JPS6241715A - Production of lead titanate for low-melting glass - Google Patents

Production of lead titanate for low-melting glass

Info

Publication number
JPS6241715A
JPS6241715A JP18219985A JP18219985A JPS6241715A JP S6241715 A JPS6241715 A JP S6241715A JP 18219985 A JP18219985 A JP 18219985A JP 18219985 A JP18219985 A JP 18219985A JP S6241715 A JPS6241715 A JP S6241715A
Authority
JP
Japan
Prior art keywords
lead
melting point
precipitate
solution
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18219985A
Other languages
Japanese (ja)
Other versions
JPH0433739B2 (en
Inventor
Kenji Hiratsuka
健二 平塚
Yutaka Umetsu
梅津 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP18219985A priority Critical patent/JPS6241715A/en
Publication of JPS6241715A publication Critical patent/JPS6241715A/en
Publication of JPH0433739B2 publication Critical patent/JPH0433739B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce uniform powder of lead titanate capable of being readily sintered, by adding a solution of a lead compound to a solution for forming precipitates, drying and firing the formed precipitates, mixing a titanium compound therewith and calcining the resultant mixture. CONSTITUTION:Metallic lead or lead oxide with about >=99.99% grade is dissolved in nitric acid to give about 5-10mol concentration of free nitric acid. The resultant aqueous solution or an alcoholic solution is then added to a solution for forming precipitates, e.g. ammonia, to form precipitates, which are then dried, fired and pulverized. A titanium compound is then added thereto, and the resultant mixture is thoroughly mixed and calcined to afford lead titanate powder having characteristics of <=0.1CPH/cm<2> radioactive alpha particle counts and capable of being readily sintered. Therefore, the powder can be suitably utilized as a filler for low-melting glass.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、易焼結性の低融点ガラス用チタン酸鉛の!!
造方法に関する。特に半導体の誤動作を低減させるため
のチタン酸鉛粉末であって、例えば半導体装置の封着剤
として好適な低融点ガラス用フィラーとして利用出来る
ようなチタン酸鉛の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the use of lead titanate for easily sinterable low melting glass! !
Regarding the manufacturing method. In particular, the present invention relates to a method for producing lead titanate powder, which is used to reduce malfunctions of semiconductors, and which can be used as a filler for low-melting glass suitable as a sealant for semiconductor devices, for example.

従来の技術 チタン酸鉛(PbTiO3)粉末は、既に半導体装置の
封着用低融点ガラス、圧電材料あるいは焦電材料等の成
分として広く利用されている。
BACKGROUND OF THE INVENTION Lead titanate (PbTiO3) powder has already been widely used as a component of low-melting glass for sealing semiconductor devices, piezoelectric materials, pyroelectric materials, and the like.

これらの用途のうち、半導体装置の気密封着用低融点ガ
ラスとしては、例えば特開昭54−36314号、特開
昭54−36316号、特開昭55−100239号等
において記載されているように、PbO、B203を主
成分とし、これにさらに若干量のΔβ203、S】02
、Zn○、P b F2等からなる非失透性の低融点ガ
ラス粉末約50〜60重量%とフィラーである低膨張性
のチタン酸鉛粉末約50〜40重量%を添加してなるホ
ウ酸鉛系低融点ガラスが主流を占めている。
Among these uses, low-melting glass for hermetically sealing semiconductor devices is used, for example, as described in JP-A-54-36314, JP-A-54-36316, JP-A-55-100239, etc. , PbO, B203 as the main components, and a small amount of Δβ203, S]02
, Zn○, PbF2, etc., and about 50 to 60% by weight of non-devitrification low melting point glass powder and about 50 to 40% by weight of low expansibility lead titanate powder as a filler. Lead-based low melting point glass is the mainstream.

ところで、このようなガラスを封着剤として使用した半
導体装置は、半導体メモリーが一過性の誤仙作を起こす
現象が゜みられ、その原因としては、半導体装置から発
生ずる放射性α粒子によるものであると考えられ、その
ためα粒子の半導体装置への浸入防止及びα粒子発生源
の除去が、従来色々と検討されてきたのである。
By the way, in semiconductor devices that use such glass as a sealant, there is a phenomenon in which the semiconductor memory causes a temporary erroneous operation, and the cause of this phenomenon is believed to be due to radioactive α particles generated by the semiconductor device. Therefore, various studies have been made to prevent α particles from entering semiconductor devices and to remove sources of α particles.

