JPS6241830B2 - - Google Patents

Info

Publication number
JPS6241830B2
JPS6241830B2 JP9819881A JP9819881A JPS6241830B2 JP S6241830 B2 JPS6241830 B2 JP S6241830B2 JP 9819881 A JP9819881 A JP 9819881A JP 9819881 A JP9819881 A JP 9819881A JP S6241830 B2 JPS6241830 B2 JP S6241830B2
Authority
JP
Japan
Prior art keywords
molten metal
hot water
coating material
weight
water surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9819881A
Other languages
Japanese (ja)
Other versions
JPS58351A (en
Inventor
Masahisa Takasaki
Shinya Watahashi
Akira Sato
Yasuo Yoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP9819881A priority Critical patent/JPS58351A/en
Publication of JPS58351A publication Critical patent/JPS58351A/en
Publication of JPS6241830B2 publication Critical patent/JPS6241830B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting

Description

【発明の詳細な説明】 本発明は溶融金属の保温及び酸化防止等の目的
で用いる湯面被覆材に関するものである。 亜鉛、アルミニウムあるいはこれらの金属の合
金等を鋳造する場合は、インゴツトを溶解炉にお
いて加熱して得られた溶融物(溶湯)を溶湯室、
貯湯槽等と呼ばれる貯槽に保存し、ここから溶湯
を少量ずつ汲取るか槽底の出湯孔から取り出して
鋳造するのが普通である。この場合、貯槽内にあ
る溶湯からの熱の放散をなるべく少なくして溶湯
の温度低下を防ぐ必要があることは言うまでもな
い。特に溶湯をラドル等により汲取る方式の場合
は、汲取が可能なよう、溶湯貯槽の上部は開放構
造にしなければならないから、湯面からの熱放散
が大きくなり易く、なんらかの手段で保温するこ
とが必要になる。またアルミニウムの場合は単な
る温度低下を起こすにとどまらず、空気中の酸素
と反応して酸化物を生成したり空気中の水蒸気と
反応して酸化物と水素を生成したりする。酸化物
の量が多ければそれだけ鋳造品の品質低下は避け
られないし、水素もまた溶湯中に吸収されて鋳造
品にガスポロシテイと呼ばれる欠陥部を生じさせ
てしまう。 溶湯の一時的貯蔵におけるこのような問題を解
決する方法としてはフラツクス溶解法が周知であ
り、またセラミツクフアイバーで溶湯表面を覆う
方法(特公昭54−20447号)も提案されている。
しかしながら、前者の場合はフラツクスが吸湿性
であるため、その保存法及び使用法によつては、
溶湯の酸化防止どころかかえつて水分を供給して
酸化及び水素ガスの吸収を促進することになると
いう欠点がある。また後者の場合は、保温効果は
あるものの、溶湯と共にセラミツクフアイバーが
汲取られてしまつてその除去が厄介であるばかり
か、セラミツクフアイバーが溶湯内に混入し易い
から、例えば溶湯を使い切つたあとは貯槽内のセ
ラミツクフアイバーを真空吸引機などで完全に吸
引除去してから新たな溶湯を注入する必要がある
など、取扱いに細心の注意を払わなければならな
いという欠点があつた。 本発明は上述のような欠点のない溶湯保温法を
可能にした新規な湯面被覆材、すなわち密度が
0.7〜1.4g/cm3であり、650℃で3時間加熱した
ときの減量(但し105℃で24時間乾燥後の試料に
ついての測定値。以下650℃強熱減量という)が
6重量%以下であり、かつ形状が塊状であるゾノ
ライト質ケイ酸カルシウム成形体よりなる溶融金
属の湯面被覆材を提供するものである。 本発明による湯面被覆材は、これにより湯面全
体が覆われるように、多数、湯面上に浮遊させて
用いる。耐熱性素材が低比重の塊状に成形された
ものである本発明の被覆材は、断熱性が良く、ま
た空気もほとんど透過させないから、これを湯面
に密に浮遊させれば、熱の放散を抑制し溶湯と空
気との接触を遮断して溶湯の冷却及び酸化並びに
水素ガスの発生を良く防止することができるのは
もちろん、セラミツクフアイバーそのもののよう
に溶湯に混入する恐れがない。つまり、この被覆
材が浮遊している上から溶湯を補給したり湯面を
激しく撹乱しても直ちに全部が湯面に浮上する
し、ラドルに入らないようにどけることも容易で
ある。したがつて、この被覆材を使えばほとんど
人手を要しない湯面被覆が可能になり、溶湯が汚
染されることもない。言うまでもなくこのような
特長を十分発揮するためには、被覆材が長期間そ
の苛酷な使用条件に耐えられるものでなければな
らないが、強熱されたときの水分放出による減量
が少なく、しかも嵩高なケイ酸カルシウム成形体
からなる本発明の被覆材は、加熱冷却の繰返し、
あるいは不均一な加熱を受けても容易に亀裂や収
縮を生じない、すぐれた耐熱性、耐熱衝撃性を備
えている。 次に本発明の湯面被覆材を、その製法を示すこ
とにより詳しく説明する。 本発明の湯面被覆材は、基本的には周知のケイ
酸カルシウム成形体の製造法に従い、その際、得
られる成形体の密度が0.7〜1.4g/cm3になり650
℃強熱減量が6重量%以下、望ましくは5重量%
以下となるような原料及び成形条件を採用するこ
とにより得られる。成形体の密度を上記範囲のも
のとすることは、被覆材を湯面に置いたとき、下
半分が湯中に沈み上半分が空気中に露出する最も
好ましい状態又はこれに近い状態をとるように
し、併せて断熱性の良好なものとするために必要
である。また650℃強熱減量(つまり650℃に加熱
したときに放出される水分量)を6%以下にする
ことは、高温の溶湯による繰返し加熱及び不均一
加熱を受けても収縮や亀裂を生じない高度の耐熱
性を備えたものとするために必要であるばかりで
なく、使用状態において水蒸気を放出して前記機
構による水素ガスの泡を溶湯中に形成することの
ないようにするためにも必要である。この要件
は、ケイ酸カルシウムのなるべく多くの部分をゾ
ノトライトが占めるようにし、更に400℃以上に
なると脱水反応を起こす石綿を補強用に使用しな
いことにより、達成可能である。 成形はキヤステイング法、プレスモールド法な
ど、任意の方法により行うことができ、また最初
から塊状に成形するほか、板状など任意の形状に
成形して得られた成形体を切削加工して塊状に仕
上げる方法を採用してもよい。形状としては直径
10〜100mmの球又はこれに近い多面体が好まし
い。球以外の形状のものの場合、例えば立方体の
ように鋭い角や平らな表面を持つものは、角の部
分が磨耗し易く、また平担面が上を向いていると
ころへ溶湯の飛沫が乗るとそのまま落下せずに滞
留して酸化され易いから、形状の選定に工夫を要
する。 次に本発明の湯面被覆材の具体例を、その製法
を示して説明する。 〔製法A〕 ケイ酸原料及び石灰原料にあらかじめ水熱合成
されたゾノトライトのスラリー、繊維状ウオラス
トナイト及び水を加えて均一に混合し、これを脱
水成形後、蒸気養生及び乾燥を行う方法である。 ケイ酸原料及び石灰原料としては、ケイ藻土、
