JPS6241722A - Lamellar hematite powder and production thereof - Google Patents

Lamellar hematite powder and production thereof

Info

Publication number
JPS6241722A
JPS6241722A JP60153861A JP15386185A JPS6241722A JP S6241722 A JPS6241722 A JP S6241722A JP 60153861 A JP60153861 A JP 60153861A JP 15386185 A JP15386185 A JP 15386185A JP S6241722 A JPS6241722 A JP S6241722A
Authority
JP
Japan
Prior art keywords
plate
particle size
ratio
salt
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60153861A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nakayama
和彦 中山
Yuji Ito
裕司 伊藤
Yasuo Monno
門野 保夫
Tomoyuki Haishi
知行 拝師
Tsuneshi Takeda
竹田 常司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP60153861A priority Critical patent/JPS6241722A/en
Publication of JPS6241722A publication Critical patent/JPS6241722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce fine lamellar hematite powder having uniform particle diameters, by heating an aqueous slurry composition which comprises a ferric salt, tartaric acid or its salt and an alkali compound and has a composition to satisfy a specific pH condition, at a specific temperature. CONSTITUTION:Aqueous slurry comprising a ferric salt such as FeCl3, etc., tartaric acid and/or its salt and a third component of an alkali compound such as NaOH, etc., is processed into a composition to satisfy a condition shown by formulas pH>=8.2 and (pH-6.6)/600<=gamma<=(pH-2.6)/600 [gamma is molar ratio of (tartaric acid or its salt)/iron salt]. The slurry composition is heated to >=120 deg.C and treated for about 10hr. By this treatment, lamellar hematite powder consisting of lamellar particles having an ogive wherein particle diameter of median is 0.01-1mum, particle diameter ratio of first quartile point to third quartile point is 0.67-1.50, particle diameter ratio of 1/10 point to 9/10 point is 0.-2.0 and lamellar ratio is >=2 is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気記録媒体用磁性粉末の前駆体である板状へ
マタイトとその製造法に関し、更に詳しくは、磁気記録
媒体、特に、例えばフロッピーディスク等、2次元磁気
記録媒体に適した板状磁性粉末の前駆体となる粒径の揃
った微細な板状へマタイト(α−FezO:+)粉末と
その製造方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to plate-like hematite, which is a precursor of magnetic powder for magnetic recording media, and a method for producing the same. The present invention relates to fine plate-shaped hematite (α-FezO:+) powder with uniform particle size, which is a precursor of plate-shaped magnetic powder suitable for two-dimensional magnetic recording media such as disks, and a method for producing the same.

〔従来の技術および問題点〕[Conventional technology and problems]

オーディオ、ビデオ等磁気記録媒体用の磁性粉末として
、従来より針状の磁性酸化鉄が用いられている。これら
はゲータイトを出発原料とし、粒径、軸比及びこれらの
分布に特別の注意を払いつつ合成がなされている。
Acicular magnetic iron oxide has conventionally been used as magnetic powder for magnetic recording media such as audio and video. These are synthesized using goethite as a starting material, paying particular attention to particle size, axial ratio, and distribution thereof.

針状であることの必要性は、一つには、形状磁気異方性
によって抗磁力を高めるためであり、一つには、これを
磁性塗料にして塗布したとき粒子配向により角型比を大
きくするためである。
The need for the acicular shape is, in part, to increase the coercive force due to shape magnetic anisotropy, and in part, when this is applied as a magnetic paint, the squareness ratio is increased due to particle orientation. This is to make it bigger.

これらはいずれも記録媒体のシグナル/ノイズ比を大き
くする方向に働く。
All of these work to increase the signal/noise ratio of the recording medium.

また、粒径については、0.8−0.5−0.3 la
と、次第に小粒径のものが求められ、製造されてきた。
In addition, regarding the particle size, 0.8-0.5-0.3 la
Gradually, smaller particle sizes were sought and manufactured.

これは高周波記録特性向上のためである。同じ理由から
、高記録密度の為にも小粒径の粉が不可欠である。
This is to improve high frequency recording characteristics. For the same reason, powder with small particle size is essential for high recording density.

粒径や形状の分布の広がりはまた、ノイズを大きくする
方向に働くため、これらを均質に作り上げることもきわ
めて肝要である。
A wide distribution of particle size and shape also increases noise, so it is extremely important to make these uniform.

一方、近年マイコンの発展により、簡易でアクセスの速
い外部記録媒体としてフロッピーディスクのようなディ
スク媒体が多用され始めた。
On the other hand, with the development of microcomputers in recent years, disk media such as floppy disks have begun to be widely used as external recording media that are simple and quick to access.

これに用いられているのは従来通りの針状磁性粉である
が、テープにおいて好都合であった塗布方向への粒子配
向は、ここでは却って不都合な結果を生む。
Conventional acicular magnetic powder is used for this, but the orientation of the particles in the coating direction, which was advantageous in tapes, produces disadvantageous results here.

すなわち、ディスク媒体における一方向への粒子配向は
、ディスク円周に沿っての不均一性を生じ、このため出
力ムラ(モジュレーション)が発生する。これを避ける
ため塗膜面の硬化前に磁場中で無配向化処理が施される
が、それでも充分ではない。
That is, particle orientation in one direction in a disk medium causes non-uniformity along the circumference of the disk, resulting in output unevenness (modulation). To avoid this, a non-orientation treatment is performed in a magnetic field before the coating surface is cured, but even this is not sufficient.

又、無配向化処理の施されたものであっても、記録すべ
き磁化方向と磁化容易軸との交角が45゛以内となるよ
う配向した針状粉は、塗布された粉の半分に過ぎない。
Furthermore, even if a non-orientation treatment has been applied, the acicular powder oriented so that the angle of intersection between the direction of magnetization to be recorded and the axis of easy magnetization is within 45° is only half of the applied powder. do not have.

それ以外の粒子は記録への関与が小さいだけでなく、磁
気ヘッドにより横方向から擦られるため塗膜面から剥が
れ易いものとなっている。
Other particles not only have little involvement in recording, but also tend to peel off from the coating surface because they are rubbed laterally by the magnetic head.

このように、従来の針状粉はディスク媒体用に開発され
たものでない為に、幾つかの不都合が避けられない。し
かもこれらの問題点はスピンコーティングのような特殊
な塗布方法をとらない限り避けることができず、針状、
棒状、紡錘状を問わず、1次元方向に伸張した形状を持
つ磁性粉に共通したものである。ここで、もし磁性粉が
板状化でき、塗膜面内に平(テになるように配向し7、
かつ面内磁化し得るならば、極めて好都合である。
As described above, since the conventional acicular powder was not developed for use in disk media, several disadvantages are inevitable. Moreover, these problems cannot be avoided unless a special application method such as spin coating is used.
Regardless of whether it is rod-shaped or spindle-shaped, it is common to magnetic powders that have a shape that extends in one dimension. Here, if the magnetic powder can be made into a plate shape and oriented flat (te) within the coating surface,
It would be extremely advantageous if it could be magnetized in-plane.

即ち、針状磁性粉に比べて板状磁性粉の塗膜の持つ利点
を個別に詳述すれば、主として以下の3点に集約される
That is, if the advantages of a coating film of plate-shaped magnetic powder compared to needle-shaped magnetic powder are explained individually in detail, they can be mainly summarized into the following three points.

