JPS6232150B2 - - Google Patents

Info

Publication number
JPS6232150B2
JPS6232150B2 JP55080288A JP8028880A JPS6232150B2 JP S6232150 B2 JPS6232150 B2 JP S6232150B2 JP 55080288 A JP55080288 A JP 55080288A JP 8028880 A JP8028880 A JP 8028880A JP S6232150 B2 JPS6232150 B2 JP S6232150B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating board
weight
refractory
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55080288A
Other languages
Japanese (ja)
Other versions
JPS577866A (en
Inventor
Sunao Mototani
Katsuhiro Tabata
Motoo Tsuboi
Masami Kuroe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP8028880A priority Critical patent/JPS577866A/en
Publication of JPS577866A publication Critical patent/JPS577866A/en
Publication of JPS6232150B2 publication Critical patent/JPS6232150B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は断熱性および耐蝕性を著しく改良した
タンデイツシユ用耐火断熱板に関する。 鋼の連続鋳造においては取鍋内の溶鋼をいつた
んタンデイツシユに受けてから鋳型に注入してい
る。このタンデイツシユの外殻は鉄製の容器であ
つて、内部は耐火れんがで内張りされ、底部には
出鋼用のノズルが設けられている。 タンデイツシユは受鋼前に1100〜1200℃に予熱
され、鋼の冷却を防止しているが、受鋼後から出
鋼完了までに、容器の断熱性が乏しく、経時的に
次第に溶鋼温度が低下し出鋼用ノズルが詰る欠点
がある。この理由は、一般にタンデイツシユに使
用される内張りの耐火れんがが緻密質であつて断
熱性が劣るためである。また溶鋼温度が降下する
と鋳造中に非金属介在物が溶鋼の表面に浮上せ
ず、鋼塊に巻込まれて不良品になる欠点もある。
さらに、残湯、地金の附着も多く、これらの除去
作業が困難であつて、地金の除去とともに、内張
り耐火れんがが地金除去作業と同時に脱落する場
合もあり、耐火れんがの張り替え作業に要するコ
スト・アツプも大きな問題となつている。 最近では、これらの除去作業が困難であつて、
地金の除去とともに、内張り耐火れんがが地金除
去作業と同時に脱落する場合もあり、耐火れんが
の張り替え作業に要するコスト・アツプも大きな
問題となつている。 最近では、これらの諸欠点を除くために耐火れ
んが表面に耐火材を塗布したり、断熱板を装着す
るようになつた。 このような従来技術としては特開昭48−79333
号公報があり、この場合に使用される断熱板の材
質はマグネシア質、炭化珪素質、アルミナ質、珪
酸質を主原料とし、これに中間強度を保つために
硼素の酸化物およびその塩類が少量使用され、ま
た板の強度を保ち保温性が要求されるので、有機
質あるいは無機質の繊維が使用されている。この
ような断熱板は、タンデイツシユ用耐火れんがの
表面に目地材として不定形耐火物を用いることに
よつて、ノズルの閉塞、地金除去作業等がある程
度改善された。 しかし、タンデイツシユの炉材費の低減と省エ
ネルギー、さらに高熱作業の省力化と作業の合理
化が重要な課題になつており、この観点から現在
のタンデイツシユ用断熱板は耐用性ならびに作業
性において多くの欠点が残されている。 本発明のタンデイツシユ用耐火断熱板は、アル
カリ土類金属の炭酸塩、たとえばCaCO3
CaCO3・MgCO3などの仮焼処理を施こさない原
料であつて、加熱時にCO2ガスを発生する物質を
2〜20重量%添加したもので第1図に使用態様を
示す。第1図において1は本発明の耐火断熱板、
3はタンデイツシユの外殻4に内張りされた耐火
れんがである。 かかるCO2ガスを発生する原料としては生の石
灰石、ドロマイト(苦灰石)などがある。本発明
によれば、従来の断熱板の諸欠点を除去し省エネ
ルギーの立場から予熱費と予熱時間を短縮し、断
熱保温性が優れているため、残湯地金が少なく、
地金の除去作業も容易になり、作業環境が著しく
改善でき、さらに耐蝕性に優れるため耐用性が従
来の断熱板の約2倍に延長した。 従来のタンデイツシユ用断熱板の損傷機構を使
用後の状態から調査した結果、耐火物原料として
マグネシア質を主原料とした材質からなる断熱板
では、スラグ中の主成分であるSiO2,CaO,
Fe2O3等が、2CaO・Fe2O3の形で断熱板組織内に
侵入し、断熱板の主成分であるMgOおよび不純
物のSiO2と反応して、低融物CaO・MgO・
SiO2,MgO・Fe2O3,MgO・3CaO・2SiO2
2CaO・MgO・SiO2等が生成し、断熱板の寿命を
短縮していることが判明した。 また、従来から、断熱板の強度と断熱性を高め
るため有機質あるいは無機質繊維等比重の軽い、
すなわち嵩の大きい繊維を一般に3〜10重量%使
用している。そのため、連続気孔が多く、かつ通
気性も大きくなり、スラグ中の成分が断熱板の組
織内に侵入し易くなり、これがMgOとの反応を
促進し耐蝕性を劣化させている。 これに対し、本発明のタンデイツシユ用耐火断
熱板1は、耐火物原料に石灰石、苦灰石を主成分
とする原料を仮焼処理を施こさないで2〜20重量
%添加することに特徴を有し、次の作用によつて
耐蝕性を向上させる。 たとえば、マグネシア質耐火原料に、
CaCO3,CaCO3・MgCO3を添加して受鋼加熱し
た場合、CaCO3=CaO+CO2,MgCO3=MgO+
CO2のように分解し、その際発生するCO2ガスは
タンデイツシユ用耐火断熱板の使用面に一種のガ
スシールを形成し、このため耐火断熱板と鋼とが
接触する機会が多少遅延するようになり、耐蝕性
を向上させる一因ともなつている。 さらに、CaCO3,CaCO3,MgCO3は加熱によ
り容積変化を起して収縮するため気孔を生ずる
が、その場合の気孔は密閉気孔であり、有機ある
いは無機質繊維3〜10重量%使用した従来の連続
気孔をもつ耐火断熱板にくらべ、本発明品はスラ
グ成分が侵入しにくくなり、断熱性が著しく向上
する。 また、本発明においては、断熱板1に必要に応
じ繊維類を併用する場合でも、CaCO3
CaCO3・MgCO3を使用して得た断熱性をいつそ
う補足する意味で、繊維類の添加量は2重量%以
下の少量で満足される。したがつて、有機または
無機質繊維3〜10重量%使用する従来の断熱板と
くらべて気孔の状態が全く異なり、本発明品の方
が高耐蝕性である。 前述のごとく、本発明品が組織上耐蝕性が優れ
ており、CaCO3を含む場合を例にとれば、スラ
グ中のSiO2と耐火断熱板中のCaOが反応して高
融点の3CaO・SiO2,2CaO・SiO2が生成し、低
融物の生成と浸透を防止し、2CaO・Fe2O3は表
面にのみしか存在しない。このような作用によ
り、従来品にくらべ、本発明品は大巾に耐蝕性が
向上した。 本発明において、CaCO3,CaCO3・SgCO3
添加量を2〜20重量%に限定した理由は、2重量
%以下では断熱効果がなく、20重量%以上では耐
火断熱板の収縮が大きくなつてキレツが生ずるた
めである。 なお、本発明における耐火物原料は、後述の実
施例に示すマグネシア質のほか、アルミナ質、ム
ライト質、粘土質、珪酸質等を包含するものであ
る。 また、耐蝕性をさらに改良した二重構造に係る
本発明品は、第2図に示すごとく、異質の耐火断