ケイ石、フエロシリコンダスト、ケイ華、消石
灰、生石灰、カーバイド滓等、通常ケイ酸カルシ
ウム成形体の製造原料として使用されるものをい
ずれも使用することができ、CaO/SiO2モル比
は0.6〜1.2、望ましくは0.7〜1.0とする。 ゾノトライトスラリーとしては常法により製造
したものを使用できるが、特に好ましいのは、ケ
イ酸原料と石灰原料の混合物(CaO/SiO2モル
比が0.8〜1.2のもの)に10〜30倍量の水を加え
て、14〜20Kg/cm2の蒸気圧下、撹拌しながら2〜
8時間反応させて製造したものである。このよう
なゾノトライトスラリーの適量を配合すると、石
綿を使用しなくても硬化前の成形体のハンドリン
グ性及び自己保形性が良いばかりでなく、容易に
低比重で強度及び耐熱性の良好な製品を得ること
ができる。ゾノトライトスラリーの好ましい配合
量は、固形物として、ケイ酸原料及び石灰原料の
合計量100重量部当り20〜170重量部である。 繊維状ウオラストナイトとしては、市販品例え
ば米国インターペース社のNYARD−Gをそのま
ま使用することができる。このウオラストナイト
をケイ酸原料及び石灰原料の合計量100重量部当
り5〜150重量部混合すると、製品が製造中にも
使用中にも亀裂が生じにくい耐熱性のよいものと
なるばかりでなく、切削加工性もよくなるから、
厚板状に成形してから所望の形状に切削加工する
場合にも加工が容易で歩留りがよい。 このほか、少量の耐アルカリ性ガラス繊維を成
形向上の目的で配合してもよい。 以上の諸原料に適宜水を加えてスラリー状にし
た後、脱水成形するが、前述のようにこの工程に
おける脱水度を調節することによつて製品の密度
が0.7〜1.4g/cm3、望ましくは0.8〜1.0g/cm3
度になるようにする。得られた成形物はオートク
レーブに移し、6〜20Kg/cm2、望ましくは8〜14
Kg/cm2の水蒸気で蒸気養生し、その後、乾燥す
る。乾燥は通常の(例えば建材用の)ケイ酸カル
シウム成形体を製造する場合よりも高温で、十分
行うことが望ましい。 〔製法B〕 CaO/SiO2モル比が約1の消石灰とケイ石の
混合物に2〜6重量%程度のポルトランドセメン
トを混合し、更に多量の水を加えてスラリー化し
たものをオートクレーブ中で撹拌しながら加圧下
に加熱してゾノトライトを生成させる。これに補
強材として適量の耐アルカリ性ガラス繊維を混合
したものを脱水成形し、熱風で十分乾燥する。 〔製法C〕 CaO/SiO2モル比が約1の生石灰(但し使用
前に熱水で消化したもの)とフエロシリコンダス
トの混合物に多量の水を加えてスラリー化したも
のをオートクレーブ中で反応させてゾノトライト
スラリーを得、以下製法Bと同様にする。 ケイ酸カルシウム成形体である本発明の湯面被
覆材は、普通の使用条件では表面が湯でぬれたり
速かに磨耗するようなこともなく長期間使用する
ことができるが、特別激しい機械的衝撃を繰返し
受けるような条件で使用すると表面が磨耗し、粉
末化したケイ酸カルシウムが湯面に浮遊して溶湯
中に混入し易くなることがある。これを避ける必
要がある場合は、本発明の湯面被覆材のすぐれた
特性を損なわない範囲で、任意の耐熱性材料をコ
ーテイングするなどの方法により表面を強化して
使用すればよい。 本発明は以上のように溶湯の保温及び変質防止
に極めて有効で使用も容易な湯面被覆材を提供す
ることに成功したもので、鋳造工程の省力化及び
省エネルギー、並びに鋳造品の品質向上に貢献す
るところ大なものである。 以下実施例を示して本発明を説明する。なお実
施例中「部」とあるのは重量部を意味する。 実施例 1 ケイ石粉と石灰乳をCaO/SiO2(モル比)が
0.98となるよう調合し、12倍量の水を加えて16
Kg/cm2の水蒸気圧下5時間撹拌しながら反応させ
て得られたゾノトライトスラリーをゾノトライト
として15部、ケイ石20部、消石灰21部、繊維状ウ
オラストナイト(NYARD−G)40部、耐アルカ
リ性ガラス繊維4部及び水500部の混合物を厚板
状に脱水成形し、得られた成形物を9Kg/cm2の蒸
気圧下で10時間蒸熱処理した後、4時間熱風中に
置いて乾燥して、主としてゾノトライトからなる
板状成形体を得る。次いでこれを切削加工して直
径50mmの球状体(本発明の湯面被覆材)を多数製
造する。 上記方法により、乾燥温度を250℃〜650℃の範
囲で種々変更して5種類の湯面被覆材を製造し、
それらの物性及び保温性能等を調べた。保温性能
の試験は、上部開放構造の貯湯槽(内径50cm、深
さ100cm)に700℃の溶融アルミニウムを深さ60cm
まで満たし、湯面に湯面被覆材を最密充填配置で
浮遊させて2時間放置した後の湯温を測定すると
共に湯面被覆材及び溶湯の表面を観察することに
より行なつた。 各湯面被覆材の製造条件(乾燥温度)及び物性
並びに保温試験の結果を第1表に示す。但し物性
は球状に切削する前の板状成形体について測定し
た値である。また、湯面被覆材を使用しない場
合、2時間後の湯温は627℃であつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molten metal surface coating material used for the purpose of keeping molten metal warm and preventing oxidation. When casting zinc, aluminum, or alloys of these metals, the ingot is heated in a melting furnace and the resulting molten metal is transferred to a molten metal chamber.
Usually, the molten metal is stored in a storage tank called a hot water storage tank, from which the molten metal is pumped out little by little, or taken out through a tap hole at the bottom of the tank and then cast. In this case, it goes without saying that it is necessary to prevent the temperature of the molten metal from decreasing by minimizing the radiation of heat from the molten metal in the storage tank. In particular, in the case of a method in which the molten metal is pumped up using a ladle or the like, the upper part of the molten metal storage tank must be open to allow the molten metal to be pumped out, so heat dissipation from the surface of the molten metal tends to be large, and it is necessary to keep it warm by some means. It becomes necessary. In the case of aluminum, it not only causes a simple temperature drop, but also reacts with