pump pulse light and the stimulated scattered light, and an index dispersion compensating equalizer. laser.
JP379982A 1982-01-13 1982-01-13 Fiber raman laser Pending JPS58121694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP379982A JPS58121694A (en) 1982-01-13 1982-01-13 Fiber raman laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP379982A JPS58121694A (en) 1982-01-13 1982-01-13 Fiber raman laser

Publications (1)

Publication Number Publication Date
JPS58121694A true JPS58121694A (en) 1983-07-20

Family

ID=11567238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP379982A Pending JPS58121694A (en) 1982-01-13 1982-01-13 Fiber raman laser

Country Status (1)

Country Link
JP (1) JPS58121694A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1237308A2 (en) * 2001-03-02 2002-09-04 Fujitsu Limited Apparatus for variable wavelength dispersion and wavelength dispersion slope
US6959021B2 (en) 2001-02-07 2005-10-25 Ocg Technology Licensing, Llc Raman fiber laser
US7277610B2 (en) 2001-05-15 2007-10-02 Nufern Optical fiber and system containing same
US7340136B2 (en) 2001-07-02 2008-03-04 Ocg Technology Licensing, Llc Multi-wavelength optical fiber
US7463411B2 (en) 2001-08-03 2008-12-09 Demidov Andrey A Optical fiber amplifier

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6959021B2 (en) 2001-02-07 2005-10-25 Ocg Technology Licensing, Llc Raman fiber laser
EP1237308A2 (en) * 2001-03-02 2002-09-04 Fujitsu Limited Apparatus for variable wavelength dispersion and wavelength dispersion slope
EP1237308A3 (en) * 2001-03-02 2004-09-08 Fujitsu Limited Apparatus for variable wavelength dispersion and wavelength dispersion slope
US7277610B2 (en) 2001-05-15 2007-10-02 Nufern Optical fiber and system containing same
US7340136B2 (en) 2001-07-02 2008-03-04 Ocg Technology Licensing, Llc Multi-wavelength optical fiber
US7463411B2 (en) 2001-08-03 2008-12-09 Demidov Andrey A Optical fiber amplifier

Similar Documents

Publication Publication Date Title
US4685107A (en) Dispersion compensated fiber Raman oscillator
US4635263A (en) Soliton laser
US6833946B2 (en) Optical amplification using polarization diversity pumping
DE112004002187T5 (en) Pulsed laser sources
US20080151945A1 (en) Ultrashort stable mode locked fiber laser at one micron by using polarization maintaining (PM) fiber and photonic bandgap fiber (PBF)
CN111712761B (en) Ultrashort pulse laser system with rapidly adjustable center wavelength
Al-Mansoori et al. Wide-uniform triple Brillouin frequency spacing multi-wavelength fiber laser assisted by a distributed Raman amplifier
Nakazawa et al. Active transmission line: light amplification by backward-stimulated Raman scattering in polarization-maintaining optical fiber
JPS62502818A (en) Coherent radiation generation method and device
Zhang et al. Quintic dispersion soliton frequency combs in a microresonator
JPS58121694A (en) Fiber raman laser
JP2772600B2 (en) Mode-locked laser device
Yusoff et al. Dual-wavelength random fiber laser incorporating micro-air cavity
JP3239925B2 (en) Optical sampling optical waveform measurement device
JPS59165488A (en) Fiber raman laser
USH15H (en) Broadband source of picosecond radiation
JPS6249997B2 (en)
Tang et al. Four-wave mixing assisted self-stable 4× 10 GHz actively mode-locked erbium fiber ring laser
JPH06138500A (en) Wavelength wide-band short pulse light generating device
Saleh et al. Photonic generation of high power, ultrastable microwave signals by vernier effect in a femtosecond laser frequency comb
JPS6242244B2 (en)
JPS63125919A (en) Light soliton generating method
JPS63202085A (en) Optical fiber raman soliton laser
JPS5864088A (en) Optical fiber laser amplifier
JPS63220586A (en) Nd-doped fiber laser system