熱板1および2の2層からなる二重構造一体成形
物である。タンデイツシユの外殻4に内張りされ
た耐火れんが3(第1図と同様に一般にロー石質
焼成品)の表面に通常耐火モルタルにより装着す
るものであつて、使用面側はマグネシア質、アル
ミナ質、ムライト質、粘土質、珪酸質原料等に黒
鉛またはコークス等の炭素物質を1〜10重量%添
加した耐蝕性断熱板2を形成し、背面はたとえ
ば、マグネシアクリンカーにそれぞれCaCO3
CaCO3・MgCO3を主成分とする石灰石、苦灰石
等の仮焼処理を施こさない原料の1種あるいは2
種以上を配合した、すなわち加熱時にCO2ガスが
発生する原料を2〜20重量%添加して断熱性を高
めた耐火断熱板1として、両者を一体に成形し、
必要に応じて、可撓性および強度の改善と断熱性
をいつそう向上するために、繊維質物質を2重量
%以下添加することもできる。 このような二重構造一体成形物は前述の作用・
効果のほか、使用面側の耐火断熱板2はスラグ、
溶鋼等に濡れにくい炭素物質を1〜10重量%含有
するため、スラグや溶鋼の耐火断熱板組織内への
侵入を抑制することができ、耐蝕性が大巾に向上
する。 次に本発明の実施例を詳述する。 実施例 1 第1表に配合および製品(不焼成品)ならびに
焼成後の品質試験結果を示す。表中符号Aは従来
品、符号B〜Eは石灰石5重量%〜25重量%添加
品である。
The present invention relates to a fireproof heat insulating board for tundishes which has significantly improved heat insulation properties and corrosion resistance. In continuous steel casting, molten steel in a ladle is first received in a tundish and then poured into a mold. The outer shell of the tundish is an iron container, the interior is lined with firebrick, and the bottom is provided with a nozzle for tapping. The tandate tank is preheated to 1,100-1,200℃ before receiving the steel to prevent the steel from cooling. However, the temperature of the molten steel gradually decreases over time due to the poor insulation of the container between the time of receiving the steel and the completion of tapping. There is a drawback that the tapping nozzle gets clogged. The reason for this is that the refractory bricks used for lining the tundish are dense and have poor heat insulation properties. Another drawback is that when the temperature of the molten steel falls, nonmetallic inclusions do not float to the surface of the molten steel during casting and become entangled in the steel ingot, resulting in defective products.
Furthermore, there is a lot of residual hot water and metal attached to the surface, making it difficult to remove them.In some cases, the lining refractory bricks may fall off at the same time as the metal is removed, making it difficult to replace the refractory bricks. The required cost increase is also a major problem. These days, the removal work is difficult,
In some cases, the lining refractory bricks may fall off at the same time as the bare metal is removed, and the cost increase required to replace the refractory bricks has also become a major problem. Recently, in order to eliminate these drawbacks, refractory materials have been applied to the surface of refractory bricks, and heat insulating plates have been installed. As such conventional technology, Japanese Patent Application Laid-Open No. 48-79333
The main materials for the heat insulating board used in this case are magnesia, silicon carbide, alumina, and silicic acid, with a small amount of boron oxide and its salts to maintain intermediate strength. Organic or inorganic fibers are used to maintain the strength and heat retention of the board. In such a heat insulating board, nozzle clogging, metal removal work, etc. have been improved to some extent by using monolithic refractories as a joint material on the surface of the refractory bricks for tundishes. However, reducing the cost of furnace materials and saving energy for tandy cylinders, as well as saving labor and streamlining work in high-temperature work, have become important issues, and from this perspective, current insulation boards for tandy cylinders have many drawbacks in terms of durability and workability. is left behind. The fireproof heat insulating board for tandice of the present invention is made of carbonates of alkaline earth metals, such as CaCO 3 ,