oxygen in the air to produce oxides, and reacts with water vapor in the air to produce oxides and hydrogen. The greater the amount of oxides, the more unavoidably the quality of the cast product will deteriorate, and hydrogen will also be absorbed into the molten metal, causing defects called gas porosity in the cast product. A flux melting method is well known as a method for solving such problems in temporary storage of molten metal, and a method of covering the surface of the molten metal with ceramic fibers has also been proposed (Japanese Patent Publication No. 54-20447).
However, in the former case, the flux is hygroscopic, so depending on how it is stored and used,
There is a drawback that instead of preventing oxidation of the molten metal, it supplies moisture and promotes oxidation and absorption of hydrogen gas. In the latter case, although it has a heat-retaining effect, not only is the ceramic fiber drawn out together with the molten metal, making it difficult to remove, but also the ceramic fiber is easily mixed into the molten metal, so for example, after the molten metal is used up, the ceramic fiber is removed from the storage tank. The drawback was that the ceramic fibers inside had to be completely removed using a vacuum suction machine before new molten metal was injected, requiring careful handling. The present invention is a novel molten metal surface covering material that enables a molten metal heat retention method without the above-mentioned drawbacks, that is, a material with a low density.
0.7 to 1.4 g/ cm3 , and the weight loss when heated at 650°C for 3 hours (measured value for a sample after drying at 105°C for 24 hours, hereinafter referred to as ignition loss at 650°C) is 6% by weight or less. The object of the present invention is to provide a molten metal surface coating material made of a zonolitic calcium silicate molded body having a lump-like shape. The hot water surface covering material according to the present invention is used in large numbers floating on the hot water surface so that the entire hot water surface is covered. The coating material of the present invention, which is made of a heat-resistant material molded into a lump with a low specific gravity, has good heat insulation properties and hardly allows air to pass through, so if it is suspended densely on the surface of the hot water, it can dissipate heat. It is possible to prevent the cooling and oxidation of the molten metal as well as the generation of hydrogen gas by blocking the contact between the molten metal and air, and there is no risk of it being mixed into the molten metal, unlike ceramic fiber itself. In other words, even if you replenish the molten metal from above the floating coating material or violently disturb the molten metal surface, all of it will immediately float to the surface of the molten metal, and it is easy to remove it so that it does not enter the ladle. Therefore, if this coating material is used, it becomes possible to cover the surface of the molten metal with almost no labor required, and the molten metal is not contaminated. Needless to say, in order to fully demonstrate these characteristics, the covering material must be able to withstand harsh usage conditions for a long period of time, but it must be able to withstand the harsh conditions of use for a long period of time. The coating material of the present invention made of a calcium silicate molded body can be repeatedly heated and cooled,
