JPS6249997B2 - - Google Patents

Info

Publication number
JPS6249997B2
JPS6249997B2 JP6976580A JP6976580A JPS6249997B2 JP S6249997 B2 JPS6249997 B2 JP S6249997B2 JP 6976580 A JP6976580 A JP 6976580A JP 6976580 A JP6976580 A JP 6976580A JP S6249997 B2 JPS6249997 B2 JP S6249997B2
Authority
JP
Japan
Prior art keywords
optical
wavelength
laser light
laser
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6976580A
Other languages
Japanese (ja)
Other versions
JPS56165385A (en
Inventor
Kunihiko Washio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6976580A priority Critical patent/JPS56165385A/en
Publication of JPS56165385A publication Critical patent/JPS56165385A/en
Publication of JPS6249997B2 publication Critical patent/JPS6249997B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 この発明は高出力な多波長光パルスが得られ
る。高出力多波長光パルス発生装置に関する。近
年、長尺光フアイバの低損失化が進み、GeO2
SiO2系の光フアイバによつて波長1.55μm帯で、
伝送損失が0.2dB/Km程度以下の超低損失化が実
現され、長距離・超広帯域な光伝送路が敷設され
るようになつた。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, high-power multi-wavelength optical pulses can be obtained. This invention relates to a high-power multi-wavelength optical pulse generator. In recent years, the loss of long optical fibers has been reduced, and GeO 2 -
At a wavelength of 1.55 μm using SiO 2 optical fiber,
Ultra-low transmission losses of less than 0.2 dB/Km have been achieved, and long-distance, ultra-wideband optical transmission lines have become possible.

このような光伝送路に用いられる光フアイバや
光回路の高信頼化のために、その特性評価用とし
て波長1.2〜1.7μm帯の領域で高出力な多波長の
光パルス発生装置が必要となる。
In order to improve the reliability of optical fibers and optical circuits used in such optical transmission lines, a multi-wavelength optical pulse generator with high output in the wavelength range of 1.2 to 1.7 μm is required for evaluating their characteristics. .

従来、光フアイバ等の測定用の高出力多波長光
パルス発生装置としては、ナノ秒フラツシユラン
プや、1.06μmNd:YAGレーザ励起フアイバー
ラマンレーザが用いられていた。しかし、これら
従来方法においては、ともに次の様な欠点が存在
する。即ち、ナノ秒フラツシユランプの場合はど
の波長域においてもスペクトル輝度が低く、暗い
ことと、また1.06μmNd:YAGレーザ励起フア
イバーラマンレーザの場合は、1.3μmより長波
長帯に関しては、ほぼ連続スペクトルとなつてし
まうため、やはりスペクトル輝度が低下すること
などである。なお、従来の1.06μmNd:YAGレ
ーザ励起フアイバーラマンレーザについては、例
えば、1978年11月発行のアイ・イー・イー・イー
ジヤーナル・オブ・クアンタム・エレクトロニク
ス(IEEE Journal of Quantum Electronics)、
第14巻、第855頁から859頁記載のコーエン氏ほか
による論文を参照されたい。
Conventionally, nanosecond flash lamps and 1.06 μm Nd:YAG laser-pumped fiber Raman lasers have been used as high-power multi-wavelength optical pulse generators for measuring optical fibers. However, both of these conventional methods have the following drawbacks. That is, in the case of a nanosecond flash lamp, the spectral brightness is low and dark in any wavelength range, and in the case of a 1.06 μm Nd:YAG laser-pumped fiber Raman laser, the spectrum is almost continuous in the wavelength range longer than 1.3 μm. As a result, the spectral brightness also decreases. Regarding the conventional 1.06μm Nd:YAG laser pumped fiber Raman laser, for example, see IEEE Journal of Quantum Electronics, published in November 1978.
See the paper by Cohen et al., Volume 14, pp. 855-859.

本発明の目的は、上記の欠点を解消し、適度に
離散的な多波長において高出力が得られ、それ故
スペクトル輝度が高く、光伝送路の測定等への応
用に極めて適した高出力多波長光パルス発生装置
を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks, to obtain high output power at moderately discrete multiple wavelengths, and therefore to provide high spectral brightness, which is extremely suitable for applications such as measuring optical transmission lines. An object of the present invention is to provide a wavelength light pulse generator.