■ モジュレーションが小さい 板状磁性粉は塗膜面に平行に配向し易く、面内では特異
な方向への配向かない。このため塗膜面を円盤に切り抜
いて回転させても、磁気ヘッドの拾い出す出力信号の強
度は回転の角度に依存しない。つまりモジュレーション
を小さくすることができる。
■ Plate-shaped magnetic powder with small modulation tends to be oriented parallel to the coating surface, and is not oriented in a specific direction within the plane. Therefore, even if a disk is cut out from the coating surface and rotated, the intensity of the output signal picked up by the magnetic head does not depend on the angle of rotation. In other words, modulation can be reduced.

■ 出力向上が期待しうる。■ Output improvement can be expected.

マグネタイト、Tフェライトなど基本的に立方晶系に属
する磁性粉が六角または四角板状結晶を形成する場合、
その磁化容易軸はその板面上への投影線が互いに交角6
0°をなす3本または交角90°をなす2本の主軸であ
ると推定される。このような板状粉がディスク面に平行
に配向した場合、記録すべき磁化ベクトルの方向、即ち
ディスク媒体の円周の切線方向と、板状粉の磁化容易軸
とのなす角は高々45°に過ぎない。このことは、針状
粉の場合と異なり、板状粉の場合塗膜面の全ての粉が記
録情報の担い手として大きく寄与し得ることを示してい
る。これは出力向上の上で好都合である。
When magnetic powders that basically belong to the cubic system, such as magnetite and T-ferrite, form hexagonal or square plate crystals,
The axis of easy magnetization is such that the projection lines onto the plate surface intersect with each other by 6
It is estimated that there are three main axes that make an angle of 0° or two main axes that make an intersecting angle of 90°. When such plate-like powder is oriented parallel to the disk surface, the angle between the direction of the magnetization vector to be recorded, that is, the tangential direction of the circumference of the disk medium, and the axis of easy magnetization of the plate-like powder is at most 45°. It's nothing more than that. This shows that, unlike in the case of needle-shaped powder, in the case of plate-shaped powder, all the powder on the coating surface can greatly contribute as a carrier of recorded information. This is convenient for improving output.

■ 磁気ヘッド及び塗膜面の傷みが少ない。■ Less damage to the magnetic head and coating surface.

フロッピーディスクは、記録の書込み読出しの際磁気ヘ
ッドに直接接触し高速回転するので、その摩擦力は大変
大きなものとなる。
Since a floppy disk rotates at high speed in direct contact with a magnetic head when writing or reading data, the frictional force is extremely large.

そのため、塗膜表面の凹凸はヘッドを摩耗させると共に
磁性粉剥離の原因となる。
Therefore, the unevenness on the surface of the coating abrades the head and causes magnetic powder to peel off.

針状粉に比べ板状粉は表面平滑性が高いために、ヘッド
の摩耗及び塗膜剥離の力がかかりにくい。その上、塗膜
剥離は粉と塗膜面の接着面積が大きいほど少ないので、
針状粉に比べて板状粉の方が更に好ましいものとなる。
Since plate-shaped powder has a higher surface smoothness than needle-shaped powder, it is less susceptible to head abrasion and coating peeling force. Moreover, the greater the adhesion area between the powder and the paint surface, the less chance of paint peeling off.
Plate-shaped powder is more preferable than needle-shaped powder.

しかしながら、従来技術において磁気記録媒体として開
発されてきた板状の磁性粉はバリウムフェライト、スト
ロンチウムフェライトなど、結晶本来の構造から板状結
晶となり易いヘキサフェライト類である。
However, plate-shaped magnetic powders that have been developed as magnetic recording media in the prior art are hexaferrites, such as barium ferrite and strontium ferrite, which tend to form plate-shaped crystals due to their original crystal structure.

ヘキサフェライトの磁化は結晶磁気異方性に基づくもの
であって、その磁化容易軸は板面に対して垂直である。
The magnetization of hexaferrite is based on magnetocrystalline anisotropy, and its axis of easy magnetization is perpendicular to the plate surface.

この性質を利用して、ヘキサフェライトの微小な板状結
晶を垂直磁気記録方式の記録媒体として用いることが提
案されている。しかし、ヘキサフェライト板状結晶を通
常の面内磁化ディスク媒体用に用いることはできない。
Taking advantage of this property, it has been proposed to use minute plate-like crystals of hexaferrite as a recording medium for perpendicular magnetic recording. However, hexaferrite platelet crystals cannot be used for conventional in-plane magnetized disk media.

また、仮に用いることができたとしても、前述の、板状
粉の利点を生かすことが困難・である。すなわち、ヘキ
サフェライトはその垂直磁化のため、粒子間で板面の重
なった長い積層粒子を作り易く、このため塗膜化に著し
い困難を生ずる。また、塗膜面の平滑性も保証されない
Moreover, even if it were possible to use it, it would be difficult to take advantage of the advantages of the plate-shaped powder mentioned above. That is, because of its perpendicular magnetization, hexaferrite tends to form long laminated particles with overlapping plate surfaces between the particles, which causes considerable difficulty in forming a coating film. Furthermore, the smoothness of the coating surface is not guaranteed.

一方、板状磁性粉の前駆体となる板状へマタイトは、従
来より、雲母状酸化鉄(いわゆるMIO)として知られ
ており、その製造法に関しても数多くの方法が提案され
ている。例えば特公昭43−12435号は、ゲータイ
トまたは3価の鉄塩をアルカリ中250℃以上で水熱処
理し、防錆顔料、装飾材料等として優れた雲母状酸化鉄
を得る方法に関するものである。又、例えば特開昭54
−151598号、同55−15431、8号において
はリン酸、ホウ酸あるいはそれらの塩を添加した系にお
ける大粒径雲母状酸化鉄の製法が開示されている。
On the other hand, plate-shaped hematite, which is a precursor of plate-shaped magnetic powder, has been conventionally known as mica-like iron oxide (so-called MIO), and many methods have been proposed for its production. For example, Japanese Patent Publication No. 43-12435 relates to a method of hydrothermally treating goethite or trivalent iron salt in an alkali at 250° C. or higher to obtain mica-like iron oxide, which is excellent as a rust-preventing pigment, decorative material, etc. Also, for example, Japanese Patent Application Laid-open No. 54
No. 151598 and No. 55-15431 and No. 8 disclose a method for producing large-grained mica-like iron oxide in a system in which phosphoric acid, boric acid, or a salt thereof is added.

これらの方法にあっては、その利用目的から大粒径のM
IOを得るための検討努力が専らであった。ずなわ防錆
顔料としての利用上からは塗膜下への水分浸入の防止の
ために、装飾材料としては光輝を増すために大粒径であ
ればあるほど好ましく、このため、従来の検討は粒径を
いかに大きくするかに絞られていた。
In these methods, large particle size M
Efforts were focused solely on obtaining IO. From the viewpoint of use as Zunawa anti-corrosion pigment, the larger the particle size, the better it is to prevent water from penetrating under the paint film, and as a decorative material to increase brightness.For this reason, conventional studies The focus was on how to increase the particle size.