It also has excellent heat resistance and thermal shock resistance, and does not easily crack or shrink even when subjected to uneven heating. Next, the hot water surface coating material of the present invention will be explained in detail by showing its manufacturing method. The hot water surface coating material of the present invention basically follows the well-known manufacturing method of calcium silicate molded bodies, and the density of the molded bodies obtained is 0.7 to 1.4 g/cm 3 650
°C ignition loss is 6% by weight or less, preferably 5% by weight
It can be obtained by adopting the following raw materials and molding conditions. Setting the density of the molded body within the above range means that when the coating material is placed on the hot water surface, the lower half sinks into the hot water and the upper half is exposed to the air, which is the most preferable state or a state close to this. This is necessary to improve the thermal insulation properties. In addition, keeping the ignition loss at 650℃ (that is, the amount of water released when heated to 650℃) to 6% or less means that shrinkage and cracking will not occur even when subjected to repeated heating or uneven heating with high-temperature molten metal. This is necessary not only to provide a high degree of heat resistance, but also to prevent the formation of hydrogen gas bubbles in the molten metal due to the release of water vapor during use. It is. This requirement can be achieved by ensuring that xonotlite occupies as much of the calcium silicate as possible, and by not using asbestos, which causes a dehydration reaction at temperatures above 400°C, for reinforcement. Forming can be done by any method such as casting or press molding.In addition to forming into a block from the beginning, forming into an arbitrary shape such as a plate and cutting the obtained molded object to form a block. You may also use a method to finish the process. Diameter as shape
A sphere of 10 to 100 mm or a polyhedron close to this is preferable. In the case of objects with shapes other than spheres, for example objects with sharp corners or flat surfaces, such as cubes, the corners are likely to wear out, and if molten metal splashes onto an area with the flat surface facing upward, it may cause damage. Since it does not fall and remains there, it is likely to be oxidized, so careful selection of the shape is required. Next, a specific example of the hot water surface coating material of the present invention will be explained by showing its manufacturing method. [Production method A] A slurry of xonotlite, which has been hydrothermally synthesized in advance, fibrous wollastonite, and water are added to the silicic acid raw material and lime raw material, mixed uniformly, and after dehydration molding, steam curing and drying are performed. be. As silicic acid raw materials and lime raw materials, diatomaceous earth,
Silica stone, ferrosilicon dust, silica, slaked lime, quicklime, carbide slag, etc. can all be used, and the CaO/SiO 2 molar ratio is 0.6. -1.2, preferably 0.7-1.0. As the zonotrite slurry, one produced by a conventional method can be used, but it is particularly preferable to add 10 to 30 times the amount of water to a mixture of silicic acid raw material and lime raw material (with a CaO/SiO 2 molar ratio of 0.8 to 1.2). 2 to 20 kg/cm 2 while stirring under a steam pressure of 14 to 20 Kg/cm2.