例えば特開昭5 9−1 6 9 9 5 5号明細書
中には、メモIJ 、一エラーの発生を低減させるため
、非失透性の低融点ガラス粉末として放射性同位元素の
念佇量を20PPb 未満とし放射性α粒子のカウント
数を0. 1 C P H / cn{以下にすること
が教示されている。
For example, in the specification of JP-A-59-169955, Memo IJ states that, in order to reduce the occurrence of errors, a radioactive isotope is used as a non-devitrified, low-melting glass powder. less than 20PPb and the number of counts of radioactive α particles is 0. 1 C P H /cn{or less.

一方、チタン酸鉛粉末の従来の製造方法としては、人別
して2つの方法すなわち、PbOとT102の混合粉末
を加熱して合成したPbTiO3の塊状合成物を放冷後
機械的に粉砕する、所謂「乾式法」と;鉛化合物とチタ
ン化合物の混合溶液を沈殿形成液に添加して共沈させ、
この共沈物を乾燥、仮焼させることからなる、所謂「共
沈湿式法」が知られた。
On the other hand, there are two conventional methods for producing lead titanate powder, namely, a method in which a bulk composite of PbTiO3 synthesized by heating a mixed powder of PbO and T102 is mechanically crushed after being allowed to cool. Dry method: A mixed solution of a lead compound and a titanium compound is added to a precipitate forming solution to co-precipitate,
The so-called "co-wetting method", which consists of drying and calcining this coprecipitate, has become known.

発明が解決しようとする問題点 前述のように、半導体の封着剤としての非失透性の低融
点ガラス粉末と低1p張性のチタン酸鉛C)末からなる
ホウ酸鉛系低融点ガラスにおいて、従来は放射性同位元
素による悪影響を防止するため非失透性の低融点ガラス
粉末につき放射性α粒子のカウント数を0. 1 C 
P H / ctd以下にすることが提示されていたが
、低tlg張性のチタン酸鉛粉末については全く注意が
払われておらず、そのため半導体装置のメモリーエラー
の発生を完全に防止することが出来なかった。
Problems to be Solved by the Invention As mentioned above, lead borate-based low melting point glass consisting of non-devitrification low melting point glass powder and low 1P tonicity lead titanate C) powder is used as a sealing agent for semiconductors. Conventionally, in order to prevent the adverse effects of radioactive isotopes, the number of counts of radioactive α particles in non-devitrified, low-melting glass powder was set to 0. 1C
Although it has been proposed to reduce P H /ctd or less, no attention has been paid to lead titanate powder with low TLG tonicity, and as a result, it is impossible to completely prevent memory errors in semiconductor devices. I could not do it.

また、低膨張性のチタン酸鉛粉末の製造方法にしても、
従来公知の乾式法はチタン酸鉛粉末のキューリ一点が約
500℃と比較的高く、さらに結晶格子が非常に大きい
歪みをもっているため焼結性が十分でなく、加えて均一
組成のものが碍ろれにくいという欠点があった。
In addition, even in the production method of low-expansion lead titanate powder,
In the conventional dry method, the curie point of lead titanate powder is relatively high at approximately 500°C, and the crystal lattice has a very large distortion, so sinterability is not sufficient, and in addition, it is difficult to produce a product with a uniform composition. The disadvantage was that it was difficult to

一方、公知の共沈湿式法によると、均一性の優れた粉末
が一応1■−ろれるが、二次粒子が形成されやすく、そ
れ故易焼結性になりにくいという欠点があった。さらに
、チタン化合物として、安価な四塩化チタンを使用する
ことが望ましいが、これを使用すると四塩化チタン中の
塩素イオンが鉛イオンと反応して白色性1殿を生成する
という問題があり、それ故チタン化合物として高価なオ
キシ硝酸チタン等を使用しなければいけないというよう
な問題があった。
On the other hand, according to the known co-precipitation method, the powder with excellent uniformity can be obtained by a 1/2 inch flow, but it has the disadvantage that secondary particles are easily formed and therefore it is difficult to easily sinter. Furthermore, as a titanium compound, it is desirable to use titanium tetrachloride, which is inexpensive, but when this is used, there is a problem that the chlorine ions in titanium tetrachloride react with lead ions to produce whiteness. There was a problem in that expensive titanium oxynitrate or the like had to be used as the titanium compound.