この発明によれば、発振波長の相異なる2つの
レーザ光源と、光多重器と、非線形光混合器と、
光分波器とを含んでなる高出力多波長光パルス発
生装置において、非線形光混合器として広波長帯
低分散単一モード光フアイバを用い、かつ該光フ
アイバの低分散な波長域において2つのレーザ光
源を動作させるようにし、かつ該2つのレーザ光
源のうちの少なくとも一方は高出力パルス固体レ
ーザを用いて構成するようにしたことを特徴とす
る高出力多波長光パルス発生装置が得られる。
According to this invention, two laser light sources with different oscillation wavelengths, an optical multiplexer, a nonlinear optical mixer,
In a high-power multi-wavelength optical pulse generator including an optical demultiplexer, a wide wavelength band low dispersion single mode optical fiber is used as a nonlinear optical mixer, and two A high-power multi-wavelength optical pulse generator is obtained, characterized in that a laser light source is operated, and at least one of the two laser light sources is configured using a high-power pulsed solid-state laser.

次に、本発明による高出力多波長光パルス発生
装置について図面を参照し詳細に説明する。
Next, a high-power multi-wavelength optical pulse generator according to the present invention will be described in detail with reference to the drawings.

第1図は本発明による一実施例の構成をブロツ
ク図により示したものである。この図において、
1,2は発振波長の相異なる2つのレーザ光源、
3は光多重器、4は非線形光混合器、5は光分波
器、6は出力光である。このうち、レーザ光源1
には1.3μm帯QスイツチNd:YAGレーザからな
る高出力パルス固体レーザが、また、レーザ光源
2には波長1.3〜1.5μm帯で発振するInGaAsP/
InP半導体レーザが備えられている。光多重器3
には半透鏡31、光結合用レンズ32などが具備
されており、前記2つのレーザ光源から発生する
光を重畳して非線形光混合器4に入射させるよう
にしている。非線形光混合器4としては、波長
1.2〜1.7μm帯で全分散が10ps/Km/nm以下の
広波長域低分散単一モード光フアイバを長さ50m
程度用い、レーザ光源1および2の光を4光子パ
ラメトリツク混合効果により光混合する構成にな
つている。
FIG. 1 is a block diagram showing the structure of an embodiment according to the present invention. In this diagram,
1 and 2 are two laser light sources with different oscillation wavelengths,
3 is an optical multiplexer, 4 is a nonlinear optical mixer, 5 is an optical demultiplexer, and 6 is an output light. Of these, laser light source 1
is a high-power pulsed solid-state laser consisting of a 1.3 μm band Q-switched Nd:YAG laser, and the laser light source 2 is an InGaAsP/
Equipped with an InP semiconductor laser. Optical multiplexer 3
is equipped with a semi-transparent mirror 31, a light coupling lens 32, etc., so that the light generated from the two laser light sources is superimposed and made to enter the nonlinear light mixer 4. As the nonlinear optical mixer 4, the wavelength
50 m long wide wavelength low dispersion single mode optical fiber with total dispersion of 10 ps/Km/nm or less in the 1.2 to 1.7 μm band
The configuration is such that the lights from the laser light sources 1 and 2 are optically mixed by a four-photon parametric mixing effect.

前記広波長域低分散単一モード光フアイバの製
作条件については例えば1980年1月発行の電子通
信学会技術研究報告、光量子エレクトロニクス
OQE79―122,第31〜36頁所載の岡本氏らによる
「広波長域低分散単一モード光フアイバ」と題す
る論文を参照されたい。また、光フアイバ中にお
ける4光子パラメトリツク混合効果の従来例とし
ては例えば1974年4月1日号のアプライド・フイ
ジクス・レターズ(Applied Physics Letters)
第24巻、第308〜310頁所載のアール・エツチスト
ールン(R.H.Stolen)氏らの論文を参照された
い。
Regarding the manufacturing conditions of the wide wavelength range low dispersion single mode optical fiber, see, for example, the technical research report of the Institute of Electronics and Communication Engineers, Photon Quantum Electronics, published in January 1980.
Please refer to the paper entitled ``Broad wavelength low dispersion single mode optical fiber'' by Mr. Okamoto et al., published in OQE79-122, pages 31-36. Furthermore, as a conventional example of the four-photon parametric mixing effect in an optical fiber, for example, the April 1, 1974 issue of Applied Physics Letters
See the paper by RHStolen et al., Volume 24, pp. 308-310.