It is a raw material that is not subjected to calcining treatment, such as CaCO 3 /MgCO 3 , and contains 2 to 20% by weight of a substance that generates CO 2 gas when heated, and its usage is shown in FIG. 1. In FIG. 1, 1 is a fireproof insulation board of the present invention;
3 is a refractory brick lined in the outer shell 4 of the tandy shell. Raw materials that generate such CO 2 gas include raw limestone and dolomite. According to the present invention, various drawbacks of conventional heat insulating boards are eliminated, preheating costs and preheating time are shortened from the standpoint of energy saving, and because the heat insulation and heat retention are excellent, there is less remaining hot metal, and
It also makes it easier to remove bare metal, significantly improving the working environment, and it also has excellent corrosion resistance, extending its lifespan to about twice that of conventional insulation boards. As a result of investigating the damage mechanism of conventional heat insulating boards for tundishes after use, we found that insulating boards made of materials whose main raw material is magnesia as a refractory material, the main components of slag, such as SiO 2 , CaO,
Fe 2 O 3 etc. enter the structure of the insulation board in the form of 2CaO・Fe 2 O 3 and react with MgO, the main component of the insulation board, and impurity SiO 2 to form low-melting substances CaO, MgO,
SiO 2 , MgO・Fe 2 O 3 , MgO・3CaO・2SiO 2 ,
It was found that 2CaO, MgO, SiO 2, etc. were generated, shortening the life of the insulation board. In addition, in order to increase the strength and insulation properties of insulation boards, we have traditionally used organic or inorganic fibers with a light specific gravity, such as organic or inorganic fibers.
That is, generally 3 to 10% by weight of bulky fibers are used. As a result, there are many continuous pores and high air permeability, making it easier for components in the slag to penetrate into the structure of the heat insulating board, which promotes reaction with MgO and deteriorates corrosion resistance. On the other hand, the fireproof insulation board 1 for tundish of the present invention is characterized by adding 2 to 20% by weight of a raw material mainly composed of limestone and dolomite to the refractory raw material without performing calcination treatment. It has the following properties and improves corrosion resistance. For example, for magnesia refractory raw materials,
When heating the steel by adding CaCO 3 , CaCO 3・MgCO 3 , CaCO 3 = CaO + CO 2 , MgCO 3 = MgO +
It decomposes like CO 2 , and the CO 2 gas generated at that time forms a kind of gas seal on the use surface of the refractory insulation board for tundish, so that the opportunity for contact between the refractory insulation board and the steel is somewhat delayed. This is also a factor in improving corrosion resistance. Furthermore, CaCO 3 , CaCO 3 , and MgCO 3 change volume and contract when heated, producing pores, but the pores in this case are closed pores, and conventional materials using 3 to 10% by weight of organic or inorganic fibers produce pores. Compared to fireproof heat insulating boards with continuous pores, the product of the present invention is less likely to be penetrated by slag components, and its heat insulating properties are significantly improved. In addition, in the present invention, even when fibers are used in combination with the heat insulating board 1 as necessary, CaCO 3 ,