本発明は、このような現状に鑑み、前記の如き従来技術
の欠点を改善又は解消し、したがって易焼結性、均一性
、低コストの要件を夫々満足した低融点ガラス用チタン
酸鉛の製造方法、特に半導体の誤動作を低減させるため
のチタン酸鉛で、例えば半導体装置の封着剤である低融
点ガラス用フィラーとして好適に利用出来るチタン酸鉛
の製造方法を提供するものである。
In view of the current situation, the present invention aims to improve or eliminate the drawbacks of the prior art as described above, and therefore to produce lead titanate for low-melting glass that satisfies the requirements of easy sinterability, uniformity, and low cost. The present invention provides a method for producing lead titanate, which is used to reduce malfunctions in semiconductors, and which can be suitably used, for example, as a filler for low-melting glass, which is a sealant for semiconductor devices.

問題点を解決するだめの手段 したがって、本発明の第一態様は、 鉛化合物の水溶液またはアルコール溶液をまず沈澱形成
液に添加して沈殿物を生成させ、得られた沈澱物を乾壜
、焼成し、次いでこれにチタン化合物を混合し、仮焼す
ることからなる放射性α粒子のカウント数が0. I 
CP t(/ cnf以下の低融点ガラス用チタン酸鉛
の製造方法に関するものである。
Means to Solve the Problems Therefore, the first aspect of the present invention is to first add an aqueous or alcoholic solution of a lead compound to a precipitate forming solution to form a precipitate, and then dry bottle and calcinate the precipitate. Then, a titanium compound is mixed with the mixture and calcined, so that the count number of radioactive α particles is 0. I
The present invention relates to a method for producing lead titanate for use in low-melting glass with a CP t(/cnf or less).

本発明において、使用する前記の、鉛化合物の水溶液ま
たはアルコール溶液としては、硝酸jl:)、酢酸鉛、
蓚酸?(す、ぎ酸鉛、トリメチルレッドハイドロオキザ
イドなどの水溶液またはアルコール溶液が挙げられる。
In the present invention, the aqueous or alcoholic solutions of lead compounds used include nitric acid, lead acetate,
oxalic acid? (Examples include aqueous or alcoholic solutions of lead formate, trimethyl red hydroxide, etc.)

特に本発明においては、U、Th等の放射性同位元素か
ら発生する放射性α粒子のカウント数を0、1 CP 
H/ cl′lI以下にし、半導体装置のメモリーエラ
ーの発生を防止するため、以下のようにして得られる鉛
化合物の水溶液が好適である。
In particular, in the present invention, the count number of radioactive α particles generated from radioactive isotopes such as U and Th is set to 0, 1 CP.
In order to keep the temperature below H/cl'lI and to prevent memory errors in semiconductor devices, an aqueous solution of a lead compound obtained as follows is suitable.

すなわち、品位4ナイン以上の金属鉛または亜酸化鉛、
−酸化鉛、目玉酸化鉛、二酸化鉛等の酸化鉛を、遊離硝
酸濃度が5〜lQmol濃度になるよう硝酸に溶解し、
IJ、Th等の放射性同位元素を錯イオン化し、(なお
、前記遊離硝酸濃度範囲においてLJ、Th等の吸着効
率が、良好となることが判明した)しかる後に、陰イオ
ン交換樹脂にて浄液処理を行なって、放射性同位元素を
吸着除去巳た水溶液が、本発明において好適に使用出来
る。
That is, metallic lead or zinc oxide with a grade of 4 nines or higher,
- Dissolving lead oxide such as lead oxide, eyeball lead oxide, and lead dioxide in nitric acid so that the concentration of free nitric acid is 5 to 1Qmol,
Radioactive isotopes such as IJ and Th are complex ionized (it was found that the adsorption efficiency of LJ, Th, etc. is good in the above free nitric acid concentration range), and then the liquid is purified using an anion exchange resin. An aqueous solution that has been treated to adsorb and remove radioactive isotopes can be suitably used in the present invention.

その他放躬1生α粒子のカウント数が0.1 CP H
/(〕M以下である古い地層から採取した金属鉛あるい
はそれを厚朴)として常法によって得られる酸化物を、
前記塩にして水溶液またはアルコール溶液としてもよい
Other Hoboku 1 raw α particle counts are 0.1 CP H
/ () An oxide obtained by a conventional method as metallic lead collected from an old stratum below M or a thick layer of it,
The salt may be made into an aqueous solution or an alcohol solution.

