JPH0433739B2 - - Google Patents

Info

Publication number
JPH0433739B2
JPH0433739B2 JP60182199A JP18219985A JPH0433739B2 JP H0433739 B2 JPH0433739 B2 JP H0433739B2 JP 60182199 A JP60182199 A JP 60182199A JP 18219985 A JP18219985 A JP 18219985A JP H0433739 B2 JPH0433739 B2 JP H0433739B2
Authority
JP
Japan
Prior art keywords
precipitate
lead
powder
nitric acid
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60182199A
Other languages
Japanese (ja)
Other versions
JPS6241715A (en
Inventor
Kenji Hiratsuka
Yutaka Umetsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP18219985A priority Critical patent/JPS6241715A/en
Publication of JPS6241715A publication Critical patent/JPS6241715A/en
Publication of JPH0433739B2 publication Critical patent/JPH0433739B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の誤動作を低減させるた
めの、半導体装置の封着剤である低融点ガラス用
のフイラーとして利用出来る、チタン酸鉛の製造
方法に関するものである。
[Detailed description of the invention] Industrial application field The present invention is a method for producing lead titanate, which can be used as a filler for low-melting glass, which is a sealant for semiconductor devices, in order to reduce malfunctions of semiconductor devices. It is related to.

従来の技術 チタン酸鉛(PbTiO3)粉末は、既に半導体装
置の封着用低融点ガラス、圧電材料あるいは焦電
材料等の成分として広く利用されている。
BACKGROUND OF THE INVENTION Lead titanate (PbTiO 3 ) powder is already widely used as a component of low-melting glass for sealing semiconductor devices, piezoelectric materials, pyroelectric materials, and the like.

これらの用途のうち、半導体装置の気密封着用
低融点ガラスとしては、例えば特開昭54−36314
号、特開昭54−36316号、特開昭55−100239号等
において記載されているように、PbO、B2O3
主成分とし、これにさらに若干量のA2O3
SiO2、ZnO、PbF2等からなる非失透性の低融点
ガラス粉末約50〜60重量%とフイラーである低膨
張性のチタン酸鉛粉末約50〜40重量%を添加して
なるホウ酸鉛系低融点ガラスが主流を占めてい
る。
Among these uses, for example, Japanese Patent Application Laid-Open No. 54-36314 is used as a low-melting glass for hermetically sealing semiconductor devices.
As described in JP-A No. 54-36316, JP-A No. 55-100239, etc., the main components are PbO and B 2 O 3 , and a small amount of A 2 O 3 ,
Boric acid made by adding about 50-60% by weight of non-devitrification, low-melting glass powder made of SiO 2 , ZnO, PbF 2 etc. and about 50-40% by weight of low-expansion lead titanate powder, which is a filler. Lead-based low melting point glass is the mainstream.

ところで、このようなガラスを封着剤として使
用して半導体装置は、半導体メモリーが一過性の
誤動作を起こす現象がみられ、その原因として
は、半導体装置から発生する放射性α粒子による
ものであると考えられ、そのためα粒子の半導体
装置への浸入防止及びα粒子発生源の除去が、従
来色々と検討されてきたのである。
By the way, semiconductor devices that use such glass as a sealant have a phenomenon in which semiconductor memory temporarily malfunctions, which is caused by radioactive alpha particles generated by the semiconductor device. Therefore, various studies have been made to prevent α particles from entering semiconductor devices and to remove sources of α particles.

例えば特開昭59−169955号明細書中には、メモ
リーエラーの発生を低減させるため、非失透性の
低融点ガラス粉末として放射性同位元素の含有量
を20ppb未満とし放射性α粒子のカウント数を
O.1CPH/cm2以下にすることが教示されている。
For example, in the specification of JP-A-59-169955, in order to reduce the occurrence of memory errors, the content of radioactive isotopes is set to less than 20 ppb as a non-devitrification low melting point glass powder, and the number of counts of radioactive α particles is reduced.
It is taught that it should be less than O.1 CPH/cm 2 .

