JPS6242208A - Guide line for unmanned carrier - Google Patents

Guide line for unmanned carrier

Info

Publication number
JPS6242208A
JPS6242208A JP60182352A JP18235285A JPS6242208A JP S6242208 A JPS6242208 A JP S6242208A JP 60182352 A JP60182352 A JP 60182352A JP 18235285 A JP18235285 A JP 18235285A JP S6242208 A JPS6242208 A JP S6242208A
Authority
JP
Japan
Prior art keywords
guide line
carrier
shift
unmanned
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60182352A
Other languages
Japanese (ja)
Other versions
JPH063561B2 (en
Inventor
Tokunori Miura
三浦 徳紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18235285A priority Critical patent/JPH063561B2/en
Publication of JPS6242208A publication Critical patent/JPS6242208A/en
Publication of JPH063561B2 publication Critical patent/JPH063561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To cope with the change of the drive route of an unmanned carried without changing the position of a sign body, by forming the boundary lines continuous between adjacent sign bodies and non-sign bodies into a lattice and setting a guide line on the road surface along the boundary line. CONSTITUTION:The magnetic sign bodies 1 and floor tiles 2 are set alternately in a lattice form on a plane. While the detecting elements 4a and 4b of a magnetic sensor 4 set on an unmanned carrier 3 are set so that they are fixed at the symmetrical positions centering on a guide line (boundary line) when the position shift of the carrier 3 is equal to zero. The sum (Va+Vb) of the outputs of both elements 4a and 4b has such output characteristics as shown in the diagram against the shift of the carrier 3 from the guide line. Thus the carrier 3 detects the direction and amount of its position shift from the output signals of the elements 4a and 4b and at the same time performs the steering for its automatic drive. The relation of values between both outputs Va and Vb is reversed in case the sensor 4 covers both areas A and B. Therefore it is possible to detect the shift of an area, i.e., the pass through an intersecting point on the guide line from the difference between both values Va and Vb. In addition, the sloping degrees are different between both areas A and B for the sensor output (Va+Vb) against the position shift. Even in such a case, it is possible to detected and correct the present area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、事務所や工場内などで、荷物を自動搬送する
無人車全誘導するための誘導路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a guideway for guiding all unmanned vehicles that automatically transport cargo in offices, factories, and the like.

〔従来の技術〕[Conventional technology]

従来から無人車の誘導方法の1つとして、帯状の光反射
板や金属板、磁性体板を標識体として用いる方式が提案
され一部は実用化されている。
Conventionally, as one method for guiding unmanned vehicles, a method using a strip-shaped light reflecting plate, a metal plate, or a magnetic plate as a marker has been proposed, and some have been put into practical use.

(例えば自動搬送技術:トリケッグス社発行P、268
、特開昭59−059808など)これらは、標識体を
無人車の走行路に沿って実質的に連続に設置し、無人車
は、光電上ンサや金属センサ、磁気センサなどを用いて
、この標識体からの位置ずれを検出し、この位置ずれ検
知信号に応じて操舵をすることにより、走行路に沿って
自動走行するものでおる。
(For example, automatic conveyance technology: Trikeggs Publishing, P. 268
(Japanese Patent Application Laid-Open No. 59-059808, etc.) In these systems, signs are installed substantially continuously along the route of the unmanned vehicle, and the unmanned vehicle uses photoelectric sensors, metal sensors, magnetic sensors, etc. The vehicle automatically travels along the travel route by detecting the positional deviation from the marker and steering in response to the positional deviation detection signal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの従来の誘導路は、例えば工場内の装置
の配置に応じた特定のコースを設定し、このコースに沿
って標識体全設置するtめ、特に近年のようにFMS 
(多品種少量生産)化が進み、装置の配置変更、レイア
ウト変更等が頻繁に行なわれるような場合には、そのつ
と新しく標識体を設置しなおさなければならないという
欠点があった。
However, these conventional taxiways, for example, set a specific course according to the arrangement of equipment in the factory and set up all signs along this course. Especially in recent years, FMS
(High-mix, low-volume production) is progressing, and when changes in the arrangement and layout of equipment are frequently made, there is a drawback that a new sign must be installed each time.

本発明の目的は以上のような欠点に鑑み、無人車の走行
コースの変更に際して標識体の設置位置を変更すること
なく対応できる誘導路を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks, an object of the present invention is to provide a guideway that can accommodate changes in the driving course of an unmanned vehicle without changing the installation position of a sign.