本発明においては沈殿形成液を用いる。該沈澱形成液と
しては、アンモニア、蓚酸アンモン、力性アルカリ等が
挙げられる。
In the present invention, a precipitate forming liquid is used. Examples of the precipitate forming liquid include ammonia, ammonium oxalate, and alkali.

次に本発明において使用するチタン化合物としては、精
製蒸留した四塩化チタンあるいはその熱分解によって1
1られた二酸化チタンが好適である。
Next, the titanium compound used in the present invention is purified distilled titanium tetrachloride or its thermal decomposition product.
Titanium dioxide is preferred.

その地目塩化チタン、オキシ硝酸チタン、チタンブトキ
シド、チタンプロピオキシド等の水溶液またはアルコー
ル溶液を、遊離硝酸濃度が5〜10mol濃度になるよ
う硝酸に溶解し、それを陰イオン交換樹脂にて浄液処理
した後前記沈殿形成液に添加し、沈澱物を生成させ、つ
いて該沈殿物を約120〜900℃で乾文モ、焼成し、
さらに必要に応じボールミルにて処理したチタン化合物
も使用出来る。
An aqueous or alcoholic solution of titanium chloride, titanium oxynitrate, titanium butoxide, titanium propioxide, etc. is dissolved in nitric acid so that the concentration of free nitric acid becomes 5 to 10 mol, and the solution is purified using an anion exchange resin. After that, it is added to the precipitate forming solution to form a precipitate, and then the precipitate is dried and calcined at about 120 to 900°C,
Furthermore, a titanium compound treated with a ball mill can also be used if necessary.

次に本発明のチタン酸鉛扮末の装ノ方法につき具体的に
説明する。
Next, the method for loading the lead titanate powder of the present invention will be specifically explained.

まず前記沈澱形成液を攪拌しながら鉛化合物の水溶液ま
たはアルコール溶液を添加するか、あるいはその逆に添
加して、沈殿物を生成させる。
First, an aqueous or alcoholic solution of a lead compound is added while stirring the precipitate-forming liquid, or vice versa, to form a precipitate.

この沈殿物は必要に応じアルコール等で洗浄した後、約
120〜800℃で乾煙、焼成を行なう。
This precipitate is washed with alcohol or the like if necessary, and then dried and fired at about 120 to 800°C.

ついでこの焼成物をボールミルにて粉砕したものに、チ
タン化合物を加え、十分混合した後、約400〜120
0℃で仮焼する。かくて、均一かつ易焼結性のチタン酸
鉛粉末が得られる。
Next, a titanium compound was added to the fired product that was ground in a ball mill, and after thorough mixing, the
Calcinate at 0℃. In this way, a uniform and easily sinterable lead titanate powder is obtained.

なお前記仮焼温度において、それが400℃未満では混
合粉末の固相反応が不十分であり、逆に1200℃を越
えると粉末が粗大化し7、したがって焼結性が悪くなる
という欠点があられれる。
Note that if the calcination temperature is lower than 400°C, the solid phase reaction of the mixed powder will be insufficient, and if it exceeds 1200°C, the powder will become coarse 7, resulting in poor sinterability. .

次に、本発明の第二のtfJ、pは、 チタン化合物の水溶液またはアルコール溶液を沈・殿形
成液に添加することにより沈殿物を生成し、該沈澱物を
約120〜900℃で乾燥、焼成し、次いでこれに鉛化
合物を混合し、仮焼する、ことを特徴とする、放射性α
粒子のカウント数が0.1CP H/ ctd以下の低
融点ガラス用チタン酸鉛の製造方法にylするものであ
る。
Next, in the second tfJ, p of the present invention, a precipitate is generated by adding an aqueous solution or an alcohol solution of a titanium compound to a precipitation/precipitate forming solution, and the precipitate is dried at about 120 to 900°C. Radioactive α characterized by firing, then mixing a lead compound with it and calcining it.
This is a method for producing lead titanate for use in low-melting glass with a particle count of 0.1 CP H/ctd or less.