4光子パラメトリツク混合効果による新しい波
長光の高効率な発生のためには、一般に位相整合
条件を満たす必要がある。このため、前述のスト
ールン氏らはマルチモードフアイバを用い、モー
ド分散を利用して位相整合をとるようにしてい
た。しかし、このようなモード分散による位相整
合は多波長について同時に満たすことが極めて困
難なこと、また高次モードを用いるため変換効率
が低いなどという欠点がある。
For highly efficient generation of new wavelength light by the four-photon parametric mixing effect, it is generally necessary to satisfy a phase matching condition. For this reason, the above-mentioned Mr. Stolen et al. used a multimode fiber to achieve phase matching by utilizing modal dispersion. However, there are drawbacks such as the fact that it is extremely difficult to simultaneously satisfy phase matching based on such mode dispersion for multiple wavelengths, and that conversion efficiency is low due to the use of higher-order modes.

これに対し、本発明においては、非線形光混合
器として、新規に広波長域低分散単一モード光フ
アイバを用い、かつ該光フアイバの低分散な波長
域において前記2つのレーザ光源を動作させる構
成となつているため、広範な波長域にわたつて単
一モードのままで位相整合が実現できる結果、高
効率な多波長光の発生が実現できる。より具体的
には、レーザ光源1,2の発振周波数をそれぞれ
W1,W2とすると、 W3,±m=W1±m(W1−W2),m =1,2,3… の関係を満たす多数の周波数で光が発生する。第
2図に発生する多波長光のスペクトル特性を模式
図として示す。この発生する多波長光のそれぞれ
のピークのもつスペクトル幅は励起に用いるレー
ザ光源1,2の発振光のもつスペクトル幅(通常
1〜10Å)程度であるため、スペクトル輝度は極
めて大きい。また、発生する多波長光の隣りあう
光の周波数の間隔は(W1―W2)によつて定まり
ほぼ等間隔となるため、各種の分光応用において
極めて便利である。
In contrast, in the present invention, a new wide wavelength range low dispersion single mode optical fiber is used as the nonlinear optical mixer, and the two laser light sources are operated in the low dispersion wavelength range of the optical fiber. Therefore, phase matching can be achieved in a single mode over a wide wavelength range, and as a result, highly efficient multi-wavelength light generation can be achieved. More specifically, the oscillation frequencies of laser light sources 1 and 2 are
Assuming W 1 and W 2 , light is generated at a large number of frequencies that satisfy the relationship W 3 , ±m=W 1 ±m (W 1 −W 2 ), m = 1, 2, 3, . . . . FIG. 2 schematically shows the spectral characteristics of the multi-wavelength light generated. Since the spectral width of each peak of the generated multi-wavelength light is about the same as that of the oscillation light of the laser light sources 1 and 2 used for excitation (usually 1 to 10 Å), the spectral brightness is extremely high. Furthermore, the frequency intervals of adjacent lights of the generated multi-wavelength light are determined by (W 1 - W 2 ) and are approximately equal intervals, which is extremely convenient in various spectroscopic applications.

再び第1図を参照すると、非線形光混合器4よ
り発生した多波長光は光分波器5に結合され、該
光分波器5において所望の波長の光のみを選択
し、出力光6として取り出されるようになつてい
る。上述の構成においては、光分波器5はレンズ
51、角度可変の回折格子52、反射鏡53、ス
リツト54などを含んで構成されている。
Referring again to FIG. 1, the multi-wavelength light generated by the nonlinear optical mixer 4 is coupled to the optical demultiplexer 5, which selects only light of a desired wavelength and outputs it as output light 6. It is starting to be taken out. In the above configuration, the optical demultiplexer 5 includes a lens 51, a variable angle diffraction grating 52, a reflecting mirror 53, a slit 54, and the like.