また、特開昭58−69730号にあっては、それまで
のMIOに比較して、2−と小粒径のものの例が見受け
られるが、これはT −Fe203を原料とする事を特
徴とした技法であって開示されたデータに基づいて17
1in以下の板状酸化鉄を得る事は困難である。
Furthermore, in JP-A No. 58-69730, there is an example of a 2- and smaller particle size compared to the previous MIO, but this is characterized by using T-Fe203 as a raw material. Based on the disclosed data, 17
It is difficult to obtain plate-shaped iron oxide of 1 inch or less.

一方、文献(色材、57.602 (1984) )に
は0.1〜0゜5 ttmの板状酸化鉄についての記述
があるが、その粒径分布の幅は極めて広いものとなって
おり、具体的製造条件の開示もない。
On the other hand, there is a description in the literature (Color Materials, 57.602 (1984)) of plate iron oxide of 0.1 to 0°5 ttm, but the particle size distribution is extremely wide. There is also no disclosure of specific manufacturing conditions.

以上のように、平均粒径が11M以下であって、かつ、
粒径が極めて良く揃った板状のへマタイトとぞの合成法
はこれまで知られていないところである。
As mentioned above, the average particle size is 11M or less, and
Until now, there has been no known method for synthesizing plate-shaped hematite particles with extremely uniform particle sizes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、このような状況に鑑みフロッピーディス
ク用板状磁性粉につき鋭意研究を行った結果、板状粒子
からなり、板状面の面積の累積分布曲線において、中央
値の粒径(相当径)が0.01〜1−1第1四分点と第
3四分点における粒径比が0.67〜1.5であり、か
つ1710分点と9710分点における粒径の比が0.
5〜2.0であり、板状比(相当径/厚み)2以上を有
し、立方晶系に属する結晶からなる板状磁性粉末が上記
諸性能を満足することを見出すとともに、該磁性粉末の
前駆体としての本発明に到達した。
In view of this situation, the present inventors conducted intensive research on plate-shaped magnetic powder for floppy disks, and found that it consists of plate-shaped particles, and in the cumulative distribution curve of the area of the plate-shaped surface, the median particle size ( equivalent diameter) is 0.01 to 1-1, the particle size ratio at the first and third quartiles is 0.67 to 1.5, and the ratio of particle sizes at the 1710th and 9710th minutes. is 0.
5 to 2.0, has a plate ratio (equivalent diameter/thickness) of 2 or more, and has found that a plate-shaped magnetic powder made of crystals belonging to the cubic system satisfies the above various performances, and the magnetic powder We have arrived at the present invention as a precursor for.

即ち、本発明は板状面の面積の累積分布曲線において、
中央値の粒径(相当径)が0.01〜1−1第1四分点
と第3四分点における粒径比が0.67〜1.50であ
り、かつ1710分点と9710分点における粒径の比
が0.5〜2.0であり、板状比(相当径/厚み)2以
上を有する板状粒子からなる板状へ2マタイト粉末およ
びその製造方法己こ関するものである。
That is, in the present invention, in the cumulative distribution curve of the area of the plate-like surface,
The median particle size (equivalent diameter) is 0.01 to 1-1, the particle size ratio at the first and third quartiles is 0.67 to 1.50, and the 1710th and 9710th minute This relates to a plate-shaped matite powder consisting of plate-shaped particles having a particle size ratio of 0.5 to 2.0 and a plate-like ratio (equivalent diameter/thickness) of 2 or more and a method for producing the same. be.

本発明の板状へマタイト粉末を還元し、さらに所望によ
り再酸化および/又はコバルト塩とともに処理する等の
方法により得られる板状磁性粉末は、積層化が少なく、
塗膜が極めて平滑であるだけでなく、そのまま現在の記
録方式での記録媒体として使用することができる。また
、モジュレーション及び粒子配向の面で針状粉に対して
有利となる。このように、前述の板状状粉の利点は、磁
化ベクトルが面内磁化成分を主に持つことによって、初
めて発揮させ得るものである。
The plate-shaped magnetic powder obtained by reducing the plate-shaped hematite powder of the present invention, and optionally reoxidizing it and/or treating it with a cobalt salt has less lamination,
Not only is the coating film extremely smooth, but it can also be used as is as a recording medium in current recording methods. It also has advantages over acicular powders in terms of modulation and particle orientation. In this way, the above-mentioned advantages of the plate-like powder can only be exhibited when the magnetization vector mainly has an in-plane magnetization component.

磁性粉の粒径は0.01〜1−φでなければならない。The particle size of the magnetic powder must be 0.01 to 1-φ.

ここで、本発明にいう粒径とは板面の直径または相当径
(板面と同面積の円の直径)を示す。
Here, the particle size referred to in the present invention refers to the diameter of the plate surface or equivalent diameter (diameter of a circle having the same area as the plate surface).

粒径が小さくなる程抗磁力が高くなり好ましいが、小さ
過ぎると超常磁性のため返って抗磁力が低下する。
The smaller the particle size, the higher the coercive force, which is preferable, but if the particle size is too small, the coercive force will decrease due to superparamagnetism.

また、その板状比(相当径/厚み)は、塗膜の平滑性及
び配向性を考慮し、2以下が必要である。
Further, the plate ratio (equivalent diameter/thickness) needs to be 2 or less in consideration of the smoothness and orientation of the coating film.

粒径分布は、粒径分布曲線においてこれを見るならば、
板面の面積分布累積曲線において、第1四分点と第3四
分点における粒径比が0.67〜1.50であり、かつ
、1/10分点と9/1゜分点における粒径比が0.5
〜2.0の範囲になければならない。
If you look at the particle size distribution curve, the particle size distribution is as follows:
In the area distribution cumulative curve of the plate surface, the particle size ratio at the first and third quartiles is 0.67 to 1.50, and the particle size ratio at the 1/10th and 9/1° Particle size ratio is 0.5
Must be in the range ~2.0.

粒径ど磁気特性とは相関が深く、小粒径のもの程抗磁力
が高くなるため、粒径分布の広がりは抗磁力の広がりを
意味する。
There is a strong correlation between particle size and magnetic properties, and the smaller the particle size, the higher the coercive force, so the broadening of the particle size distribution means the broadening of the coercive force.

このことは、BH曲線の角型比が低下し、同時に、反転
磁界分布(BH微分曲線の半価幅)が広がることであっ
て、記録の鮮明さに重要な支障となる。とりわけ、高密
度記録のためには粒径分布の広がりは避けるべきである
This lowers the squareness ratio of the BH curve and at the same time widens the reversal magnetic field distribution (the half width of the BH differential curve), which is an important hindrance to the sharpness of recording. In particular, broadening of the particle size distribution should be avoided for high-density recording.

また、特に粗大な粒子や、特に微細な粒子の存在は、ド
ロップアウト等の重大欠陥の原因となるためこれを一定
限界以下にすることが不可欠である。
Furthermore, the presence of particularly coarse particles or particularly fine particles causes serious defects such as dropouts, so it is essential to keep them below a certain limit.

本発明の板状へマタイト粉末は下記の方法により製造す
ることができる。
The plate-shaped hematite powder of the present invention can be produced by the following method.