一方、チタン酸鉛粉末の従来の製造方法として
は、大別して2つの方法すなわち、PbOとTiO2
の混合粉末を加熱して合成したPbTiO3の塊状合
成物を放冷後機械的に粉砕する、所謂「乾式法」
と;鉛化合物とチタン化合物の混合溶液を沈殿形
成液に添加して共沈させ、この共沈物を乾燥、仮
焼させることからなる、所謂「共沈湿式法」が知
られた。
On the other hand, conventional methods for producing lead titanate powder can be roughly divided into two methods: PbO and TiO 2
The so-called "dry method" involves mechanically pulverizing a bulk PbTiO 3 compound synthesized by heating a mixed powder of PbTiO 3 after cooling.
The so-called "co-wetting method" has been known, which consists of adding a mixed solution of a lead compound and a titanium compound to a precipitate forming solution to cause coprecipitation, and drying and calcining the coprecipitate.

発明が解決しようとする問題点 前述のように、半導体の封着剤としての非失透
性の低融点ガラス粉末と低膨張性のチタン酸鉛粉
末からなるホウ酸鉛系低融点ガラスにおいて、従
来は放射性同位元素による悪影響を防止するため
非失透性の低融点ガラス粉末につき放射性α粒子
のカウント数を0.1CPH/cm2以下にすることが提
示されていたが、低膨張性のチタン酸鉛粉末につ
いては全く注意が払われておらず、そのため半導
体装置のメモリーエラーの発生を完全に防止する
ことが出来なかった。
Problems to be Solved by the Invention As mentioned above, in lead borate-based low melting point glass made of non-devitrification low melting point glass powder and low expansion lead titanate powder as a sealing agent for semiconductors, conventional It was proposed that the count number of radioactive α particles should be kept below 0.1 CPH/cm 2 for non-devitrified, low-melting glass powder in order to prevent the adverse effects of radioactive isotopes. No attention was paid to the powder, and as a result, it was not possible to completely prevent memory errors in semiconductor devices.

また、低膨張性のチタン酸鉛粉末の製造方法に
しても、従来公知の乾式法はチタン酸鉛粉末のキ
ユーリー点が約500℃と比較的高く、さらに結晶
格子が非常に大きい歪みをもつているため焼結性
が十分でなく、加えて均一組成のものが得られに
くいという欠点があつた。
In addition, regarding the manufacturing method of lead titanate powder with low expansion property, the conventionally known dry method has a relatively high Curie point of lead titanate powder of approximately 500°C, and furthermore, the crystal lattice has a very large distortion. However, the sinterability was not sufficient due to the presence of carbon dioxide, and it also had the disadvantage that it was difficult to obtain a product with a uniform composition.

一方、公知の共沈湿式法によると、均一性の優
れた粉末が一応得られるが、二次粒子が形成され
やすく、それ故易焼結性になりにくいという欠点
があつた。さらに、チタン化合物として、安価な
四塩化チタンを使用することが望ましいが、これ
を使用すると四塩化チタン中の塩素イオンが鉛イ
オンと反応して白色沈殿を生成するという問題が
あり、それ故チタン化合物として高価あオキシ硝
酸チタン等を使用しなければいけないというよう
な問題があつた。
On the other hand, according to the known co-precipitation method, although a powder with excellent uniformity can be obtained, it has the disadvantage that secondary particles are likely to be formed and, therefore, it is difficult to easily sinter. Furthermore, as a titanium compound, it is desirable to use titanium tetrachloride, which is inexpensive, but when this is used, there is a problem that the chlorine ions in titanium tetrachloride react with lead ions to form a white precipitate. There was a problem in that expensive compounds such as titanium oxynitrate had to be used.

本発明は、このような現状に鑑み、前記の如き
従来技術の欠点を改善又は解消し、したがつて易
焼結性、均一性、低コストの要件を夫々満足した
低融点ガラス用チタン酸鉛の製造法、特に半導体
の誤動作を低減させるためのチタン酸鉛で、半導
体装置の封着剤である低融点ガラス用フイラーと
して好適に利用出来るチタン酸鉛の製造方法を提
供するものである。
In view of the current situation, the present invention aims to improve or eliminate the drawbacks of the prior art as described above, and to provide a lead titanate for low melting point glass that satisfies the requirements of easy sinterability, uniformity, and low cost. The present invention provides a method for producing lead titanate, particularly lead titanate, which is used to reduce semiconductor malfunctions and can be suitably used as a filler for low-melting glass, which is a sealing agent for semiconductor devices.