本発明に於て前記チタン化合物の水溶液またはアルコー
ル溶液としては、四塩化チタン、オキシ6肖酸チタン、
チタンブトキシド、チタンプロビオキンドなどの水溶液
またはアルコール溶液が挙げられる。特に本発明におい
ては安価な四塩化チタンを蒸留イ゛^装してじ、Th等
の放射性同位元素を除去した水溶液が好適に利用出来る
。また前記鉛化合物溶液の場合と同様に、陰イオン交換
樹脂にて浄液処理しまたチタン化合物の溶液も使用可能
である。
In the present invention, the aqueous or alcoholic solution of the titanium compound includes titanium tetrachloride, titanium oxy-6-phosphate,
Examples include aqueous or alcoholic solutions of titanium butoxide, titanium probiokind, and the like. In particular, in the present invention, an aqueous solution from which radioactive isotopes such as Th are removed can be suitably used by distilling inexpensive titanium tetrachloride. Further, as in the case of the lead compound solution, a titanium compound solution which has been purified with an anion exchange resin can also be used.

また本発明において用いる前記鉛化合物とじては、第一
の態様で使用した陰イオン交換樹脂にて浄液処理した溶
液を沈殿形成液に添加し、生成した沈澱物を乾燥、焼成
したもの、放射性α粒子のカウント数が0.1 CP 
H/ cM以下である金属鉛あるいは該金属鉛の酸化物
が挙げられる。
In addition, the lead compound used in the present invention is obtained by adding a solution purified with the anion exchange resin used in the first embodiment to a precipitate forming solution, drying and calcining the produced precipitate, and a radioactive α particle count is 0.1 CP
Examples include metal lead or an oxide of the metal lead having a hydrogen permeability of H/cM or less.

本発明において使用する前記沈澱形成液としては、第一
の態様で使用したものと同様のものが使用出来る。また
チタン酸鉛の製造法も第一態様の製市方法と同様にして
製造可能である。
As the precipitate forming liquid used in the present invention, the same one as used in the first embodiment can be used. Furthermore, lead titanate can be manufactured in the same manner as the manufacturing method of the first embodiment.

発明の効果 本発明の方法により、易焼結性で、かつ均一なチタン酸
鉛粉末が得られる。また、安価な四塩化チタンあるいは
熱分解によって得られる二酸化チタンが使用出来るため
、製造コストも安い。さらに、辱られるチタン酸鉛粉末
は、放射性α粒子のカウントaが0.1 CP )] 
/ ci以下であるので、半導体装置の封着剤である低
融点ガラス用フィラーとして好適に利用出来る。その他
、放射性α粒子のカウント数が大きい時、障害が生ずる
ような装置、材料等にも好適に利用出来るという特長を
有している。
Effects of the Invention According to the method of the present invention, easily sinterable and uniform lead titanate powder can be obtained. Furthermore, since inexpensive titanium tetrachloride or titanium dioxide obtained by thermal decomposition can be used, the manufacturing cost is also low. In addition, the lead titanate powder that is humiliated has a radioactive alpha particle count a of 0.1 CP)]
/ci or less, so it can be suitably used as a filler for low-melting glass, which is a sealant for semiconductor devices. In addition, it has the advantage that it can be suitably used for equipment, materials, etc. that can cause problems when the number of radioactive α particles is large.

実施例 以下、本発明を実稍例によりさらに詳細に説明する。Example Hereinafter, the present invention will be explained in more detail by way of practical examples.

実i血例1 試・】≦特級(pb○99.9%以上)の−酸化鉛22
、31 gを、純水にて(1: 1)に希釈した試薬特
級の硝酸150mβに加えて、加熱溶解して水溶液と[
、た。この水溶液を陰イオン交換樹脂を充填した塔に通
過さへてLl、Th等を吸着除去せしめた後、攪拌しな
がら4Nアンモニア1β中に滴下して水酸化鉛の沈殿物
を生成させた。
Actual blood example 1 Test: ≦Special grade (pb○99.9% or more) -lead oxide 22
, 31 g was added to 150 mβ of reagent grade nitric acid diluted (1:1) with pure water, and dissolved by heating to form an aqueous solution [
,Ta. This aqueous solution was passed through a tower filled with an anion exchange resin to adsorb and remove Ll, Th, etc., and then added dropwise to 4N ammonia 1β with stirring to form a lead hydroxide precipitate.

この沈澱物を純水にて洗浄し、120℃で1時間乾燥後
、750℃で1時間焼成し、ボールミルにて粉砕した。
This precipitate was washed with pure water, dried at 120°C for 1 hour, calcined at 750°C for 1 hour, and ground in a ball mill.