〔問題点を解決する友めの手段〕[Friendly means of solving problems]

本発明は電気的、磁気的、光学的その他の手段により検
知可能な材質を用いた標識体と、非標識体との配列組合
せからなり、各標識体と非標識体との隣接相互間に連続
した境界線を格子状に形成させ、路面上に前記境界線に
沿う誘導路を設けたことを特徴とする無人車の誘導路で
ある。
The present invention consists of an array combination of a labeled body using a material that can be detected by electrical, magnetic, optical or other means, and a non-labeled body, and the adjacent labeled bodies and the non-labeled body are continuous. This guideway for an unmanned vehicle is characterized in that boundary lines are formed in a grid pattern, and a guideway is provided on a road surface along the boundary lines.

〔作用〕[Effect]

第6図(a)、(bJ、第7図(a)、(b)を用イテ
、本発FJAcv作用を説明する。今、無人車が3つの
ステーション間を自動走行するものとし、ステーション
S2の位置が第6図(a)から第6図(b)の82′の
位置へ変更される場合を考える。
Using Fig. 6 (a), (bJ) and Fig. 7 (a), (b), we will explain the effect of the FJAcv. Now, it is assumed that an unmanned vehicle automatically travels between three stations, and station S2 Consider the case where the position is changed from FIG. 6(a) to the position 82' in FIG. 6(b).

従来は、同図に示すように、ステーション位置の変更に
応じて、新めで標識体1を設置し直すかあるいは追加す
ることで対処していた。これに対して本発明では第7図
(jL)、(b)のように標識体1をあらかじめ、その
端辺すなわち標識体1と非標識体2との境界線が格子状
をなして平面座標上で隣接相互間か直角方向く互いに連
続しているため、無人車3は、車体に搭載し九標識体セ
ンサ4によって、この標識体1の端辺からのずれit検
出しつつ操舵を行なうことによって縦横、に無人走行で
きる。本発明によれば、無人車3の誘導路#−i実質的
に格子状に構成される。したがって、第6図(、)から
第6図(b)に示すような、ステージ胃ン位置の変更に
対して第7図(a)より第7図(b) K示すようなコ
ースの変更のみでよく標識体1を設置し直すことなく対
応することができる。
Conventionally, as shown in the figure, the problem has been dealt with by either reinstalling or adding a new marker 1 in response to a change in the station position. On the other hand, in the present invention, as shown in FIGS. 7(jL) and (b), the marked body 1 is set in plane coordinates in advance so that its edges, that is, the boundaries between the marked body 1 and the non-marked body 2 form a grid. Since the adjacent vehicles are continuous with each other in the orthogonal direction, the unmanned vehicle 3 performs steering while detecting the deviation of the marker 1 from the edge using the marker sensor 4 mounted on the vehicle body. It can run unmanned both vertically and horizontally. According to the present invention, the taxiway #-i of the unmanned vehicle 3 is configured substantially in the form of a grid. Therefore, for changes in stage gastrointestinal positions as shown in Figures 6(a) to 6(b), only changes in the course as shown in Figures 7(a) to 7(b) are required. This can be done without having to reinstall the marker 1.

〔実施例〕〔Example〕

以下に本発明の一実施例を示す。 An example of the present invention is shown below.

第1図は、フェライト粉末を樹脂で固形化したタイル状
の磁気標識体1と、一般の床用タイル2(非標識体)と
の配置を示したものである。標識体1とタイル2を単に
平面的に交互に配置するだけで標識体1の端辺、すなわ
ち標識体1とタイル2の境界線を容易に格子状とするこ
とができる。
FIG. 1 shows the arrangement of a tile-shaped magnetic marker 1 made of ferrite powder solidified with resin and a general floor tile 2 (non-label). By simply arranging the markers 1 and tiles 2 alternately in a plane, the edges of the markers 1, that is, the boundaries between the markers 1 and the tiles 2, can be easily formed into a grid pattern.