問題点を解決するための手段 すなわち本発明は (i) 品位4ナイン以上の金属鉛または酸化鉛
を遊離硝酸濃度が5〜10mo濃度になるよう
硝酸に溶解し、次いで陰イオン交換樹脂にて浄
液処理した鉛化合物の水溶液と沈澱形成液とを
混合することにより沈澱物を生成し、該沈澱物
を乾燥、焼成した鉛化合物と、 () 蒸留精製した四塩化チタンの熱分解物、
又は前記四塩化チタンの水溶液もしくはアルコ
ール溶液と沈澱形勢液とを混合することにより
生成した沈澱物を乾燥、焼成した焼成物とを混
合し、仮焼することを特徴とする、半導体装置
の封着剤である低融点ガラス用の、放射性α粒
子のカウント数が0.1CPH/cm2以下のチタン酸
鉛の製造方法に関するものである。
Means for Solving the Problems That is, the present invention consists of (i) dissolving metallic lead or lead oxide with a grade of 4 nines or higher in nitric acid so that the concentration of free nitric acid becomes 5 to 10 mo, and then cleaning with an anion exchange resin. A precipitate is produced by mixing an aqueous solution of a liquid-treated lead compound and a precipitate forming solution, and the precipitate is dried and calcined to produce a lead compound; () a thermal decomposition product of titanium tetrachloride purified by distillation;
or the sealing of a semiconductor device, characterized in that the precipitate produced by mixing the aqueous solution or alcohol solution of titanium tetrachloride and the precipitate liquid is mixed with a fired product obtained by drying and firing, and calcining the mixture. The present invention relates to a method for producing lead titanate with a radioactive α particle count of 0.1 CPH/cm 2 or less, which is used as a low-melting glass agent.

本発明においては、U、Th等の放射性同位元
素から発生する放射性α粒子のカウント数を
0.1CPH/cm2以下にし、半導体装置のメモリーエ
ラーの発生を防止するため、以下のようにしてチ
タン酸鉛を製造する。
In the present invention, the number of counts of radioactive α particles generated from radioactive isotopes such as U and Th is
Lead titanate is produced in the following manner in order to reduce the concentration to 0.1 CPH/cm 2 or less and to prevent memory errors in semiconductor devices.

チタン酸鉛の構成成分である鉛化合物は、次の
ような方法により、製造された鉛化合物()を
使用する。
As the lead compound that is a component of lead titanate, a lead compound () manufactured by the following method is used.

すなわち、品位4ナイン以上の金属鉛または亜
酸化鉛、一酸化鉛、四三酸化鉛、二酸化鉛等の酸
化鉛を、遊離硝酸濃度が5〜10mo濃度になる
よう硝酸に溶解し、U、Th等の放射性同位元素
を錯イオン化し、(なお、前記遊離硝酸濃度範囲
においてU、Th等の吸着効率が、良好となり、
前記範囲より低いと吸着効率が悪くなり、一方高
過ぎるとイオン交換樹脂に悪影響及ぼすことが判
明した。)しかる後に、陰イオン交換樹脂にて浄
液処理を行なつて、放射性同位元素を吸着除去し
た水溶液とする。次いでアンモニア、蓚酸アンモ
ン、カ性アルカリ等の沈澱形成液を攪拌しなが
ら、前記水溶液を添加するか、あるいはその逆に
添加して、沈澱物を生成させ、該沈澱物を必要に
応じて純水あるいはアルコール等で洗浄した後、
120〜800℃で乾燥、焼成し、粉砕する。
That is, metal lead of grade 4 nines or higher or lead oxide such as lead zinc oxide, lead monoxide, trilead tetroxide, lead dioxide, etc. is dissolved in nitric acid so that the concentration of free nitric acid is 5 to 10 mo, and U, Th (In addition, the adsorption efficiency of U, Th, etc. is good in the above free nitric acid concentration range,
It has been found that when it is lower than the above range, the adsorption efficiency deteriorates, while when it is too high, it has an adverse effect on the ion exchange resin. ) Thereafter, a liquid purification treatment is performed using an anion exchange resin to obtain an aqueous solution in which radioactive isotopes are adsorbed and removed. Next, the aqueous solution is added to a precipitate-forming liquid such as ammonia, ammonium oxalate, caustic alkali, etc. while stirring, or vice versa, to form a precipitate. Or after cleaning with alcohol etc.
Dry, bake and crush at 120-800℃.