In order to supplement the heat insulating properties obtained by using CaCO 3 and MgCO 3 , the amount of fibers added may be as small as 2% by weight or less. Therefore, compared to conventional heat insulating boards containing 3 to 10% by weight of organic or inorganic fibers, the state of the pores is completely different, and the product of the present invention has higher corrosion resistance. As mentioned above, the product of the present invention has excellent structural corrosion resistance, and if we take the case where it contains CaCO 3 as an example, the SiO 2 in the slag and the CaO in the fireproof insulation board will react to form 3CaO・SiO with a high melting point. 2,2CaO・SiO 2 is generated and prevents the formation and penetration of low-melting substances, while 2CaO・Fe 2 O 3 exists only on the surface. Due to this effect, the corrosion resistance of the product of the present invention is greatly improved compared to conventional products. In the present invention, the reason why the amount of CaCO 3 and CaCO 3 /SgCO 3 added is limited to 2 to 20% by weight is that if it is less than 2% by weight, there is no insulation effect, and if it is more than 20% by weight, the shrinkage of the fireproof insulation board will increase. This is because cracks occur. In addition, the refractory raw material in the present invention includes alumina, mullite, clay, silicic acid, etc. in addition to magnesia as shown in the examples below. Furthermore, the product of the present invention, which has a double structure with further improved corrosion resistance, is an integrally molded product with a double structure consisting of two layers of different fireproof heat insulating plates 1 and 2, as shown in FIG. It is usually installed with refractory mortar on the surface of the refractory bricks 3 (generally a fired stone product as shown in Fig. 1) lined with the outer shell 4 of the tandate, and the used side is made of magnesia, alumina, etc. A corrosion-resistant heat insulating board 2 is formed by adding 1 to 10% by weight of a carbon material such as graphite or coke to a mullite, clay, or silicic raw material, and the back surface is made of, for example, magnesia clinker and CaCO 3 , respectively.
One or two types of raw materials that do not undergo calcining treatment, such as limestone and dolomite, whose main components are CaCO 3 and MgCO 3
A fireproof heat insulating board 1 containing 2 to 20% by weight of a raw material that generates CO 2 gas when heated is blended with more than 100% of CO 2 gas to improve heat insulation properties, and the two are integrally molded.
If desired, up to 2% by weight of fibrous material can be added to improve flexibility and strength and to further increase thermal insulation. Such a double structure integrally molded product has the above-mentioned effects and
In addition to the effect, the fireproof insulation board 2 on the use side is made of slag,
Since it contains 1 to 10% by weight of carbon substances that are difficult to wet with molten steel, it is possible to suppress the intrusion of slag and molten steel into the structure of the fireproof insulation board, and the corrosion resistance is greatly improved. Next, examples of the present invention will be described in detail. Example 1 Table 1 shows the formulation, product (unfired product), and quality test results after firing. In the table, symbol A is a conventional product, and symbols B to E are products containing 5% to 25% by weight of limestone.