It was produced by reacting for 8 hours. When an appropriate amount of such xonotrite slurry is blended, the molded product not only has good handling and self-shape properties before curing even without the use of asbestos, but also can easily be made into a product with low specific gravity, good strength, and heat resistance. can be obtained. The preferred blending amount of the xonotrite slurry is 20 to 170 parts by weight as a solid substance per 100 parts by weight of the total amount of the silicic acid raw material and the lime raw material. As the fibrous wollastonite, a commercially available product such as NYARD-G manufactured by Interspace Corporation in the United States can be used as it is. When 5 to 150 parts by weight of this wollastonite is mixed per 100 parts by weight of the total amount of silicic acid raw materials and lime raw materials, the product not only becomes resistant to cracks during manufacturing and use, but also has good heat resistance. , machinability improves,
Even when it is formed into a thick plate and then cut into a desired shape, the processing is easy and the yield is high. In addition, a small amount of alkali-resistant glass fiber may be added for the purpose of improving molding. After appropriately adding water to the above raw materials to form a slurry, it is dehydrated and molded.As mentioned above, by adjusting the degree of dehydration in this step, the density of the product is preferably 0.7 to 1.4 g/cm 3 . should be about 0.8 to 1.0 g/ cm3 . The obtained molded product is transferred to an autoclave to give a weight of 6 to 20 kg/cm 2 , preferably 8 to 14 kg/cm 2 .
Steam-cure with Kg/cm 2 of steam and then dry. It is desirable that the drying be carried out sufficiently at a higher temperature than when producing a normal calcium silicate molded body (for example, for building materials). [Production method B] A mixture of slaked lime and silica stone with a CaO/SiO 2 molar ratio of about 1 is mixed with about 2 to 6% by weight of Portland cement, and a large amount of water is added to form a slurry, which is stirred in an autoclave. While heating under pressure, xonotlite is produced. This is mixed with an appropriate amount of alkali-resistant glass fiber as a reinforcing material, then dehydrated and molded, and thoroughly dried with hot air. [Production method C] A large amount of water is added to a mixture of quicklime (digested with hot water before use) and ferrosilicon dust with a CaO/SiO 2 molar ratio of approximately 1 to form a slurry, which is then reacted in an autoclave. A xonotrite slurry was obtained, and the following procedure was carried out in the same manner as in Production Method B. The hot water surface coating material of the present invention, which is a calcium silicate molded body, can be used for a long period of time under normal usage conditions without the surface becoming wet with hot water or quickly wearing out. If used under conditions where it is subject to repeated shocks, the surface may become abraded and powdered calcium silicate may float on the surface of the molten metal and become easily mixed into the molten metal. If it is necessary to avoid this, the surface of the hot water surface coating material of the