一方チタン酸鉛の構成成分であるチタン化合物
は、次のような方法により製造されたチタン化合
物()を使用する。
On the other hand, as a titanium compound which is a constituent of lead titanate, a titanium compound () manufactured by the following method is used.

すなわち精製蒸留した四塩化チタンの熱分解に
よつて得られた二酸化チタン、あるいは四塩化チ
タンの水溶液もしくはアルコール溶液を沈澱形成
液に添加するか、またはその逆に添加して沈澱物
を生成させ、該沈澱物を必要に応じて純水、アル
コール等で洗浄した後、120〜900℃で乾燥、焼成
し、粉砕したものを使用する。
That is, titanium dioxide obtained by thermal decomposition of purified and distilled titanium tetrachloride, or an aqueous or alcoholic solution of titanium tetrachloride, is added to the precipitate-forming liquid, or vice versa, to form a precipitate. The precipitate is washed with pure water, alcohol, etc. as necessary, then dried at 120 to 900°C, calcined, and pulverized before use.

なお、前記四塩化チタンの水溶液もしくはアル
コール溶液は、鉛化合物()の製造と同様に陰
イオン交換樹脂にて浄液処理したものであつても
よい。
The aqueous or alcoholic solution of titanium tetrachloride may be purified using an anion exchange resin in the same manner as in the production of the lead compound (2).

本発明のチタン酸鉛粉末は、前記鉛化合物
()とチタン化合物()を十分混合した後、
約400〜1200℃で仮焼することにより得られる。
The lead titanate powder of the present invention is produced by thoroughly mixing the lead compound () and the titanium compound (), and then
Obtained by calcining at approximately 400-1200°C.

なお前記仮焼温度において、それが400℃未満
では混合粉末の固相反応が不十分であり、逆に
1200℃を越えると粉末が粗大化し、したがつて焼
結性が悪くなるという欠点があらわれる。
If the above calcination temperature is lower than 400℃, the solid phase reaction of the mixed powder will be insufficient;
If the temperature exceeds 1,200°C, the powder becomes coarse, resulting in poor sinterability.

発明の効果 本発明の方法により、易焼結性で、かつ均一な
チタン酸鉛粉末が得られる。また、安価な四塩化
チタンより得られる二酸化チタンが使用出来るた
め、製造コストも安い。さらに、得られたチタン
酸鉛粉末は、放射性α粒子のカウント数が
0.1CPH/cm2以下であるので、半導体装置の封着
剤である低融点ガラス用フイラーとして好適に利
用出来る。
Effects of the Invention According to the method of the present invention, easily sinterable and uniform lead titanate powder can be obtained. Furthermore, since titanium dioxide obtained from inexpensive titanium tetrachloride can be used, the manufacturing cost is also low. Furthermore, the obtained lead titanate powder has a high count of radioactive α particles.
Since it is 0.1 CPH/cm 2 or less, it can be suitably used as a filler for low-melting glass, which is a sealant for semiconductor devices.