【表】【table】

【表】 第1表から判るように、従来品と比較して、本
発明品(符号B〜F)はいずれも低気孔でカサ比
重が高く、通気性が小さく、熱伝導率低く(断熱
性良好)、焼成線変化率も問題なく、高温使用に
安定である。 つぎに、従来品(符号A)を比較品として、符
号Cの本発明品1をタンデイツシユに内張りして
実用試験をおこなつた。その結果は、受鋼温度
1540〜1550℃のとき、従来品を用いたタンデイツ
シユ外殻4の外面温度は、受鋼後60分で40℃、
120分で50℃、180分後で60℃と上昇する。 これに対して、本発明品1は同様の条件で、60
分後には45℃であつたが、120分後には47℃とあ
まり温度が上らず、180分後で55℃であつた。 また、従来品は受鋼後120分後の断熱板背面温
度は600℃だつたが、本発明品1は570℃と低く、
断熱効果が高いことが確認された。 耐蝕性については、断熱板厚さ30mmで取鍋から
3回受鋼後、従来品は10mm溶損されたが、本発明
品1(符号C)は5mmの溶損にすぎず、2倍の耐
蝕性を示した。 実施例 2 本発明の他の態様すなわち二重構造物の実施例
について、その配合と構成およびそれらの品質を
第2表に示す。従来品は前記第1表(符号A)に
示すごとく、マグネシアクリンカー85重量%、繊
維物質として石綿10重量%、結合剤としてフエノ
ール樹脂5重量%配合し泥漿状にして、厚さ30mm
の板状に成形後乾燥して比較品とした。
[Table] As can be seen from Table 1, compared to conventional products, the products of the present invention (coded B to F) all have low pores, high bulk specific gravity, low air permeability, and low thermal conductivity (insulation). Good), firing line change rate is no problem, and it is stable for high-temperature use. Next, a practical test was conducted by lining a tundish with product 1 of the present invention, coded C, as a comparison product with the conventional product (labeled A). The result is the receiving steel temperature
When the temperature was 1540 to 1550℃, the outer surface temperature of the tandate shell 4 using the conventional product was 40℃ in 60 minutes after receiving the steel.
The temperature rises to 50℃ in 120 minutes and to 60℃ in 180 minutes. On the other hand, inventive product 1 was produced at 60% under similar conditions.
After a few minutes, the temperature was 45°C, but after 120 minutes, the temperature did not rise much to 47°C, and after 180 minutes, it was 55°C. In addition, the temperature on the back side of the insulation plate of the conventional product was 600°C 120 minutes after receiving the steel, but the temperature of the inventive product 1 was as low as 570°C.
It was confirmed that the insulation effect is high. Regarding corrosion resistance, the conventional product suffered 10 mm of corrosion damage after receiving steel from a ladle three times with a thickness of 30 mm, but the invention product 1 (symbol C) suffered only 5 mm of corrosion damage, which was twice as high. It showed corrosion resistance. Example 2 Regarding another aspect of the present invention, that is, an example of a double structure, the formulation and composition and their quality are shown in Table 2. As shown in Table 1 (symbol A), the conventional product contains 85% by weight of magnesia clinker, 10% by weight of asbestos as a fiber material, and 5% by weight of phenol resin as a binder, and is made into a slurry with a thickness of 30 mm.
A comparative product was prepared by forming into a plate shape and drying it.