一方、無人車3には磁気標識体1を検知するための磁気
センサ4を搭載する。本実施例に用いた磁気センサ4は
第2図に示すような検出特性をもつ2個の磁気検出素子
4m 、 4bからなっている。この検出素子4a 4
bは、位置ずれが零の時、誘導路(すなわち境界線)の
両側に対称の位置となるように無人車3に固定されてい
る。
On the other hand, the unmanned vehicle 3 is equipped with a magnetic sensor 4 for detecting the magnetic sign 1. The magnetic sensor 4 used in this embodiment consists of two magnetic detection elements 4m and 4b having detection characteristics as shown in FIG. This detection element 4a 4
b is fixed to the unmanned vehicle 3 so as to be at a symmetrical position on both sides of the guideway (that is, the boundary line) when the positional deviation is zero.

雨検出素子4m、4bQ出力の和V、 −)−Vbは、
誘導路からの位置ずれに対して、第3図(a)、(b)
に示すような出力特性となり、無人車3は、この出力信
号により位置ずれの方向およびずれ量を検知しつつ操舵
を行なうことにより自動走行する。
The sum of the rain detection elements 4m and 4bQ outputs V, -)-Vb is,
Figure 3 (a) and (b) for positional deviation from the taxiway.
The output characteristics are as shown in , and the unmanned vehicle 3 automatically travels by steering while detecting the direction and amount of positional deviation based on this output signal.

また、第3図に示すように、磁気センサ4が第1図の領
域Aに位置する場合(第3図(a))と、領域Bに位置
する場合(第3図(b))とでは、検出素子4m、4b
の出力の大きさV、、Vbの大小関係が反転する。した
がって、検出出力Va、Vbの大小関係から領域の移動
、すなわち、誘導路上の交叉点の通過を検出することが
できる。また、第4図に示すように、領域AとBとでは
磁気センサの出力V0(Voミva+vb)の位置ずれ
Xに対する傾斜が反転するが、上記のように、現在の領
域を知ることで補正することができる〇 交叉点通過の確認および領域の判別は、第4図に示すよ
うに、磁気検出素子5を無人車3上に検出素子4とは別
の位置にとりつけ、たとえば、本実施例では、その検出
出力vdがVdくoのときは領域A 、 V、1 ) 
Qのときは領域Bというように、検出出力vd極性によ
りても行なうことができる。
Furthermore, as shown in FIG. 3, there are two cases in which the magnetic sensor 4 is located in area A in FIG. 1 (FIG. 3(a)) and in area B (FIG. 3(b)). , detection elements 4m, 4b
The magnitude relationship of the output magnitudes V, , Vb is reversed. Therefore, the movement of the area, that is, the passage of an intersection on the taxiway can be detected from the magnitude relationship of the detection outputs Va and Vb. Furthermore, as shown in Fig. 4, the slope of the magnetic sensor output V0 (Vo mi va + vb) with respect to the positional deviation X is reversed between regions A and B, but as described above, it can be corrected by knowing the current region. As shown in FIG. 4, the confirmation of the crossing point and the determination of the area can be carried out by attaching the magnetic detection element 5 on the unmanned vehicle 3 at a different position from the detection element 4, for example, in this embodiment. Then, when the detection output vd is Vdkuo, the area A, V, 1)
This can also be done using the detection output vd polarity, such as in region B when Q is detected.

次K、無人車3の走行動作の一実施例について説明する
Next, an example of the running operation of the unmanned vehicle 3 will be described.

今、第5図に示す如く、コース上に3つのステーション
81〜S3が置かれている場合を考える。ステーション
S1から83へ行くためのコースとして、たとえば交点
をptt→pit−pst→P41→P42→P43→
P44の順で通過するコースをあらかじめ設定し、無人
車3には、このコースに対応する動作コマンドとして、 という動作コマンド列をその記憶装置内のテーブル上に
書き込んでおく。無人車3は、ステーションS!からS
Sへの走行指示が入力されると、この指示入力に対応す
る動作コマンドとして上記のコマント列を選び出し、こ
のコマンドに応じた動作を行なうことによって目的ステ
ーションS3まで自動走行する。
Now, consider the case where three stations 81 to S3 are placed on the course as shown in FIG. As a course to go from station S1 to station 83, for example, the intersection is ptt→pit-pst→P41→P42→P43→
A course to be passed in the order of P44 is set in advance, and the following operation command string is written in the unmanned vehicle 3 on a table in its storage device as an operation command corresponding to this course. Unmanned car 3 is Station S! From S
When a travel instruction to S is input, the above-mentioned command string is selected as an operation command corresponding to the instruction input, and by performing an operation according to this command, the vehicle automatically travels to the destination station S3.