即ち、第2鉄塩、酒石酸、またはその塩、アルカリ化合
物の3成分の共存する水性スラリーを水熱的に処理する
方法において、スラリー組成をpH8,2以上、かつ、
酒石酸及びその塩と鉄塩とのモル比rが、(pH−6,
6)/ 600以上、かつ、(pl+−2,6)/ 6
00以下の値となる様に設定し、120℃以上で加熱す
ることにより、所期の粒径および粒径分布を有する板状
へマタイトを得ることができる。
That is, in a method of hydrothermally treating an aqueous slurry in which three components, ferric salt, tartaric acid or its salt, and an alkali compound coexist, the slurry composition is adjusted to pH 8.2 or higher, and
The molar ratio r of tartaric acid and its salt to iron salt is (pH-6,
6)/600 or more, and (pl+-2,6)/6
By setting the temperature to a value of 00 or less and heating at 120° C. or higher, plate-shaped hematite having the desired particle size and particle size distribution can be obtained.

、二の方法によって得られる径の揃った微粒の板状へマ
タイトは更に水素気流中で還元し、必要に応じてさらに
再酸化及び、またはCo塩により処理することによって
、フロッピーディスク用として優れた性質を有する板状
磁性粉を得ることができる。ここで、板状とは、六角薄
片状、円板状、六角板状、菱形板状、四角板状等を総称
したものであり、板面の(長径/短径)比が2以下のも
のを意味する。
The fine plate-shaped hematite particles with uniform diameter obtained by the method 2 are further reduced in a hydrogen stream, and if necessary, further reoxidized and/or treated with Co salt to produce an excellent material for use in floppy disks. It is possible to obtain plate-shaped magnetic powder having the following properties. Here, plate-like is a general term for hexagonal flake-like, disc-like, hexagonal plate-like, rhombic plate-like, square plate-like, etc., and the plate surface has a (major axis/minor axis) ratio of 2 or less. means.

本発明において、生成する粒子の粒径と形状を決定する
最も重要な因子は、pH及び添加する酒石酸またはその
塩の鉄塩に対するモル比rである。
In the present invention, the most important factors that determine the particle size and shape of the particles to be produced are the pH and the molar ratio r of tartaric acid or its salt added to the iron salt.

水熱処理を行う前のスラリーのp)Iが8.2に満たな
い場合には、酒石酸添加の有無に関係なく板状のへマタ
イトは得られない。得られるのは粒径の小さな球形に近
いヘマタイトである。
If the p)I of the slurry before hydrothermal treatment is less than 8.2, plate-shaped hematite cannot be obtained regardless of whether tartaric acid is added or not. What is obtained is hematite with small particle size and nearly spherical shape.

rが(pH−2,6)/ 600を超えた場合、生成す
るのは塊状のマグネタイトであり、rが(pH−6,6
)/ 600に満たない場合には、粒径の大きな八面体
または偏平八面体が生成する。
When r exceeds (pH-2,6)/600, what is produced is lumpy magnetite;
)/600, octahedrons or oblate octahedrons with large grain sizes are produced.

これらはいずれも、本発明の目的に合致しない。None of these meet the objectives of the present invention.

本発明の目的とする、前述の3要件を満たすヘマタイト
の製造には、pH≧8.2で、rが上記の間即ち、(1
)H−6,6)/600≦r≦(pi+ −2,6) 
/600で囲まれた領域にあることが不可欠である。
The production of hematite that satisfies the above three requirements, which is the object of the present invention, requires pH≧8.2 and r between the above values, that is, (1
)H-6,6)/600≦r≦(pi+ -2,6)
It is essential that it be in the area surrounded by /600.

この領域内では、rの低下と共に粒径が小さくなるため
、粒径制御が可能である。
Within this region, the particle size becomes smaller as r decreases, so particle size control is possible.

水熱処理温度及び処理時間も大切な因子である。Hydrothermal treatment temperature and treatment time are also important factors.

120℃未満の温度では、ヘマタイトの生成速度が遅く
、10時間の処理の後でも一部ゲータイトの共存が避け
られない。これは鉄水酸化物からヘマタイトに結晶再配
列が起きる際の中間体として現れるものであって、これ
の残存は本発明の目的からみて極めて問題となるところ
である。
At temperatures below 120° C., the rate of hematite formation is slow, and the coexistence of some goethite is unavoidable even after 10 hours of treatment. This appears as an intermediate when crystal rearrangement occurs from iron hydroxide to hematite, and its remaining is extremely problematic from the viewpoint of the purpose of the present invention.

140℃になるとヘマタイトの生成は10時間で終了し
、160℃では40分で終了する。
At 140°C, the production of hematite is completed in 10 hours, and at 160°C, it is completed in 40 minutes.

出発物質の鉄塩には、硫酸塩、塩酸塩、硝酸塩等を用い
ることができる。また、水酸化鉄、ゲータイト等の酸化
水酸化鉄も使用できる。
As the starting iron salt, sulfate, hydrochloride, nitrate, etc. can be used. Further, iron hydroxide oxides such as iron hydroxide and goethite can also be used.

スラリー中の鉄塩濃度は、0.6mol/dm3以下が
好ましい。
The iron salt concentration in the slurry is preferably 0.6 mol/dm3 or less.

高濃度であることは生産技術上好ましいが、濃度が高過
ぎるとマグネタイトが生成し易くなり、0.9mol/
di3以上でのへマタイト化は困難となる。
A high concentration is preferable from a production technology perspective, but if the concentration is too high, magnetite is likely to be generated, and 0.9 mol/
It becomes difficult to form hematite at di3 or higher.

スラリー調製のための配合添加順序は全く任意で良く、
粒径、形状への影響は問題とならない。また、スラリー
の熟成時間の影響も殆どない。
The order of mixing and addition for slurry preparation can be completely arbitrary;
The effect on particle size and shape is not a problem. Furthermore, there is almost no effect of the maturation time of the slurry.

以下に本発明の内容を実施例によって説明する。The content of the present invention will be explained below using examples.

〔実施例〕〔Example〕

実施例l FeC1z  −682010,8gを60cfflの
水に溶解した液に、水酸化ナトリウム5.0gを30c
Jの水に溶解した液を加えて攪拌の後、これに更に、酒
石酸90■を30C♂の水に溶解させた液を加えてよく
攪拌した。このスラリーのpHは9.70であった。水
酸化ナトリウム溶液を用いてスラリーのpHを11.7
に調整し、80℃に予熱しであるオートクレーブに仕込
み、2時間で160℃まで昇温した。
Example 1 5.0 g of sodium hydroxide was added to 30 c of a solution of 8 g of FeC1z-682010 dissolved in 60 cffl of water.
After adding a solution of No. J in water and stirring, a solution of 90 ml of tartaric acid dissolved in 30 C♂ water was further added and stirred thoroughly. The pH of this slurry was 9.70. Adjust the pH of the slurry to 11.7 using sodium hydroxide solution
The mixture was heated to 80°C, charged into an autoclave, and heated to 160°C in 2 hours.

160℃で3時間攪拌保持の後、1時間で室温まで冷却
した。沈澱を取り出し、洗浄のあと80℃で乾燥した。
After stirring and holding at 160° C. for 3 hours, the mixture was cooled to room temperature over 1 hour. The precipitate was taken out, washed, and dried at 80°C.

得られた赤褐色粉末のx!v1回折結果から、この結晶
粉末はへマタイトであることがわかった。
x of the obtained reddish brown powder! The v1 diffraction results revealed that this crystal powder was hematite.