【表】【table】

【表】 本発明品は使用面側耐火断熱板2(符号BB)
は、マグネシアクリンカー88重量%、鱗状黒鉛5
重量%、繊維物質として石綿2重量%、結合剤と
してフエノール樹脂5重量%の泥漿をつくり、背
面側耐火断熱板1(符号E)はアグネシアクリン
カー73重量%、石灰石20重量%、繊維物質として
石綿2重量%、結合剤はフエノール樹脂を5重量
%配合した泥漿をつくり、まず使用面側耐火断熱
板2として厚さ15mmの板を成形し、次に背面側の
泥漿(符号E)を前記使用面側の板2の上面に厚
さ15mmに成形し、両者1および2の合計厚さを30
mmにして二重構造の一体成形物をつくり、乾燥後
製品とした。 本発明に係る符号BB、Eおよび二重構造の一
体成形物(符号BB+E)の3種の耐火断熱板の
品質を試験し、第2表に表す。 第1表に示す従来品(符号A)と比較して、使
用前の本製品すなわち不焼成の状態の品質におい
ても、充填密度が高く、曲げ強さが大きく、しか
も通気性が小さいという結果になつている。 本発明の使用面側2(符号BB)は炭素物質を
含むため、従来品にくらべ熱伝導率は、使用面側
の方が大きく、背面側は小さい。しかし一体成形
物(二重構造)では稍小さくなつている。 また、1350℃、1500℃加熱後の焼成線変化率
は、二重構造一体成形物は従来品よりも収縮が少
さく、曲げ強さ、加熱後の品質とも、優れた結果
を示している。 つぎに、タンデイツシユに試用した結果を記
す。 タンデイツシユの受鋼温度は1540〜1550℃であ
り、従来品(符号A)を使用した場合は、鉄製容
器の外面温度は受鋼後60分で40℃、120分で50
℃、180分後で60℃と上昇する。 これに対して、本発明に係る二重構造一体成形
物(符号BB+E)は、受鋼60分後で42℃、120分
後で50℃、180分後で57℃を示し、経時的に断熱
性が向上することが判明した。 耐蝕性については、従来品(符号A)は取鍋か
ら3回受鋼後で10mm溶損されたが、本発明品(符
号BB+E)は4回受鋼後で僅かに6mmの溶損で
あり、本発明が断熱性、耐蝕性ともに優れている
ことが明白である。
[Table] The product of the present invention is fireproof insulation board 2 on the use side (code BB)
is 88% by weight of magnesia clinker, 5% of scale graphite
A slurry containing 2% by weight of asbestos as a fibrous material and 5% by weight of a phenol resin as a binder was made, and the back side fireproof insulation board 1 (symbol E) was made of 73% by weight of agnesia clinker, 20% by weight of limestone, and 5% by weight of agnesia clinker as a fibrous material. A slurry containing 2% by weight of asbestos and 5% by weight of phenol resin as a binder was made, and first a plate with a thickness of 15 mm was formed as the use side fireproof insulation board 2, and then the slurry on the back side (symbol E) was formed as described above. It is molded to a thickness of 15 mm on the top surface of plate 2 on the usage side, and the total thickness of both 1 and 2 is 30 mm.
mm, a double-structure integral molding was made, and after drying it was made into a product. The quality of three types of fireproof heat insulating boards according to the present invention, coded BB, E and double-structure integrally molded product (coded BB+E), was tested and is shown in Table 2. Compared to the conventional product (symbol A) shown in Table 1, the quality of this product before use, that is, in the unfired state, is higher in packing density, has greater bending strength, and has lower air permeability. It's summery. Since the use side 2 (symbol BB) of the present invention contains carbon material, the thermal conductivity is higher on the use side and lower on the back side compared to conventional products. However, in the case of an integrally molded product (double structure), it is slightly smaller. In addition, regarding the firing line change rate after heating at 1350°C and 1500°C, the double structure integrally molded product showed less shrinkage than conventional products, and showed excellent results in both bending strength and quality after heating. Next, I will write down the results of trial use on a tandaitsu. The receiving temperature of the tandate is 1540 to 1550℃, and when using the conventional product (symbol A), the external temperature of the iron container is 40℃ after 60 minutes and 50℃ after 120 minutes.
℃, rising to 60℃ after 180 minutes. On the other hand, the double structure integrally molded product according to the present invention (symbol BB+E) showed a temperature of 42°C after 60 minutes of receiving steel, 50°C after 120 minutes, and 57°C after 180 minutes, and the temperature increased over time. It was found that sexual performance improved. Regarding corrosion resistance, the conventional product (code A) suffered 10 mm of corrosion loss after receiving the steel three times from the ladle, but the product of the present invention (code BB+E) suffered only 6 mm of corrosion damage after receiving the steel four times. It is clear that the present invention is excellent in both heat insulation and corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による仮焼処理を施こさない
アルカリ土類金属炭酸塩を含む耐火断熱板を装着
したタンデイツシユの概略縦断面図、第2図は耐
蝕―耐火断熱板を二重構造に一体成形した本発明
の耐火断熱板を装着したタンデイツシユの概略縦
断面図を示す。 1……耐火断熱板、2……耐蝕性断熱板、3…
…耐火れんが、4……外殻。
Fig. 1 is a schematic vertical cross-sectional view of a tundish equipped with a fireproof insulation board containing an alkaline earth metal carbonate that is not subjected to calcining treatment according to the present invention, and Fig. 2 shows a double structure of corrosion-resistant and fireproof insulation board. 1 is a schematic longitudinal cross-sectional view of a tundish equipped with an integrally molded fireproof heat insulating board of the present invention. 1... Fire-resistant heat insulating board, 2... Corrosion-resistant heat insulating board, 3...
...Refractory brick, 4... Outer shell.