本発明では標識体を施工した時点で格子状の誘導路が構
成されているのでステーションSLから83へのコース
として上記例だけでなく、たとえば、交点 P11→puwpts→P14→P24→P34→P4
4あるいは など、多数のコースを選ぶことができる。したがって、
無人車が、これらの複数のコースに対応する動作コマン
ド列を記憶し、状況に応じて適当な1つを選択できるよ
うにすれば無人車が複数台存在する場合でも、互いに衝
突することなく目的ステーションへ走行させることも可
能となる。
In the present invention, a grid-like taxiway is constructed at the time the marker is constructed, so the course from station SL to 83 is not limited to the above example, but also, for example, the intersection P11 → puwpts → P14 → P24 → P34 → P4
You can choose from a number of courses, including 4 or 4. therefore,
If unmanned vehicles can memorize movement command sequences corresponding to these multiple courses and select the appropriate one according to the situation, even if there are multiple unmanned vehicles, they will be able to achieve their objectives without colliding with each other. It is also possible to run the vehicle to a station.

さらに、第5図に示すように、ステーション位置が82
から82′へ変更されても、磁気標識体3を設置し直す
必要はなく、無人車に記憶させる動作コマンド列を。
Furthermore, as shown in FIG. 5, the station position is 82.
Even if it is changed from 82' to 82', there is no need to reinstall the magnetic marker 3, and the operation command sequence to be stored in the unmanned vehicle.

に変更するだけでよい。Just change it to .

以上のように本発明によれば磁気標識体とタイルを平面
上で交互に配置することにより、容易に格子状の誘導路
を得ることができる。
As described above, according to the present invention, a grid-shaped guide path can be easily obtained by alternately arranging magnetic markers and tiles on a plane.

以上の実施例では、標識体として磁気標識体を用いたが
、標識体はこれに限定されるものではなく、例えば、光
反射板が金属板を標識体として用い、これを、光電セン
サや金属センサによって検出しても、同様の効果が得ら
れることは明らかである。
In the above embodiment, a magnetic label was used as a label, but the label is not limited to this. For example, a light reflecting plate uses a metal plate as a label, and this can be used as a photoelectric sensor or a metal plate. It is clear that a similar effect can be obtained by detecting with a sensor.

〔発明Ω効果〕[Invention Ω effect]

本発明によれば、容易に格子状の無人車の誘導路を設置
することができ、これによって、走行コースの変更に容
易に対応することができる。
According to the present invention, it is possible to easily install a grid-like guideway for unmanned vehicles, and thereby it is possible to easily respond to changes in the driving course.

また、同一ステーションへのルートを複数個設定するこ
とができるので、複数台の無人車の走行を効率よく行な
うことも可能となる。
Furthermore, since it is possible to set a plurality of routes to the same station, it is also possible to efficiently run a plurality of unmanned vehicles.

したがって、本発明によるときには工場内の装置の配置
の変更、レイアウト変更等に即応できる効果を有するも
のである。
Therefore, according to the present invention, it is possible to immediately respond to changes in the arrangement of devices in a factory, layout changes, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の誘導路の配置の一実施例を示す平面図
、 第2図は磁気検出素子の検出特性の一例を示す図、 第3図(a) 、 (b)は磁気センサの検出特性の一
例を示す図、 第4図は磁気標識体の配置パターンの検出方法の一実施
例を示す図、 第5図は本発明によって得られる格子状誘導路を示す図
、 第6図(a)、(b)は従来の誘導路とホす図、第7図
は格子状誘導路を示す図て°゛ある。 1・・・標識体、2・・・タイル、3・・・無人車、4
・・・磁気センサ、4a、4b、5 =−磁気検出素子
、Sn (n=1.2゜・)−・・ステーション、Pn
l 、 n(m =1.21 =・、n=1.2.”)
・・・誘導路の交点 の端辺との水平方向距離 Vd′碓気標出素子の出力 第2図 第4図 St〜3.3’ ニスチージョン B1〜P44:磁気標肛式本の交点 第5図 51〜3.2’ニスチージヨン (α〕                      
(b)部片Q邸1 51〜3,2′ スフ−ジョン
Figure 1 is a plan view showing an example of the arrangement of the guideway of the present invention, Figure 2 is a diagram showing an example of the detection characteristics of the magnetic detection element, and Figures 3 (a) and (b) are the diagrams of the magnetic sensor. FIG. 4 is a diagram showing an example of a method for detecting the arrangement pattern of magnetic labels; FIG. 5 is a diagram showing a grid-shaped guiding path obtained by the present invention; FIG. A) and (b) are diagrams showing a conventional taxiway, and FIG. 7 is a diagram showing a grid-shaped taxiway. 1...Sign body, 2...Tile, 3...Unmanned vehicle, 4
...Magnetic sensor, 4a, 4b, 5 =-Magnetic detection element, Sn (n=1.2°.)--Station, Pn
l, n (m = 1.21 = ., n = 1.2.”)
...Horizontal distance from the end of the intersection of the taxiway Vd' Output of the air-heading element Fig. 2 Fig. 4 St ~ 3.3' Figure 51 ~ 3.2' Nistijion (α)
(b) Piece Q house 1 51-3,2' sfusion