走査電子顕微鏡(以下電顕と略す)による写真観察から
、これらが粒径の良く揃った板状晶であり、フロッピー
ディスク用磁性粉の前駆体として好適なものであること
がわかった。これらの粒径及び粒径分布の結果を表1に
示す。
From photographic observation using a scanning electron microscope (hereinafter abbreviated as electron microscope), it was found that these were plate-shaped crystals with well-uniformed particle sizes, and were suitable as a precursor for magnetic powder for floppy disks. The results of these particle sizes and particle size distributions are shown in Table 1.

実施例2 FeC1+  ・6 HzO]、0.8 gを5Qcn
fの水に溶解した液に、酒石酸60■を3QcJの水に
溶解させた液を加えて攪拌の後、これに更に、水酸化す
トリウム5.Ogを30crAの水に溶解した液を加え
てよく攪拌した。水酸化ナトリウム溶液を用いてスラリ
ーのpHを9.92に3周整し、オートクレーブに仕込
んで、2時間で140℃まで昇温した。
Example 2 FeC1+ 6 HzO], 0.8 g was 5Qcn
A solution of 60 μm of tartaric acid dissolved in 3 QcJ of water was added to the solution of 5. A solution of Og dissolved in 30 crA water was added and stirred well. The pH of the slurry was adjusted to 9.92 three times using a sodium hydroxide solution, and the slurry was charged into an autoclave and heated to 140° C. over 2 hours.

140℃で10時間保持の後、1時間で室温まで冷却し
た。沈澱を取り出し、洗浄のあと80°Cで乾燥した。
After being maintained at 140° C. for 10 hours, it was cooled to room temperature in 1 hour. The precipitate was taken out, washed, and dried at 80°C.

得られた赤褐色粉末のX線回折結果から、この結晶粉末
はへマタイトであることがわかった。
The results of X-ray diffraction of the obtained reddish-brown powder revealed that this crystalline powder was hematite.

走査電顕による写真観察から、これらが粒径の良く揃っ
た板状晶であり、フロッピーディスク用磁性粉の前駆体
として好適なものであることがわかった。これらの粒径
及び粒径分布の結果を表1に示す。
Photographic observation using a scanning electron microscope revealed that these were plate-shaped crystals with well-uniformed particle sizes, and were suitable as a precursor for magnetic powder for floppy disks. The results of these particle sizes and particle size distributions are shown in Table 1.

実施例3 FeC1+  ・6 Hzo 10.8 gを60cf
flの水に溶解した液に、水酸化ナトリウム5.0gを
30−の水に溶解した液を加えて攪拌の後、これに更に
、酒石酸48可を30calの水に溶解させた液を加え
てよく攪拌した。このスラリーのpHは9.70であっ
た。水酸化ナトリウム溶液を用いてスラリーのpHは8
.5に調整し、以後実施例1と同様の条件で水熱反応を
行いへマタイト粉末結晶を得た。
Example 3 FeC1+ ・6 Hz 10.8 g to 60 cf
After stirring, a solution of 5.0 g of sodium hydroxide dissolved in 30 cal of water was added to the solution of fl of water, and then a solution of 48 cal of tartaric acid dissolved in 30 cal of water was added. Stir well. The pH of this slurry was 9.70. The pH of the slurry was adjusted to 8 using sodium hydroxide solution.
.. Thereafter, a hydrothermal reaction was carried out under the same conditions as in Example 1 to obtain hematite powder crystals.

走査電顕による写真観察から、これらが粒径の良く揃っ
た板状晶であり、フロッピーディスク用磁性粉の前駆体
として好適なものであることがわかった。これらの粒径
及び粒径分布の結果を表1に示す。
Photographic observation using a scanning electron microscope revealed that these were plate-shaped crystals with well-uniformed particle sizes, and were suitable as a precursor for magnetic powder for floppy disks. The results of these particle sizes and particle size distributions are shown in Table 1.

実施例4 Fe(NO3):+ ・91(2016gを60cJの
水に溶解した液に、酒石酸90■を39calの水に溶
解させた液を加えて攪拌の後、これに更に、水酸化ナト
リウム5.0gを3Qcn!の水に溶解した液を加えて
よく攪拌した。水酸化ナトリウム溶液を用いてスラリー
のpHを11.4に調整し、以後実施例1と全く同様の
水熱処理を行い、ヘマタイト結晶粉末を得た。
Example 4 Fe(NO3):+・91 (2016 g dissolved in 60 cJ of water) was added with a solution of 90 μl of tartaric acid dissolved in 39 cal of water and stirred. A solution obtained by dissolving .0 g of 3Qcn! A crystalline powder was obtained.

走査電顕による写真観察から、これらが粒径の良く揃っ
た板状晶であり、フロッピーディスク用磁性粉の前駆体
として好適なものであることがわかった。これらの粒径
及び粒径分布の結果を表1に示す。
Photographic observation using a scanning electron microscope revealed that these were plate-shaped crystals with well-uniformed particle sizes, and were suitable as a precursor for magnetic powder for floppy disks. The results of these particle sizes and particle size distributions are shown in Table 1.

実施例5 FeC13・6 HzO21,6gを120gの水に溶
解した液に、酒石酸240■と水酸化ナトリウム130
■を50cmの水に溶解させた液を加えて撹拌の後、水
酸化ナトリウム溶液を用いてスラリーのpHを11.8
に調整し、以後実施例1と全く同様の水熱処理を行い、
ヘマタイト結晶粉末を得た。
Example 5 240 μg of tartaric acid and 130 μg of sodium hydroxide were added to a solution in which 1.6 g of FeC13.6 HzO2 was dissolved in 120 g of water.
After adding a solution of (1) dissolved in 50 cm of water and stirring, the pH of the slurry was adjusted to 11.8 using sodium hydroxide solution.
Afterwards, the same hydrothermal treatment as in Example 1 was carried out,
A hematite crystal powder was obtained.

走査電顕による写真観察から、これらが粒径の良く揃っ
た板状晶であり、フロッピーディスク用磁性粉の前駆体
として好適なものであることがわかった。これらの粒径
及び粒径分布の結果を表1に示す。
Photographic observation using a scanning electron microscope revealed that these were plate-shaped crystals with well-uniformed particle sizes, and were suitable as a precursor for magnetic powder for floppy disks. The results of these particle sizes and particle size distributions are shown in Table 1.

表   1 * 電顕写真の視野のなかから50個の粒子を無作為に
選び出し、面積分布曲線を描いてその中央値を粒径とし
た。また、粒径比■は分布曲線の第1四分点と第3四分
点の粒径比、粒径比■は1/10分点と9/10分点の
粒径比である。
Table 1 * Fifty particles were randomly selected from the field of view of the electron micrograph, an area distribution curve was drawn, and the median value was taken as the particle size. Further, the particle size ratio (■) is the particle size ratio between the first and third quadrants of the distribution curve, and the particle size ratio (■) is the particle size ratio between the 1/10th and 9/10th points.

実施例6 FeCIa  −6H20973gを8 kgの水に溶
解させた液に、酒石酸8.1gと水酸化すトリウム45
0gを3 kgの水に溶解させた液を加えて攪拌の後、
水酸化ナトリウム溶液を用いてスラリーのplJを11
.7に調整し、20ffのオートラ1ノーブ中にて、1
60℃で4時間、攪拌下に水熱反応を行った。
Example 6 8.1 g of tartaric acid and 45 thorium hydroxide were added to a solution in which 20,973 g of FeCIa-6H was dissolved in 8 kg of water.
After adding a solution of 0g dissolved in 3kg of water and stirring,
Reduce the plJ of the slurry to 11 using sodium hydroxide solution.
.. Adjust to 7 and set 1 in 20ff autotra 1 knob.
Hydrothermal reaction was carried out at 60° C. for 4 hours with stirring.