レーザ光源1として用いる高出力パルス固体レ
ーザ出力としてはピーク出力は1KW程度あれば
十分である。レーザ光源2の出力は、該レーザ光
源2の発振波長が前記レーザ光源2の発振波長よ
り長波長側にある場合にはそれほど大きい必要は
なく、出力は10mW程度あれば十分である。非線
形光混合器中において、前記レーザ光源1よりの
高出力光が存在する場合、レーザ光源2よりの光
に対して誘導ラマン利得が生ずるので、これによ
り非線形光混合が生ずるのに必要な強度にまで十
分増幅することができる。誘導ラマン利得を大き
くするためには、GeO2,P2O5などのラマン散乱
断面積が大きな材料をコア材質に多く含ませるよ
うにした広波長域低分散単一モード光フアイバを
使用するとよい。
A peak output of about 1 KW is sufficient for the high-power pulsed solid-state laser output used as the laser light source 1. The output of the laser light source 2 does not need to be so large if the oscillation wavelength of the laser light source 2 is on the longer wavelength side than the oscillation wavelength of the laser light source 2, and an output of about 10 mW is sufficient. In the nonlinear optical mixer, when high-power light from the laser light source 1 is present, a stimulated Raman gain is generated for the light from the laser light source 2, which increases the intensity necessary for nonlinear light mixing to occur. can be amplified sufficiently. In order to increase the stimulated Raman gain, it is recommended to use a wide wavelength range low dispersion single mode optical fiber whose core material contains a large amount of material with a large Raman scattering cross section such as GeO 2 or P 2 O 5 . .

なお、この発明は、上述の実施例に見られる構
成のみに限定されることなく、いくつかの変形が
考えられる。例えば、光多重器3内に設けられた
半透鏡31の代りにダイクロイツクミラーを用い
ることができる。また、光分波器5内に設けられ
た回折格子52の代りにプリズムを用いることも
できる。
Note that the present invention is not limited to only the configurations seen in the above-described embodiments, and several modifications are possible. For example, a dichroic mirror can be used instead of the semi-transparent mirror 31 provided in the optical multiplexer 3. Furthermore, a prism can be used instead of the diffraction grating 52 provided in the optical demultiplexer 5.

また、レーザ光源1に用いる高出力パルス固体
レーザとしては、1.3μm帯QスイツチNd:YAG
レーザの代りに、1.3μm帯のQスイツチNdガラ
スレーザやNd:YLFレーザなどを用いることが
できる。また、波長1.5μm帯で発振するQスイ
ツチErガラスレーザを用いても良い。
In addition, as a high-power pulsed solid-state laser used for the laser light source 1, a 1.3 μm band Q-switch Nd:YAG
Instead of a laser, a 1.3 μm band Q-switched Nd glass laser, Nd:YLF laser, or the like can be used. Alternatively, a Q-switched Er glass laser that oscillates in the 1.5 μm wavelength band may be used.

以上の説明によつて明らかのように、本発明に
よれば、スペクトル輝度が高い高出力な光パルス
を適度に離散的な多波長で発生する高出力多波長
光パルス発生装置が得られるため、これによつて
光回路、光伝送路などの分光特性の測定等を高信
頼度かつ迅速に行なうことが可能となる。
As is clear from the above description, according to the present invention, it is possible to obtain a high-output multi-wavelength optical pulse generator that generates high-output optical pulses with high spectral brightness at appropriately discrete multiple wavelengths. This makes it possible to measure the spectral characteristics of optical circuits, optical transmission lines, etc. with high reliability and quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による実施例の構成を示すブ
ロツク図である。第2図は本発明の実施例におい
て得られる多波長光の模式的スペクトル特性を示
す図である。図において、 1,2……発振波長の相異なる2つのレーザ光
源、3……光多重器、4……非線形光混合器、5
……光分波器、6……出力光、31……半透鏡、
32,51……光結合用レンズ、52……回折格
子、53……反射鏡、54……スリツトである。
FIG. 1 is a block diagram showing the configuration of an embodiment according to the present invention. FIG. 2 is a diagram showing schematic spectral characteristics of multi-wavelength light obtained in an example of the present invention. In the figure, 1, 2... Two laser light sources with different oscillation wavelengths, 3... Optical multiplexer, 4... Nonlinear optical mixer, 5
...Optical demultiplexer, 6...Output light, 31...Semi-transparent mirror,
32, 51... Optical coupling lens, 52... Diffraction grating, 53... Reflecting mirror, 54... Slit.