Claims (1)

【特許請求の範囲】[Claims] (1)電気的、磁気的、光学的その他の手段により検知
可能な材質を用いた標識体と、非標識体との配列組合せ
からなり、各標識体と非標識体との隣接相互間に連続し
た境界線を格子状に形成させ、路面上に前記境界線に沿
う誘導路を設けたことを特徴とする無人車の誘導路。
(1) Consisting of an array combination of a labeled body using a material that can be detected by electrical, magnetic, optical, or other means and a non-labeled body, and each labeled body and a non-labeled body are continuous between adjacent ones. 1. A guideway for an unmanned vehicle, characterized in that boundary lines are formed in a grid pattern, and a guideway is provided on a road surface along the boundary lines.
JP18235285A 1985-08-19 1985-08-19 Unmanned vehicle taxiway Expired - Lifetime JPH063561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18235285A JPH063561B2 (en) 1985-08-19 1985-08-19 Unmanned vehicle taxiway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18235285A JPH063561B2 (en) 1985-08-19 1985-08-19 Unmanned vehicle taxiway

Publications (2)

Publication Number Publication Date
JPS6242208A true JPS6242208A (en) 1987-02-24
JPH063561B2 JPH063561B2 (en) 1994-01-12

Family

ID=16116808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18235285A Expired - Lifetime JPH063561B2 (en) 1985-08-19 1985-08-19 Unmanned vehicle taxiway

Country Status (1)

Country Link
JP (1) JPH063561B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926103A (en) * 1985-08-30 1990-05-15 Texas Instruments Incorporated System for dynamically determining position of multiple automatically guided vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926103A (en) * 1985-08-30 1990-05-15 Texas Instruments Incorporated System for dynamically determining position of multiple automatically guided vehicles

Also Published As

Publication number Publication date
JPH063561B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
US20210254978A1 (en) Module fiducial markers for robot navigation, address markers and the associated robots
US20170108874A1 (en) Vision-based system for navigating a robot through an indoor space
CN106595688A (en) Multi-AGV-guiding and dynamic path planning method
CN108052107A (en) A kind of AGV indoor and outdoor complex navigation system and methods for merging magnetic stripe, magnetic nail and inertial navigation
CN106370185B (en) Mobile robot positioning method and system based on ground reference mark
CN104679004A (en) Flexible path and fixed path combined automated guided vehicle and guide method thereof
CN201993114U (en) Magnetic navigation sensor
EP2284636A2 (en) Floor tile comprising guidance means for an automatic guided vehicle
CN107562059A (en) A kind of intelligent carriage tracking system with Quick Response Code site location information
JPS6241804A (en) Guide road for unmanned vehicle
CN113614573A (en) Positioning system for unmanned vehicle
EP3828659B1 (en) System for vehicle
US20210125493A1 (en) Travel control apparatus, travel control method, and computer program
JPS62113210A (en) Guide path for unmanned vehicle
JPS6242208A (en) Guide line for unmanned carrier
JPS61271505A (en) Operation controller for unmanned carrier
JPH036522B2 (en)
De Lima et al. Sensor-based control with digital maps association for global navigation: a real application for autonomous vehicles
KR20210049373A (en) 6wd .
JPH0516043B2 (en)
JPS6123221A (en) Guiding system of mobile truck
KR101420625B1 (en) Driving system of automatic guided vehicle and method of the same
JPH01180012A (en) Guiding method and system for unmanned-carrying vehicle
JPS63134912A (en) Detecting method for position of moving robot
JPH0441362Y2 (en)