昇温には1時間半、反応後の放冷には2時間半を要した
。反応スラリーを遠心分離し、得られたケークの水洗・
分離を5回繰り返し、最後にアセトンで水を置換し60
℃で2時間、更に110°Cで2時間乾燥した。
It took 1.5 hours to raise the temperature, and 2.5 hours to cool down after the reaction. The reaction slurry was centrifuged, and the resulting cake was washed with water.
Repeat the separation 5 times, and finally replace the water with acetone for 60 minutes.
It was dried at 110°C for 2 hours and then at 110°C for 2 hours.

X線回折及び走査電顕観察により、このものが粒径0.
487/[111厚さ0.06μ、粒径比Iが1.31
、粒径比■が1.63の良く揃った六角板状へマタイト
粒子からなっていることが確認された。
X-ray diffraction and scanning electron microscopy revealed that this material had a particle size of 0.
487/[111 thickness 0.06μ, particle size ratio I 1.31
It was confirmed that the hematite particles were composed of well-aligned hexagonal plate-shaped hematite particles with a particle size ratio of 1.63.

この板状粒子31gを管状回転炉に入れ、水蒸気を含む
水素気流中で370℃・4時間還元した。このものは黒
色を呈し、X線的にマグネタイトであることが確認され
た。
31 g of the plate-like particles were placed in a tubular rotary furnace and reduced in a hydrogen stream containing water vapor at 370° C. for 4 hours. This material had a black color and was confirmed to be magnetite by X-rays.

更に、これを空気中で200℃、2時間酸化し、赤褐色
の磁性粒子を得た。このものを電顕観察した結果、その
形状は前駆体のへマタイトの板状粒子と殆ど変わらなか
った。
Further, this was oxidized in air at 200°C for 2 hours to obtain reddish brown magnetic particles. As a result of electron microscopic observation of this material, its shape was almost the same as that of the precursor hematite plate-like particles.

」二足のへマタイトを原料に、同様の還元・酸化処理を
再度行って赤褐色磁性粒子を得、これらを均質混合した
ものの中から45gを秤り取り、CO3O4・7 t(
207,4g  水274gの懸濁液とし、オートクレ
ーブ中、200℃で7時間水熱処理し、黒褐色粉末を得
た。
'' Using two pairs of hematite as raw materials, the same reduction and oxidation treatment was performed again to obtain reddish-brown magnetic particles, and from a homogeneous mixture of these particles, 45 g was weighed out and CO3O4.7 t (
A suspension of 207.4 g in 274 g of water was prepared and hydrothermally treated at 200° C. for 7 hours in an autoclave to obtain a dark brown powder.

このものは、Coを3.3χ含み、抗磁力6350e、
飽和磁化63.3emu/g、残留磁化40.2emu
/gの粉末磁気特性を示し、その電顕観察から、粒径、
粒径分布とも、上記へマタイトと殆ど同じものであるこ
とがわかった。
This material contains 3.3χ Co, has a coercive force of 6350e,
Saturation magnetization 63.3 emu/g, residual magnetization 40.2 emu
/g, and from its electron microscopy observation, the particle size,
It was found that the particle size distribution was almost the same as that of the hematite described above.

このようにして得られた磁性粉105゛部をポリウレタ
ン30部、塩酢ビ樹脂20部、と共にRETフィルム上
に塗膜化し、その磁気特性を調べた所、抗磁力6550
eS飽和磁束密度1030G、残留磁束密度740Gで
あった。
105 parts of the thus obtained magnetic powder was coated on a RET film with 30 parts of polyurethane and 20 parts of salt-vinyl acetate resin, and its magnetic properties were investigated. The coercive force was 6550.
The eS saturation magnetic flux density was 1030G and the residual magnetic flux density was 740G.

また、この塗膜のモジュレーションは1%以下であり、
市販針状粉(長軸径0.50虜、軸比7、Co被被着マ
フエライトを用いた塗膜において無配向化処理を行った
場合の3.6zの値に比較してきわめて優れたものであ
った。
In addition, the modulation of this coating film is less than 1%,
Commercially available acicular powder (major axis diameter 0.50 mm, axial ratio 7, extremely superior value compared to 3.6z when non-orientation treatment is performed on a coating film using Co-coated mafelite) Met.

実施例7 FeC1z −6H2011,68gを8800gの水
に溶解させた液に、酒石酸6.48gと水2500gに
溶解させた液と、水酸化ナトリウム528gを3 kg
の水に溶解させた液を加えて攪拌の後、水酸化ナトリウ
ム溶液を用いてスラリーのpt+を9.96に調整し、
201のオートク・レープ中にて、160℃で2.5時
間、攪拌下に水熱反応を行った。昇温開始までに40分
、昇温には1時間20分、反応後の放冷には2時間を要
した。反応スラリーを遠心分離し、得られたケークの水
洗・分離を4回繰り返し、最後にアセトンで水を置換し
60℃で2時間、更に110℃で2時間乾燥した。
Example 7 3 kg of a solution of 68 g of FeC1z-6H2011 dissolved in 8800 g of water, a solution of 6.48 g of tartaric acid and 2500 g of water, and 528 g of sodium hydroxide
After adding the solution dissolved in water and stirring, adjust the pt+ of the slurry to 9.96 using sodium hydroxide solution,
The hydrothermal reaction was carried out in a No. 201 autoclave at 160° C. for 2.5 hours with stirring. It took 40 minutes to start raising the temperature, 1 hour and 20 minutes to raise the temperature, and 2 hours to let it cool after the reaction. The reaction slurry was centrifuged, and the resulting cake was washed and separated four times, and finally the water was replaced with acetone and dried at 60°C for 2 hours and then at 110°C for 2 hours.

この結果赤褐色粉末289gを得た。X線回折により、
このものはへマタイトであることが確認された。また、
電顕観察により、粒径0.25岬、厚さ0.06p、粒
径比Iが1.28、同■が1.61の良く揃った円板状
粒子からなっていることが確認された。
As a result, 289 g of reddish brown powder was obtained. By X-ray diffraction,
This material was confirmed to be hematite. Also,
Electron microscopic observation confirmed that it consisted of well-aligned disc-shaped particles with a particle size of 0.25 cape, a thickness of 0.06 p, a particle size ratio I of 1.28, and a particle size ratio I of 1.61. .

この板状粒子50gを管状回転炉に入れ、水蒸気を含む
水素気流中にて370°Cで4時間還元した。このもの
は黒色を呈し、X線的にマグネタイトであることが確認
された。
50 g of the plate-shaped particles were placed in a tubular rotary furnace and reduced at 370° C. for 4 hours in a hydrogen stream containing water vapor. This material had a black color and was confirmed to be magnetite by X-rays.

更に、これを空気中で200℃、2時間酸化し、赤褐色
の磁性粒子を得た。このものを電顕観察した結果、前駆
体のへマタイトの板状粒子と殆ど変わらなかった。
Further, this was oxidized in air at 200°C for 2 hours to obtain reddish brown magnetic particles. As a result of electron microscopic observation of this material, it was found that it was almost the same as the plate-like particles of hematite that was the precursor.