Claims (1)

【特許請求の範囲】 1 耐火物原料に仮焼処理を施さない石灰石、苦
灰石の1種以上を2〜20重量%添加したことを特
徴とするタンデイツシユ用耐火断熱板。 2 耐火物原料がマグネシア質、アルミナ質、ム
ライト質、粘土質、珪酸質である特許請求の範囲
第1項記載のタンデイツシユ用耐火断熱板。 3 耐火物原料が無機質繊維物質または有機質繊
維物質またはそれら両者を2重量%以下の量で含
む特許請求の範囲第1項記載のタンデイツシユ用
耐火断熱板。 4 耐火物原料に炭素質物質を1〜10重量%添加
して成形した耐食性断熱板を使用面側に配し、か
つ耐火物原料に仮焼処理を施さない石灰石、苦灰
石の1種以上を2〜20重量%添加した断熱板を前
記耐食性断熱板の背面に配して二重構造に形成し
たタンデイツシユ用耐火断熱板。 5 耐火物原料がマグネシア質、アルミナ質、ム
ライト質、粘土質、珪酸質である特許請求の範囲
第4項記載のタンデイツシユ用耐火断熱板。 6 耐火物原料が無機質繊維物質または有機質繊
維物質またはそれら両者を2重量%以下の量で含
む特許請求の範囲第4項記載のタンデイツシユ用
耐火断熱板。
[Scope of Claims] 1. A fireproof heat insulating board for tandice, characterized in that 2 to 20% by weight of one or more of limestone and dolomite, which are not subjected to calcining treatment, is added to a refractory raw material. 2. The refractory heat insulating board for a tundish as set forth in claim 1, wherein the refractory raw material is magnesia, alumina, mullite, clay, or silicic acid. 3. The refractory heat insulating board for a tundish as set forth in claim 1, wherein the refractory raw material contains an inorganic fiber material, an organic fiber material, or both in an amount of 2% by weight or less. 4. One or more types of limestone and dolomite, in which a corrosion-resistant heat insulating board formed by adding 1 to 10% by weight of carbonaceous material to the refractory raw material is arranged on the use side, and the refractory raw material is not calcined. A fireproof heat insulating board for a tandice dish, which has a double structure by placing a heat insulating board containing 2 to 20% by weight of the above-mentioned corrosion-resistant heat insulating board on the back side of the corrosion-resistant heat insulating board. 5. The refractory heat insulating board for a tandate as set forth in claim 4, wherein the refractory raw material is magnesia, alumina, mullite, clay, or silicic acid. 6. The fireproof heat insulating board for a tundish as set forth in claim 4, wherein the refractory raw material contains an inorganic fiber material, an organic fiber material, or both in an amount of 2% by weight or less.
JP8028880A 1980-06-16 1980-06-16 Refractory heat insulating plate for tandish Granted JPS577866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8028880A JPS577866A (en) 1980-06-16 1980-06-16 Refractory heat insulating plate for tandish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8028880A JPS577866A (en) 1980-06-16 1980-06-16 Refractory heat insulating plate for tandish