Claims (1)

【特許請求の範囲】[Claims] 1 発振波長の相異なる2つのレーザ光源と、光
多重器と、非線形光混合器と、光分波器とを含ん
でなる高出力多波長光パルス発生装置において、
非線形光混合器として広波長域低分散単一モード
光フアイバが用いられ、前記レーザ光源の発振波
長は前記光フアイバの低分散な波長域にあり、前
記レーザ光源のうち少なくとも一方は高出力パル
ス固体レーザであることを特徴とする高出力多波
長光パルス発生装置。
1. In a high-power multi-wavelength optical pulse generator comprising two laser light sources with different oscillation wavelengths, an optical multiplexer, a nonlinear optical mixer, and an optical demultiplexer,
A wide wavelength range low dispersion single mode optical fiber is used as the nonlinear optical mixer, the oscillation wavelength of the laser light source is in the low dispersion wavelength range of the optical fiber, and at least one of the laser light sources is a high power pulsed solid state optical fiber. A high-power multi-wavelength optical pulse generator characterized by being a laser.
JP6976580A 1980-05-26 1980-05-26 Device for generating high power multiwavelength light pulse Granted JPS56165385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6976580A JPS56165385A (en) 1980-05-26 1980-05-26 Device for generating high power multiwavelength light pulse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6976580A JPS56165385A (en) 1980-05-26 1980-05-26 Device for generating high power multiwavelength light pulse

Publications (2)

Publication Number Publication Date
JPS56165385A JPS56165385A (en) 1981-12-18
JPS6249997B2 true JPS6249997B2 (en) 1987-10-22

Family

ID=13412212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6976580A Granted JPS56165385A (en) 1980-05-26 1980-05-26 Device for generating high power multiwavelength light pulse

Country Status (1)

Country Link
JP (1) JPS56165385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0376740U (en) * 1989-11-29 1991-07-31
JPH0524589Y2 (en) * 1987-12-25 1993-06-22

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990826A (en) * 1982-11-16 1984-05-25 Nippon Telegr & Teleph Corp <Ntt> Continuous optical spectrum generating method
GB2151868B (en) * 1983-12-16 1986-12-17 Standard Telephones Cables Ltd Optical amplifiers
US5689519A (en) * 1993-12-20 1997-11-18 Imra America, Inc. Environmentally stable passively modelocked fiber laser pulse source
US7088756B2 (en) 2003-07-25 2006-08-08 Imra America, Inc. Polarization maintaining dispersion controlled fiber laser source of ultrashort pulses
US7190705B2 (en) 2000-05-23 2007-03-13 Imra America. Inc. Pulsed laser sources
US7804864B2 (en) 2004-03-31 2010-09-28 Imra America, Inc. High power short pulse fiber laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524589Y2 (en) * 1987-12-25 1993-06-22
JPH0376740U (en) * 1989-11-29 1991-07-31

Also Published As

Publication number Publication date
JPS56165385A (en) 1981-12-18

Similar Documents

Publication Publication Date Title
US7420994B2 (en) Pulsed cascaded Raman laser
JP4388229B2 (en) Nonlinear fiber amplifier for use in optical fiber 1430-1530nm low loss window
US6310899B1 (en) Cascaded raman resonator system and apparatus
JP5192692B2 (en) Broadband optical pulse generator and noise-like pulse generator
CA1082792A (en) Cw brillouin ring laser
Sabourdy et al. Power scaling of fibre lasers with all-fibre interferometric cavity
JPH1174587A (en) Laser for generating optical comb
CN108923240B (en) Wavelength frequency stabilization system based on cascade stimulated Brillouin scattering effect
JP2017532613A (en) Broadband red light generator for RGB display
Luo et al. All-fiber supercontinuum source pumped by noise-like pulse mode locked laser
JPH09197449A (en) Optical pulse generator
JPS6249997B2 (en)
He et al. Simultaneous cw red, yellow, and green light generation,“traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO 3
US6996135B2 (en) Cascaded Raman laser
JP4907357B2 (en) Light wavelength conversion light source
JPS58121694A (en) Fiber raman laser
Naim et al. Performance of multiwavelength laser utilizing Fabry-Pérot interferometer in different cavity configuration using hybrid raman-EDF gains
Chandran et al. 620 nm source by second harmonic generation of a phosphosilicate Raman fiber amplifier
JPH11195829A (en) Wide band light output device
Shimizu The effect of dispersion on pulse distortion in optical filaments
New et al. High power single mode radiation by narrowband amplification of a diode laser
Mermelstein et al. Six wavelength Raman fiber laser for C+ L-band Raman amplification
Wang et al. One KHz-Order Linewidth-Stabilized Ring-Cavity Fiber Laser Based on Sub-Ring Cavities and Saturable Absorber Hybrid Scheme
Diettrich et al. Tunable, single axial mode LiF: F2− laser
Hemmer et al. Spectral narrowing in a dual volume Bragg grating Ti: Sapphire oscillator