上記のへマタイトを原料に、同様の還元・酸化処理を行
い赤褐色磁性粒子を得、これらを均質混合したものの中
から45gを秤り取り、CoSO4・711□07.4
g、水274gの懸濁液をオートクレーブ中、200℃
で7時間水熱処理し、黒褐色粉末を得た。
Using the above-mentioned hematite as a raw material, similar reduction and oxidation treatments were performed to obtain reddish-brown magnetic particles, and from a homogeneous mixture of these, 45g was weighed out.
g, a suspension of 274 g of water in an autoclave at 200°C.
The mixture was hydrothermally treated for 7 hours to obtain a blackish brown powder.

このものは、Goを2.1z含み、抗磁力5700e、
飽和磁化69.5emu/g、残留磁化40.3emu
/gの粉末磁気特性を示し、その電顕観察から、粒径、
粒径分布とも、上記へマタイトと殆ど同じものであるこ
とがわかった。
This one contains 2.1z Go, coercive force 5700e,
Saturation magnetization 69.5 emu/g, residual magnetization 40.3 emu
/g, and from its electron microscopy observation, the particle size,
It was found that the particle size distribution was almost the same as that of the hematite described above.

このようにして得られた磁性粉105部をポリウレタン
30部、塩酢ビ樹脂20部と共にPETフィルム上に塗
膜化し、その磁気特性を調べた所、抗磁力6000e、
飽和磁束密度1320G、残留磁束密度870Gであっ
た。
105 parts of the magnetic powder thus obtained was coated on a PET film together with 30 parts of polyurethane and 20 parts of salt-vinyl acetate resin, and its magnetic properties were investigated.
The saturation magnetic flux density was 1320G and the residual magnetic flux density was 870G.

また、この塗膜のモジュレーションは1%以下であり、
市販針状粉(長軸径0.50−1軸比7、Co被被着ラ
フエライトを用いた塗膜において無配向化処理を行った
場合の366zの値に比較してきわめて優れたものであ
った。
In addition, the modulation of this coating film is less than 1%,
It was extremely superior to the 366z value obtained when non-orientation treatment was performed on a coating film using commercially available acicular powder (major axis diameter 0.50-1 axis ratio 7, Co-adhered rougherite). Ta.

比較例1 実施例1において、酒石酸溶液の代わりにこれと同量の
水を加え、pl(を11.78に調整した懸濁液を全く
同様に水熱処理したところ、0.5〜1ρの棒状粒子が
得られ、X線回折から、このものはゲータイトの結晶粒
子であることが判明した。(第5図) また、pHを9.0に調整した懸濁液の水熱処理物は、
0.06〜0.2 tmの多面体粒子からなるヘマタイ
トであった。
Comparative Example 1 In Example 1, the same amount of water was added instead of the tartaric acid solution and the suspension was adjusted to 11.78. When the suspension was hydrothermally treated in exactly the same manner, rod-shaped particles of 0.5 to 1 ρ were formed. Particles were obtained, and X-ray diffraction revealed that they were goethite crystal particles (Figure 5).Furthermore, the hydrothermally treated suspension whose pH was adjusted to 9.0 was
It was hematite consisting of polyhedral particles of 0.06 to 0.2 tm.

比較例2 実施例1において、水酸化ナトリウム溶液調製時の溶解
量を4.0gにし、酒石酸の代わりにクエン酸3ナトリ
ウム118■を溶かした溶液を用い、懸濁液のpl(を
10.0に調整すること以外全く同様の操作で赤褐色粉
体を得た。このものは、0.1〜2.0−の球状粒子か
らなり、X線的にはへマタイトであった。(第6図) 比較例3 実施例2において、酒石酸のかわりにリン酸ナトリウム
2水塩i、52 gを溶かした溶液を用い、懸濁液のp
Hを12.2に調整すること以外全く同様の操作で赤褐
色粉体を得た。このものは、0.01虜のアモルファス
な粒子からなっていることがわかった。
Comparative Example 2 In Example 1, the dissolved amount at the time of preparing the sodium hydroxide solution was changed to 4.0 g, and a solution in which 118 μm of trisodium citrate was dissolved instead of tartaric acid was used, and the pl of the suspension was adjusted to 10.0 g. A reddish-brown powder was obtained in exactly the same manner except that the powder was adjusted to 0.1 to 2.0. This consisted of spherical particles of 0.1 to 2.0, and was confirmed to be hematite by X-ray (Fig. 6). ) Comparative Example 3 In Example 2, a solution containing 52 g of sodium phosphate dihydrate i was used instead of tartaric acid, and the p of the suspension was
A reddish brown powder was obtained in exactly the same manner except that H was adjusted to 12.2. This material was found to consist of 0.01 particles of amorphous particles.

比較例4 実施例2において、酒石酸のかわりにグルコース144
■を溶かした溶液を用い、懸濁液のp)Iを11.7に
調整すること以外全く同様の操作で黒色粉体を得た。こ
のものは、超微粒凝集体のマグネタイトからなっている
ことがわかった。
Comparative Example 4 In Example 2, glucose 144 was used instead of tartaric acid.
A black powder was obtained in exactly the same manner except that the p)I of the suspension was adjusted to 11.7 using a solution containing (2). This material was found to be composed of ultrafine aggregates of magnetite.

比較例5 実施例2において、酒石酸60■のかわり600■を溶
かした溶液を用い、懸濁液のpHを11.9に調整する
こと以外全く同様の操作で黒色粉体を得た。このものは
、超微粒凝集体のマグネタイトからなっていることがわ
かった。(第7図) また、同じく酒石酸90■、p)113.0では、粒径
0.6 Xo、25−の偏平八面体のへ7タイト(第8
図)が、酒石酸30■、p)110.0では粒径0.1
5〜0.45−の六方両錘のへマタイトが得られた。
Comparative Example 5 A black powder was obtained in exactly the same manner as in Example 2, except that a solution containing 600 μl of tartaric acid was used instead of 60 μl, and the pH of the suspension was adjusted to 11.9. This material was found to be composed of ultrafine aggregates of magnetite. (Fig. 7) Similarly, tartaric acid 90■, p) 113.0 has a grain size of 0.6 Xo, 25- planooctahedral he7tite
Figure), but with tartaric acid 30cm, p) 110.0, the particle size is 0.1
5-0.45-hexagonal bipyramidal hematite was obtained.

比較例6 実施例6及び7で得られたヘマタイトを20gづつはか
り取って乳鉢で充分湿式混合し、乾燥粉砕した。このう
ち30gを管状回転炉により実施例6と同様の還元・酸
化し、引き続いてCo処理を行い、Coを2.8χ含有
する磁性粉を得た。
Comparative Example 6 20g of each of the hematites obtained in Examples 6 and 7 was weighed, thoroughly wet-mixed in a mortar, and then dried and ground. Of this, 30 g was reduced and oxidized in a tubular rotary furnace in the same manner as in Example 6, and subsequently treated with Co to obtain magnetic powder containing 2.8χ Co.

ヘマタイト混合物の平均粒径は0.21虜、粒径比Iば
1.92、同■は2.30であった。また上記磁性粉の
抗磁力は6100e、飽和磁化62.Oemu/g、残
留磁化37.2emu/gであり、粒径分布は原料へマ
タイトと同様であった。
The average particle size of the hematite mixture was 0.21 mm, the particle size ratio I was 1.92, and the particle size ratio I was 2.30. The magnetic powder has a coercive force of 6100e and a saturation magnetization of 62. Oemu/g, residual magnetization was 37.2 emu/g, and the particle size distribution was similar to that of the raw material hematite.