次いで該粉砕物に、試薬−級の四塩化チタン(純度9 
9. 9 5%以上、比重1.72〜1. 7 6 )
の蒸留tti製したものを熱分解反応によって作成した
塩素性二酸化チタン粉末7. 6 8 gを加え、ボー
ルミルにて混合後、850℃で2時間仮焼し、さらにボ
1ルミルにて粉砕し、チタン酸鉛(PbTi03)粉末
を得た。
Next, reagent-grade titanium tetrachloride (purity 9
9. 9 5% or more, specific gravity 1.72-1. 7 6)
7. Chlorinated titanium dioxide powder produced by thermal decomposition reaction of distilled titanium dioxide powder. 68 g was added, mixed in a ball mill, calcined at 850° C. for 2 hours, and further ground in a ball mill to obtain lead titanate (PbTi03) powder.

この粉末の放射性α粒子のカウント数をα線測定器によ
り測定したところO−074CPH/amであった。
The count number of radioactive α particles in this powder was measured using an α-ray measuring device and found to be O-074 CPH/am.

またこの粉末を走査型電子顕微鏡により観察したところ
、約O。3μの均一粒径を有し、X線回折法によるβC
OSθ〜sinθ(ただしβは回折線の半価幅、θはブ
ラック角を表わす。)の関係をプロットした結果、横軸
( sinθ軸)にほぼ平行で、はとんど組成変動を含
まない均一組成のものであることが確λ忍された。
When this powder was observed using a scanning electron microscope, it was found to be approximately O. βC has a uniform particle size of 3μ and is determined by X-ray diffraction method.
As a result of plotting the relationship between OS θ and sin θ (where β represents the half width of the diffraction line and θ represents the Black angle), it is almost parallel to the horizontal axis (sin θ axis), and is almost uniform without compositional fluctuations. It was confirmed that it was of the composition.

実施例2 前記蒸留精製した四塩化チタン1 8. 9 7 gを
純水に溶解した水C容液100mβを、攪拌しながら4
Nアンモニア水ll中に滴下して水酸化チタンの沈殿物
を生成させた。この沈澱物を純水で洗浄し、120℃で
1時間乾燥後、さらに750℃で1時間焼成し、次いで
ボールミルにて粉砕した。
Example 2 Titanium tetrachloride 1 purified by distillation 8. 9 7 g of water C solution dissolved in pure water, 100 mβ, was added with stirring to 4.
The mixture was dropped into 1 liter of N ammonia water to form a titanium hydroxide precipitate. This precipitate was washed with pure water, dried at 120°C for 1 hour, further calcined at 750°C for 1 hour, and then ground in a ball mill.

次いで該粉砕物に、放射性α粒子のカウント数が0.0
5 CP H/ cntの金属鉛を用いて、常法により
製造した一酸化&922.31 gを加えボールミルに
て混合後850℃で2時間焼成し、さらにボールミルに
て粉砕しチタン酸鉛粉末を碍た。このt分束の放射性α
粒子のカウント数を測定した結果0.066CPH/C
mであった。また粉末は、約03μの均一粒径を有し、
またX線回折法によるβcosθ〜sinθの関係をプ
ロットした結果、均一組成のものであることが確認され
た。
Next, the count number of radioactive α particles is 0.0 in the pulverized material.
Using metallic lead of 5 CP H/cnt, 922.31 g of monoxide produced by a conventional method was added, mixed in a ball mill, fired at 850°C for 2 hours, and further crushed in a ball mill to add lead titanate powder. Ta. The radioactivity α of this t-segment flux
The result of measuring the number of particle counts was 0.066CPH/C
It was m. The powder also has a uniform particle size of about 0.3μ,
Furthermore, as a result of plotting the relationship between β cos θ and sin θ by X-ray diffraction, it was confirmed that the composition was uniform.

比較例1 市販の試薬特級pb○、T i 02 の粉末をPbT
iO3の組成になるように配合し、ボールミルにて混合
後950℃で2時間仮焼し、再びボールミルで粉砕し、
粉末を作った。
Comparative Example 1 Commercially available reagent special grade pb○, T i 02 powder was converted into PbT.
The mixture was blended to have a composition of iO3, mixed in a ball mill, calcined at 950°C for 2 hours, and ground again in a ball mill.
I made a powder.