実施例 以下、本発明を実施例によりさらに詳細に説明
する。
Examples Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 試薬特級(PbO99.9%以上)の一酸化鉛22.31g
を、純水にて(1:1)に希釈した試薬特級の硝
酸150m〔遊離硝酸濃度6.3mo〕に加えて、
加熱溶解して水溶液とした。この水溶液を陰イオ
ン交換樹脂を充填した塔に通過されてU、Th等
を吸着除去せしめた後、攪拌しながら4Nアンモ
ニア1中に滴下して水酸化鉛の沈澱物を生成さ
せた。
Example 1 Reagent grade (PbO 99.9% or more) lead monoxide 22.31g
In addition to 150 m of reagent grade nitric acid [free nitric acid concentration 6.3 mo] diluted with pure water (1:1),
The mixture was heated and dissolved to form an aqueous solution. This aqueous solution was passed through a tower filled with an anion exchange resin to adsorb and remove U, Th, etc., and then added dropwise to 4N ammonia 1 with stirring to form a precipitate of lead hydroxide.

この沈澱物を純水にて洗浄し、120℃で1時間
乾燥後、750℃で1時間焼成し、ボールミルにて
粉砕した。
This precipitate was washed with pure water, dried at 120°C for 1 hour, calcined at 750°C for 1 hour, and ground in a ball mill.

次いで該粉砕物に、試薬一級の四塩化チタン
(純度99.95%以上、比重1.72〜1.76)の蒸留精製
したものを熱分解反応によつて作成した塩素法二
酸化チタン粉末7.68gを加え、ボールミルにて混
合後、850℃で2時間仮焼し、さらにボールミル
にて粉砕し、チタン酸鉛(PbTiO3)粉末を得
た。
Next, 7.68 g of chlorine-method titanium dioxide powder prepared by thermal decomposition of first-class reagent titanium tetrachloride (purity 99.95% or more, specific gravity 1.72 to 1.76) was added to the pulverized material, and the mixture was milled in a ball mill. After mixing, the mixture was calcined at 850° C. for 2 hours and further ground in a ball mill to obtain lead titanate (PbTiO 3 ) powder.

この粉末の放射性α粒子のカウント数をα線測
定器により測定したところ0.074CPH/cm2であつ
た。
The count number of radioactive α particles in this powder was measured using an α-ray measuring device and found to be 0.074 CPH/cm 2 .

またこの粉末を走査型電子顕微鏡により観察し
たところ、約0.3μの均一粒径を有し、X線回折法
によるβcosθ〜sinθ(ただしβは回折線の半価幅、
θはブラツク角を表わす。)の関係をプロツトし
た結果、横軸(sinθ軸)にほぼ平行で、ほとんど
組成変動を含まない均一組成のものであることが
確認された。
When this powder was observed using a scanning electron microscope, it was found that it had a uniform particle size of approximately 0.3μ, and β cos θ ~ sin θ (where β is the half width of the diffraction line,
θ represents the black angle. ), it was confirmed that the composition was almost parallel to the horizontal axis (sinθ axis) and had a uniform composition with almost no compositional fluctuations.

実施例 2 前記蒸留精製した四塩化チタン18.97gを純水に
溶解した水溶液100mを、攪拌しながら4Nアン
モニア水1中に滴下して水酸化チタンの沈澱物
を生成させた。この沈澱物を純水で洗浄し、120
℃で1時間乾燥後、さらに750℃で1時間焼成し、
次いでボールミルにて粉砕した。
Example 2 100 ml of an aqueous solution prepared by dissolving 18.97 g of the distilled and purified titanium tetrachloride in pure water was dropped into one portion of 4N ammonia water with stirring to form a precipitate of titanium hydroxide. Wash this precipitate with pure water and
After drying at ℃ for 1 hour, baking at 750℃ for 1 hour,
Then, it was ground in a ball mill.

次いで該粉砕物に、実施例1と同様にしてU、
Th等を吸着除去せしめた放射性α粒子のカウン
ト数が0.05CPH/cm2の金属鉛を用いて、常法によ
り製造した一酸化鉛22.31gを加えボールミルにて
混合後850℃で2時間焼成し、、さらにボールミル
にて粉砕しチタン酸鉛粉末を得た。この粉末の放
射性α粒子のカウント数を測定した結果
0.066CPH/cm2であつた。また粉末は、約0.3μの
均一粒径を有し、またX線回折法によるβcosθ〜
sinθの関係をプロツトした結果、均一組成のもの
であることが確認された。
Then, in the same manner as in Example 1, U,
Using metallic lead with a count number of radioactive α particles of 0.05 CPH/cm 2 that adsorbed and removed Th, etc., 22.31 g of lead monoxide produced by a conventional method was added, mixed in a ball mill, and then baked at 850°C for 2 hours. , Further, it was ground in a ball mill to obtain lead titanate powder. Results of measuring the number of counts of radioactive α particles in this powder
It was 0.066CPH/ cm2 . The powder has a uniform particle size of approximately 0.3μ, and βcosθ~
As a result of plotting the relationship of sinθ, it was confirmed that the composition was uniform.