present invention may be reinforced by a method such as coating with any heat-resistant material within a range that does not impair the excellent properties of the hot water surface coating material. As described above, the present invention has succeeded in providing a molten metal surface coating material that is extremely effective in retaining heat and preventing deterioration of molten metal and is easy to use. This is a huge contribution. The present invention will be explained below with reference to Examples. In the examples, "parts" means parts by weight. Example 1 Silica stone powder and milk of lime were mixed with CaO/SiO 2 (molar ratio).
Mix to make it 0.98, add 12 times the amount of water and make 16
A xonotlite slurry obtained by reacting with stirring under a water vapor pressure of Kg/cm 2 for 5 hours is 15 parts as xonotlite, 20 parts of silica, 21 parts of slaked lime, 40 parts of fibrous wollastonite (NYARD-G), and alkali resistance. A mixture of 4 parts of glass fiber and 500 parts of water was dehydrated and molded into a plate shape, and the resulting molded product was steamed under a steam pressure of 9 kg/cm 2 for 10 hours, and then placed in hot air for 4 hours to dry. , a plate-shaped molded body mainly consisting of xonotlite is obtained. Next, this is cut to produce a large number of spherical bodies (the hot water surface coating material of the present invention) each having a diameter of 50 mm. By the above method, five types of hot water surface covering materials were manufactured by varying the drying temperature in the range of 250°C to 650°C,
Their physical properties and heat retention performance were investigated. The heat retention performance test was conducted by pouring molten aluminum at 700℃ into a hot water storage tank with an open top structure (inner diameter 50cm, depth 100cm) to a depth of 60cm.
The measurement was carried out by measuring the temperature of the hot water and observing the surface of the hot water surface covering material and the molten metal after the hot water was filled up to the maximum, the surface coating material was suspended on the hot water surface in a close-packed arrangement, and left for 2 hours. Table 1 shows the manufacturing conditions (drying temperature) and physical properties of each hot water surface coating material, as well as the results of the heat retention test. However, the physical properties are the values measured for the plate-shaped molded product before cutting into a spherical shape. In addition, when no hot water surface coating material was used, the hot water temperature after 2 hours was 627°C. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 密度が0.7〜1.4g/cm3であり、650℃で3時
間加熱したときの減量が6重量%以下であり、形
状が塊状であるゾノトライト質ケイ酸カルシウム
成形体よりなる溶融金属の湯面被覆材。
1. The surface of a molten metal made of a xonotrite calcium silicate molded body having a density of 0.7 to 1.4 g/ cm3 , a weight loss of 6% by weight or less when heated at 650°C for 3 hours, and a block-like shape. Covering material.
JP9819881A 1981-06-26 1981-06-26 Covering material for surface of molten metal Granted JPS58351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9819881A JPS58351A (en) 1981-06-26 1981-06-26 Covering material for surface of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9819881A JPS58351A (en) 1981-06-26 1981-06-26 Covering material for surface of molten metal