この粉末の放射性α粒子のカウント数を測定した結果3
.85 CP H/ cfflであった。またこの粉末
は、X線回折法によるβcos O−sinθの関係を
プロットした結果、組成変動が認められた。
Results of measuring the number of counts of radioactive α particles in this powder 3
.. It was 85 CP H/cffl. Further, as a result of plotting the β cos O-sin θ relationship of this powder by X-ray diffraction, compositional fluctuations were observed.

Claims (9)

【特許請求の範囲】[Claims] (1)鉛化合物の水溶液またはアルコール溶液を沈澱形
成液に添加して沈澱物を生成し、得られた沈殿物を乾燥
、焼成し、次いでこれにチタン化合物を混合し、仮焼す
ることを特徴とする放射性α粒子のカウント数が0.1
CPH/cm^2以下の低融点ガラス用チタン酸鉛の製
造方法。
(1) A precipitate is produced by adding an aqueous or alcoholic solution of a lead compound to a precipitate forming solution, the resulting precipitate is dried and calcined, and then a titanium compound is mixed therein and calcined. The count number of radioactive α particles is 0.1
A method for producing lead titanate for low melting point glass of CPH/cm^2 or less.
(2)鉛化合物の水溶液が、まず品位4ナイン以上の金
属鉛または酸化鉛を遊離硝酸濃度が5〜10mol濃度
になるよう硝酸に溶解し、次いで陰イオン交換樹脂にて
浄液処理した水溶液である、ことを特徴とする特許請求
の範囲第(1)項記載の低融点ガラス用チタン酸鉛の製
造方法。
(2) The aqueous solution of the lead compound is an aqueous solution in which metallic lead or lead oxide with a grade of 4 nines or higher is first dissolved in nitric acid so that the free nitric acid concentration becomes 5 to 10 mol, and then purified with an anion exchange resin. A method for producing lead titanate for low melting point glass according to claim (1).
(3)チタン化合物が、蒸留精製した四塩化チタンまた
は該四塩化チタンの熱分解によって得られた二酸化チタ
ンであることを特徴とする特許請求の範囲第(1)項記
載の低融点ガラス用チタン酸鉛の製造方法。
(3) Titanium for low-melting glass according to claim (1), wherein the titanium compound is titanium tetrachloride purified by distillation or titanium dioxide obtained by thermal decomposition of the titanium tetrachloride. Method for producing acid lead.
(4)低融点ガラスが半導体装置封着用ガラスであるこ
とを特徴とする特許請求の範囲第(1)項記載の低融点
ガラス用チタン酸鉛の製造方法。
(4) The method for producing lead titanate for low melting point glass according to claim (1), wherein the low melting point glass is a glass for sealing a semiconductor device.
(5)チタン化合物の水溶液またはアルコール溶液を沈
澱形成液に添加して沈殿物を生成し、得られた沈澱物を
乾燥、焼成し、次いでこれに鉛化合物を混合し、仮焼す
ることを特徴とする放射性α粒子のカウント数が0.1
CPH/cm^2以下の低融点ガラス用チタン酸鉛の製
造方法。
(5) Adding an aqueous or alcoholic solution of a titanium compound to a precipitate forming solution to form a precipitate, drying and calcining the resulting precipitate, then mixing a lead compound therein and calcining it. The count number of radioactive α particles is 0.1
A method for producing lead titanate for low melting point glass of CPH/cm^2 or less.
(6)チタン化合物が蒸留精製した四塩化チタンである
ことを特徴とする特許請求の範囲第(5)項記載の低融
点ガラス用チタン酸鉛の製造方法。
(6) The method for producing lead titanate for low-melting point glass according to claim (5), wherein the titanium compound is titanium tetrachloride purified by distillation.
(7)鉛化合物の水溶液が、まず品位4ナイン以上の金
属鉛または酸化鉛を遊離硝酸濃度が5〜10mol濃度
になるよう硝酸に溶解し、次いで陰イオン交換樹脂にて
浄液処理した後、沈澱形成液に添加して沈澱物を生成し
、得られた沈澱物を乾燥、焼成したものであることを特
徴とする特許請求の範囲第(5)項記載の低融点ガラス
用チタン酸鉛の製造方法。
(7) An aqueous solution of a lead compound is prepared by first dissolving metallic lead or lead oxide with a grade of 4 nines or higher in nitric acid so that the concentration of free nitric acid becomes 5 to 10 mol, and then purifying the solution with an anion exchange resin, A lead titanate for low melting point glass according to claim (5), which is added to a precipitate forming solution to form a precipitate, and the obtained precipitate is dried and fired. Production method.
(8)鉛化合物が、放射性α粒子のカウント数が0.1
CPH/cm^2以下の酸化鉛であることを特徴とする
特許請求の範囲第(5)項記載の低融点ガラス用チタン
酸鉛の製造方法。
(8) The lead compound has a radioactive α particle count of 0.1
The method for producing lead titanate for low melting point glass according to claim (5), wherein the lead oxide is lead oxide having a CPH/cm^2 or less.
(9)低融点ガラスが半導体装置封着用ガラスであるこ
とを特徴とする特許請求の範囲第(5)項記載の低融点
ガラス用チタン酸鉛の製造方法。
(9) The method for producing lead titanate for low melting point glass as set forth in claim (5), wherein the low melting point glass is a glass for sealing a semiconductor device.
JP18219985A 1985-08-20 1985-08-20 Production of lead titanate for low-melting glass Granted JPS6241715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18219985A JPS6241715A (en) 1985-08-20 1985-08-20 Production of lead titanate for low-melting glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18219985A JPS6241715A (en) 1985-08-20 1985-08-20 Production of lead titanate for low-melting glass