この様にして得られた磁性粉を実施例6と同様に塗膜化
したところ、抗磁力6450e、飽和磁束密度970G
、残8!磁束密度490Gであり、磁気記録媒体として
用いるには出力が低く不敵なものであった。
When the magnetic powder thus obtained was formed into a coating film in the same manner as in Example 6, the coercive force was 6450e, and the saturation magnetic flux density was 970G.
, 8 left! The magnetic flux density was 490G, and the output was too low to be used as a magnetic recording medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は、本発明の実施例で得られた板状へマ
タイ1−粉末の電子顕微鏡写真、第5図〜第8凹は比較
例で得られた夫々の粒子の電子顕微鏡写真である。 出願人代理人 古 谷    馨 −FA−1−−、−−−f′シー、へ 唇・   ・   ソ) 第  51y1             第弔   
  ・     (イ1              
         第ε  間 手続主甫正書印発)        2昭和61年9月
10日
Figures 1 to 4 are electron micrographs of plate-shaped hematite 1 powder obtained in Examples of the present invention, and Figures 5 to 8 are electron micrographs of respective particles obtained in Comparative Examples. It's a photo. Applicant's agent Kaoru Furuya-FA-1--, ---f'C, Helip...S) No. 51y1 Condolences
・(A1
Article ε Interim Procedures Chief Official Seal Seal) 2 September 10, 1986

Claims (1)

【特許請求の範囲】 1 板状面の面積の累積分布曲線において、中央値の粒
径(相当径)が、0.01〜1μm、第1四分点と第3
四分点における粒径比が、0.67〜1.50であり、
かつ1/10分点と9/10分点における粒径の比が0
.5〜2.0であり、板状比(相当径/厚み)2以上を
有する板状粒子からなる板状ヘマタイト粉末。 2 第2鉄塩、酒石酸又は/およびその塩、アルカリ化
合物の3成分が共存する水性スラリーであって、 pH≧8.2、かつ (pH−6.6)/600≦r≦(pH−2.8)/6
00(但し、r=〔酒石酸及びその塩〕/〔鉄塩〕(モ
ル比)) の条件を満たすスラリー組成物を120℃以上に加熱す
ることにより、板状面の面積の累積分布曲線において、
中央値の粒径(相当径)が0.01〜1μm、第1四分
点と第3四分点における粒径比が0.67〜1.50で
あり、かつ1/10分点と9/10分点における粒径の
比が0.5〜2.0であり、板状比(相当径/厚み)2
以上を有する板状粒子からなる板状ヘマタイト粉末を得
ることを特徴とする板状ヘマタイト粉末の製造方法。
[Claims] 1. In the cumulative distribution curve of the area of the plate-like surface, the median particle size (equivalent diameter) is 0.01 to 1 μm, and the first and third quadrants are
The particle size ratio at the quarter point is 0.67 to 1.50,
and the ratio of particle sizes at the 1/10 minute point and the 9/10 minute point is 0.
.. 5 to 2.0, and plate-like particles having a plate-like ratio (equivalent diameter/thickness) of 2 or more. 2 An aqueous slurry in which three components, ferric salt, tartaric acid or/and its salt, and an alkali compound coexist, with a pH≧8.2 and (pH-6.6)/600≦r≦(pH-2 .8)/6
00 (however, r = [tartaric acid and its salt] / [iron salt] (molar ratio)) By heating the slurry composition satisfying the condition of 120 ° C. or higher, in the cumulative distribution curve of the area of the plate-like surface,
The median particle size (equivalent diameter) is 0.01 to 1 μm, the particle size ratio at the 1st and 3rd quartiles is 0.67 to 1.50, and the 1/10th and 9th The particle size ratio at the /10 minute point is 0.5 to 2.0, and the plate ratio (equivalent diameter/thickness) is 2.
A method for producing plate-shaped hematite powder, which comprises obtaining plate-shaped hematite powder consisting of plate-shaped particles having the above.
JP60153861A 1985-07-12 1985-07-12 Lamellar hematite powder and production thereof Pending JPS6241722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60153861A JPS6241722A (en) 1985-07-12 1985-07-12 Lamellar hematite powder and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60153861A JPS6241722A (en) 1985-07-12 1985-07-12 Lamellar hematite powder and production thereof

Publications (1)

Publication Number Publication Date
JPS6241722A true JPS6241722A (en) 1987-02-23

Family

ID=15571705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60153861A Pending JPS6241722A (en) 1985-07-12 1985-07-12 Lamellar hematite powder and production thereof

Country Status (1)

Country Link
JP (1) JPS6241722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105905948A (en) * 2016-02-19 2016-08-31 中国科学技术大学 Preparation method of hematite submicron particles
KR20190049696A (en) 2016-09-01 2019-05-09 히타치가세이가부시끼가이샤 Method for producing nanocrystals, and method for manufacturing steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105905948A (en) * 2016-02-19 2016-08-31 中国科学技术大学 Preparation method of hematite submicron particles
KR20190049696A (en) 2016-09-01 2019-05-09 히타치가세이가부시끼가이샤 Method for producing nanocrystals, and method for manufacturing steel
US10927442B2 (en) 2016-09-01 2021-02-23 Showa Denko Materials Co., Ltd. Nanocrystal production method, and steel production method

Similar Documents

Publication Publication Date Title
US5645652A (en) Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same
US5075169A (en) Plate-like composite ferrite particles for magnetic recording and process for producing the same
JPS62216922A (en) Hexagonal ferrite fine powder for magnetic recording medium and its production
JP2918619B2 (en) Method for producing metal magnetic powder and coating film for magnetic recording medium
JPS5856232A (en) Magnetic recording medium
JPS6241722A (en) Lamellar hematite powder and production thereof
JP4182232B2 (en) Ferromagnetic powder
JP5130456B2 (en) Ferromagnetic metal powder and magnetic recording medium using the same
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
JPS60255628A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
JP5293946B2 (en) Method for producing nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP2003247002A (en) Metal magnetic grain powder essentially consisting of iron, production method thereof and magnetic recording medium
JP4669913B2 (en) Ferromagnetic powder
JPS6241717A (en) Plate magnetic powder and production thereof
JP3429881B2 (en) Composite type hexagonal ferrite magnetic powder and method for producing the same
US5989516A (en) Spindle-shaped geothite particles
JPH0644527B2 (en) Magnetic recording medium
JP2970706B2 (en) Method for producing acicular magnetic iron oxide particles
JP3763353B2 (en) Hematite powder for nonmagnetic underlayer of magnetic recording medium, nonmagnetic underlayer and magnetic recording medium of magnetic recording medium using hematite powder for nonmagnetic underlayer
JP2965606B2 (en) Method for producing metal magnetic powder
JP2970699B2 (en) Method for producing acicular magnetic iron oxide particles
JP3055308B2 (en) Method for producing acicular magnetic iron oxide particles
JP2935292B2 (en) Method for producing acicular magnetic iron oxide particles
JP2970705B2 (en) Method for producing acicular magnetic iron oxide particles
JP3049373B2 (en) Method for producing acicular cobalt-containing iron oxide magnetic powder