Publications (2)

Publication Number Publication Date
JPS58351A JPS58351A (en) 1983-01-05
JPS6241830B2 true JPS6241830B2 (en) 1987-09-04

Family

ID=14213299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9819881A Granted JPS58351A (en) 1981-06-26 1981-06-26 Covering material for surface of molten metal

Country Status (1)

Country Link
JP (1) JPS58351A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05003691A (en) 2002-10-07 2005-11-17 James Hardie Int Finance Bv Durable medium-density fibre cement composite.
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
MX2008013202A (en) 2006-04-12 2009-01-09 James Hardie Int Finance Bv A surface sealed reinforced building element.
JP6413162B2 (en) * 2014-04-02 2018-10-31 ゴウダ株式会社 Heat insulation material for melting furnace, method for producing heat insulation material for melting furnace, and method for heat insulation of melting furnace

Also Published As

Publication number Publication date
JPS58351A (en) 1983-01-05

Similar Documents

Publication Publication Date Title
US6692678B2 (en) Calcium silicate insulating material containing alumina silica microspheres
US4690867A (en) Material for low melting point metal casting equipment
CA2097074C (en) Insulating material containing pitch based graphite fiber
US4430121A (en) Method for covering the surface of molten metal, and a covering material therefor
JPS6241830B2 (en)
CA1103884A (en) Refractory exothermic heat insulating articles
CN112500135A (en) Magnesium-calcium tundish dry working lining material and preparation method thereof
CN107344859A (en) A kind of Midst density high alumina silicon carbide castable and preparation method thereof
JPS6353145B2 (en)
CN110272267A (en) Long-life iron-runner quick-drying casting material and preparation method thereof
JP3016124B2 (en) Molten container and aluminum holding furnace
CN107602136A (en) A kind of refractory material liner body for tundish and preparation method thereof
US6840994B2 (en) Calcium silicate insulating material containing alumina silica microspheres
JP3026123B2 (en) Insulation material for low melting point metal horizontal continuous casting equipment
CN111673049A (en) Fiber heat-insulating riser material for casting
US3732177A (en) Exothermic insulating compositions comprising glass polishing residue
CN110317071A (en) A kind of ladle working lining low-porosity microporous preformed bricks and its production method
JP5180504B2 (en) Method for manufacturing precast block for metal melting furnace ceiling and precast block for metal melting furnace ceiling
JPH0243701B2 (en)
SU1606488A1 (en) Method of producing refractory porous aggregate
JP3952222B2 (en) Induction furnace
US4135939A (en) Refractory article and method of making the same
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
Paunescu et al. Granulated Expanded Glass Manufacturing Method Using Electromagnetic Waves
JPS6232150B2 (en)