Publications (2)

Publication Number Publication Date
JPS6241715A true JPS6241715A (en) 1987-02-23
JPH0433739B2 JPH0433739B2 (en) 1992-06-03

Family

ID=16114082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18219985A Granted JPS6241715A (en) 1985-08-20 1985-08-20 Production of lead titanate for low-melting glass

Country Status (1)

Country Link
JP (1) JPS6241715A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100138A (en) * 1980-01-17 1981-08-11 Matsushita Electric Ind Co Ltd Manufacture of lead titanate
JPS56104715A (en) * 1980-01-17 1981-08-20 Matsushita Electric Ind Co Ltd Preparation of lead titanate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100138A (en) * 1980-01-17 1981-08-11 Matsushita Electric Ind Co Ltd Manufacture of lead titanate
JPS56104715A (en) * 1980-01-17 1981-08-20 Matsushita Electric Ind Co Ltd Preparation of lead titanate

Also Published As

Publication number Publication date
JPH0433739B2 (en) 1992-06-03

Similar Documents

Publication Publication Date Title
Rossell Crystal structures of some fluorite-related M7O12 compounds
Muller et al. Crystal chemistry of some technetium-containing oxides
KR20070051935A (en) Fine-particle alkaline-earth titanates and method for the production thereof using titanium oxide particles
JP2726439B2 (en) Method for producing ceramic powder having perovskite structure
JPS58199716A (en) Manufacture of valence compensation type perovskite compound
CN112125281B (en) Method for preparing lanthanide oxide material by using coprecipitation combined with molten salt deposition method and application thereof
Ozaki Ultrafine electroceramic powder preparation from metal alkoxides
JPH03153557A (en) Production of source powder of lead perovskite structure ceramics
JPS6241715A (en) Production of lead titanate for low-melting glass
US6534031B2 (en) Process for preparing high surface area triple layered perovskites
JPH0977516A (en) Production of high purity strontium carbonate
JPH027906B2 (en)
TW201412637A (en) Filler, glass composition, and method for producing hexagonal phosphate
JP2827616B2 (en) Zinc stannate powder for encapsulant and its production method and use
JPS6278107A (en) Production of powdery raw material of perovskite and solid solution thereof
JPS6278109A (en) Production of powdery raw material of perovskite and solid solution thereof
JPH0321487B2 (en)
JPH024442A (en) High performance lithium adsorbent and its preparation
JP3453783B2 (en) Method for producing acicular powder of indium-tin oxide
JPS6278108A (en) Production of powdery raw material of perovskite and solid solution thereof
Ziouane et al. Effect of the microstructural morphology on UO2 powders
JP3149467B2 (en) Method for producing fine powder for semiconductor porcelain
JPS63288960A (en) Production of (pb, bi) (zr, ti)o3
JPH07112928B2 (en) Manufacturing method of ceramic raw material powder
Kojić-Prodić et al. The crystal structure of caesium oxobisoxalatobisaquoniobate (V) dihydrate, Cs [NbO (C2O4) 2 (H2O) 2]. H2O