Publications (2)

Publication Number Publication Date
JPS577866A JPS577866A (en) 1982-01-16
JPS6232150B2 true JPS6232150B2 (en) 1987-07-13

Family

ID=13714079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8028880A Granted JPS577866A (en) 1980-06-16 1980-06-16 Refractory heat insulating plate for tandish

Country Status (1)

Country Link
JP (1) JPS577866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11662374B2 (en) 2017-03-17 2023-05-30 Furukawa Co., Ltd. Group III nitride semiconductor substrate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596314A (en) * 1982-07-02 1984-01-13 Kawasaki Steel Corp Removing process for nonmetallic inclusion in molten steel
JPS62241866A (en) * 1986-04-15 1987-10-22 三井造船株式会社 High strength calcia-base refractory composition
ES2543321T3 (en) * 2013-06-10 2015-08-18 Refractory Intellectual Property Gmbh & Co. Kg Mixture for manufacturing an unconformed ceramic refractory product, process for manufacturing a cooked refractory ceramic product, cooked refractory ceramic product and use of an unconformed ceramic refractory product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140758A (en) * 1979-04-21 1980-11-04 Aikoh Co Tandish lining material for steel continuous casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140758A (en) * 1979-04-21 1980-11-04 Aikoh Co Tandish lining material for steel continuous casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11662374B2 (en) 2017-03-17 2023-05-30 Furukawa Co., Ltd. Group III nitride semiconductor substrate

Also Published As

Publication number Publication date
JPS577866A (en) 1982-01-16

Similar Documents

Publication Publication Date Title
Ewais Carbon based refractories
Lee et al. Evolution of in situ refractories in the 20th century
US5283215A (en) Refractories for casting process
KR930005250B1 (en) Refractory containing aluminium nitride oxide refractory for sliding nozzle and nozzle for continuously casting
CN205996184U (en) A kind of energy-saving ladle of low-material-consumption
Garbers-Craig Presidential address: How cool are refractory materials?
CN104858409A (en) Steel ladle for steelmaking
US3687437A (en) Metallurgical furnaces or vessels
EP0076577B1 (en) Molten metal transfer channels
US5506181A (en) Refractory for use in casting operations
CN204584250U (en) A kind of ladle for making steel
JPS6232150B2 (en)
Chandra et al. Refractories and failures
Hubble Steel plant refractories
JPH09182957A (en) Molten metal vessel and molten aluminum holding furnace
JPH0412065A (en) Double structure refractory
JPS6243949B2 (en)
JPS5919905B2 (en) Fireproof insulation board
CN220265732U (en) RH refining furnace dip pipe of steel is prevented wearing
JP3673961B2 (en) Lined structure of vacuum degassing equipment vacuum chamber
JPS59137163A (en) Fire resistant heat insulating product and molten metal handling container
KR810000593B1 (en) Tundish
CN207922867U (en) A kind of Novel furnace door fireproof construction
JPS6142672Y2 (en)
JPS6153150A (en) Nozzle for molten steel casting