比較例 1 市販の試薬特級PbO、TiO2の粉末をPbTiO3
組成になるように配合し、ボールミルにて混合後
950℃で2時間仮焼し、再びボールミルで粉末し、
粉末を作つた。
Comparative Example 1 Commercially available reagent grade PbO and TiO 2 powders were blended to have a composition of PbTiO 3 and mixed in a ball mill.
Calcined at 950℃ for 2 hours, powdered again using a ball mill,
I made a powder.

この粉末の放射性α粒子のカウント数を測定し
た結果3.85CPH/cm2であつた。またこの粉末は、
X線回折法によるβcosθ〜sinθの関係をプロツト
した結果、組成変動が認められた。
The count number of radioactive α particles in this powder was measured and found to be 3.85 CPH/cm 2 . Also, this powder
As a result of plotting the relationship between β cos θ and sin θ using X-ray diffraction, compositional fluctuations were observed.

比較例 2 実施例1において硝酸水溶液として、純粋にて
(1:3)に希釈した試薬特級の硝酸150m〔遊
離硝酸濃度3.0mo〕を使用する以外は同様にし
てチタン酸鉛粉末を得た。
Comparative Example 2 Lead titanate powder was obtained in the same manner as in Example 1 except that 150 m of pure reagent grade nitric acid (free nitric acid concentration 3.0 mo) diluted (1:3) was used as the nitric acid aqueous solution.

この粉末の放射性α粒子のカウント数は、
0.62CPH/cm2であつた。
The count number of radioactive α particles in this powder is
It was 0.62CPH/ cm2 .

比較例 3 三塩化チタンの20%HCl水溶液(1.5モル)
500mlを95℃に保持し、5N/分の速度で空気
を40時間供給することにより生成した白色沈澱物
を十分に水洗した後、濾過、乾燥することにより
針状の二酸化チタンを製造した。この二酸化チタ
ン粉末7.68gを、蒸留精製した四塩化チタンから
製造した二酸化チタン粉末7.68gの代わりに使用
した他は実施例1と全く同様にしてチタン酸鉛粉
末を製造した。
Comparative Example 3 20% HCl aqueous solution of titanium trichloride (1.5 mol)
Acicular titanium dioxide was produced by keeping 500 ml at 95° C. and supplying air at a rate of 5 N/min for 40 hours, and the white precipitate produced was thoroughly washed with water, filtered, and dried. Lead titanate powder was produced in exactly the same manner as in Example 1, except that 7.68 g of this titanium dioxide powder was used in place of 7.68 g of titanium dioxide powder produced from distilled and purified titanium tetrachloride.

この粉末の放射性α粒子のカウント数は、
1.58CPH/cm2であつた。
The count number of radioactive α particles in this powder is
It was 1.58CPH/ cm2 .

Claims (1)

【特許請求の範囲】 1(i) 品位4ナイン以上の金属鉛または酸化
鉛を遊離硝酸濃度が5〜10mol濃度になるよう
硝酸に溶解し、次いで陰イオン交換樹脂にて浄
液処理した鉛化合物の水溶液と沈澱形成液とを
混合することにより沈澱物を生成し、該沈澱物
を乾燥、焼成した鉛化合物と、 () 蒸留精製した四塩化チタンの熱分解物、
又は前記四塩化チタンの水溶液もしくはアルコ
ール溶液と沈殿形成液とを混合することにより
生成した沈澱物を乾燥、焼成した焼成物とを、 混合し、仮焼することを特徴とする、半導体装
置の接着剤である低融点ガラス用の、放射性α粒
子のカウント数が0.1CPH/cm2以下のチタン酸鉛
の製造方法。
[Claims] 1(i) A lead compound obtained by dissolving metallic lead or lead oxide with a grade of 4 nines or higher in nitric acid so that the concentration of free nitric acid becomes 5 to 10 mol, and then treating the solution with an anion exchange resin. A precipitate is produced by mixing an aqueous solution of and a precipitate-forming liquid, and the precipitate is dried and calcined to produce a lead compound; () a thermal decomposition product of titanium tetrachloride purified by distillation;
or a fired product obtained by drying and firing a precipitate produced by mixing the aqueous solution or alcohol solution of titanium tetrachloride and a precipitate forming liquid, and then calcining the mixture, for bonding a semiconductor device. A method for producing lead titanate with a count number of radioactive α particles of 0.1 CPH/cm 2 or less for use in low-melting glass as an agent.
JP18219985A 1985-08-20 1985-08-20 Production of lead titanate for low-melting glass Granted JPS6241715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18219985A JPS6241715A (en) 1985-08-20 1985-08-20 Production of lead titanate for low-melting glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18219985A JPS6241715A (en) 1985-08-20 1985-08-20 Production of lead titanate for low-melting glass

Publications (2)

Publication Number Publication Date
JPS6241715A JPS6241715A (en) 1987-02-23
JPH0433739B2 true JPH0433739B2 (en) 1992-06-03

Family

ID=16114082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18219985A Granted JPS6241715A (en) 1985-08-20 1985-08-20 Production of lead titanate for low-melting glass

Country Status (1)

Country Link
JP (1) JPS6241715A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100138A (en) * 1980-01-17 1981-08-11 Matsushita Electric Ind Co Ltd Manufacture of lead titanate
JPS56104715A (en) * 1980-01-17 1981-08-20 Matsushita Electric Ind Co Ltd Preparation of lead titanate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100138A (en) * 1980-01-17 1981-08-11 Matsushita Electric Ind Co Ltd Manufacture of lead titanate
JPS56104715A (en) * 1980-01-17 1981-08-20 Matsushita Electric Ind Co Ltd Preparation of lead titanate

Also Published As

Publication number Publication date
JPS6241715A (en) 1987-02-23

Similar Documents

Publication Publication Date Title
US6780393B2 (en) Method of producing fine particles of metal oxide
JPS63156057A (en) Manufacture of high density perovskite ceramics
JPS6153114A (en) Production of powdery raw material of easily sintering perovskite solid solution
EP0254574B1 (en) Method for producing plzt powder
JP4253721B2 (en) Tin-doped indium oxide powder and method for producing the same
JPH03153557A (en) Production of source powder of lead perovskite structure ceramics
JP4171790B2 (en) Method for producing tin-doped indium oxide powder
JPH0433739B2 (en)
JPH0321487B2 (en)
TW201412637A (en) Filler, glass composition, and method for producing hexagonal phosphate
JP2827616B2 (en) Zinc stannate powder for encapsulant and its production method and use
JP3453783B2 (en) Method for producing acicular powder of indium-tin oxide
JP3216160B2 (en) Method for producing perovskite-type composite oxide powder
JPS6278109A (en) Production of powdery raw material of perovskite and solid solution thereof
JPS6278107A (en) Production of powdery raw material of perovskite and solid solution thereof
JPS6345117A (en) Production of magnesia powder resistant to hydration
Pfaff et al. On the preparation and sintering behaviour of barium titanate
JPS6278108A (en) Production of powdery raw material of perovskite and solid solution thereof
JPS61163118A (en) Process for preparing raw material powder of easily sinterable perovskite by wet powder dispersion process
JPS63288960A (en) Production of (pb, bi) (zr, ti)o3
JPS61251517A (en) Production of perovskite type oxide
JPS61106457A (en) Manufacture of plzt light permeable ceramics
JPH10236824A (en) Titania-zirconia multiple oxide fine powder and its production
JP3412195B2 (en) Method for producing composite perovskite oxide powder
KR960004400B1 (en) Process for the preparation of ba1-x pbx tio3