JPS6241704A - Synthesis of aluminum nitride - Google Patents

Synthesis of aluminum nitride

Info

Publication number
JPS6241704A
JPS6241704A JP18068185A JP18068185A JPS6241704A JP S6241704 A JPS6241704 A JP S6241704A JP 18068185 A JP18068185 A JP 18068185A JP 18068185 A JP18068185 A JP 18068185A JP S6241704 A JPS6241704 A JP S6241704A
Authority
JP
Japan
Prior art keywords
gas
aluminum
plasma
aluminum nitride
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18068185A
Other languages
Japanese (ja)
Other versions
JPH0649566B2 (en
Inventor
Kazuhiro Baba
和宏 馬場
Nobuaki Shohata
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60180681A priority Critical patent/JPH0649566B2/en
Publication of JPS6241704A publication Critical patent/JPS6241704A/en
Publication of JPH0649566B2 publication Critical patent/JPH0649566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To efficiently synthesize high-purity ultrafine aluminum nitride particles, by using ammonia and hydrogen, etc., at a given flow rate ratio as raw materials in the high-frequency induction heating plasma method. CONSTITUTION:Nitrogen gas and argon gas are introduced from a gas feed inlet of a synthesis apparatus and aluminum is introduced from a raw material feed inlet. High-frequency induction heating plasma is then generated to convert the above-mentioned argon and nitrogen into a plasma flame. A mixed gas of NH3 and H2 at 0.1-70 (NH3/H2) flow rate ratio is then introduced into the lower part of the flame to completely nitride aluminum melted and vaporized in the plasma flame.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高周波誘導熱プラズマを用い金hiアルミニウ
ムと、アルゴン窒素水素およびアンモニアガスを用いプ
ラズマ反応を利用し、窒化アルミニウムを合成する方法
lこ関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention describes a method for synthesizing aluminum nitride using high-frequency induction thermal plasma and a plasma reaction using gold, aluminum, argon, nitrogen, hydrogen, and ammonia gas. related.

(従来技術とその問題点) 窒化アルミニウムは絶縁性に優れしかも熱伝導性も良好
であるため、近年電子回路の放熱基板用として重要度が
増している。
(Prior art and its problems) Aluminum nitride has excellent insulating properties and good thermal conductivity, so it has become increasingly important as a heat dissipation substrate for electronic circuits in recent years.

窒化アルミニウムの合成法は便来種々の方法が試みられ
ている。すなわち、アルミナを出発原料とし、これにカ
ーボンブラックないしはクラファイト等を混合し、定常
気流中で1500℃〜1900℃に加熱し、At、03
+N2+3C−2AzN+3COなる反応によって合成
する方法が知られている。この方法で安価に大量に窒化
アルミニウムを合成できる利点はあるが、合成される窒
化アルミニウム中には酸素や炭素などの不純物が残留し
てしまい、高純、度の窒化アルミニウムを合成するには
問題がある。
Various methods have been tried to synthesize aluminum nitride. That is, alumina is used as a starting material, carbon black or graphite is mixed therein, heated to 1500°C to 1900°C in a steady air flow, and At, 03
A method of synthesis using the reaction +N2+3C-2AzN+3CO is known. Although this method has the advantage of being able to synthesize aluminum nitride in large quantities at low cost, impurities such as oxygen and carbon remain in the synthesized aluminum nitride, which is a problem in synthesizing high-purity aluminum nitride. There is.

即ち、原料であるアルミナ(A4t03)に含まれる酸
素が、窒化アルミニウム中に固溶してしまい、一定量以
下に下げられない。また、未反応の炭素が完全には取り
除けないという問題があった。
That is, oxygen contained in alumina (A4t03), which is a raw material, becomes a solid solution in aluminum nitride and cannot be reduced to a certain amount or less. Another problem was that unreacted carbon could not be completely removed.

またアルミニウムのハロゲン化物の熱化学反応を利用し
、次の反応で表わされる方法で窒化アルミニウムを合成
する手法も知られている。。
Also known is a method of synthesizing aluminum nitride using a thermochemical reaction of aluminum halides using the method expressed by the following reaction. .

2AA+ 2HC1−2AtCt+H,高温部2At+
N2−◆2Atへ 即ち、高温部で金、鵬アルミニウムを塩化物のガス状と
し1、これを低温部に輸送し、低温部にAtNとして析
出させる方法である。この方法では酸素や炭素が混入し
ない利点はあるが、未反応のアルミニウム金属や塩化ア
ルミニウムがAtN中に混入してしまう問題がある。ま
た合成されるktNは無定形のものも混入する欠点もあ
る。
2AA+ 2HC1-2AtCt+H, high temperature section 2At+
In other words, gold and aluminum are converted into chloride gases in a high-temperature section, and then transported to a low-temperature section where they are precipitated as AtN. Although this method has the advantage that oxygen and carbon are not mixed, there is a problem that unreacted aluminum metal and aluminum chloride are mixed into the AtN. There is also the drawback that the synthesized ktN contains amorphous materials.

上記の反応系にアンモニアガスを混入させ、未反応のア
ルミュウt・や塩化アルミニウムを減少できる報告もあ
るが、この場合には、塩化アンモンが大量に生成され、
また生成したAtN中lこ混入するという問題があり、
安価に大量に製造できる手法としては問題がある。
There are reports that unreacted aluminum and aluminum chloride can be reduced by mixing ammonia gas into the above reaction system, but in this case, a large amount of ammonium chloride is produced.
There is also the problem that some AtN gets mixed in with the generated AtN.
There are problems as a method that can be manufactured in large quantities at low cost.

またアルミニウムの直接窒化法として余病アルミニウム
を窒素中ないし、窒素とアンモニアを混合した気流中で
1500℃〜2000℃に熱することにより窒化アルミ
ニウムを合成する方法が知られている。この方法では、
しかしながら、次の問題がある。即ち金属表面を窒化ア
ルミニウムがおおうと、内部の金属は、窒化されにくく
、反応は内部まで進行しない。このために、アルミニウ
ム表面を窒化したのち、粉砕し再び窒化する過程を繰返
す方法が採用されている。しかしながらこの方法による
と粉砕に伴う不純物の混入がさけられない。
Further, as a direct nitriding method of aluminum, a method is known in which aluminum nitride is synthesized by heating residual aluminum to 1500° C. to 2000° C. in nitrogen or in an air stream containing a mixture of nitrogen and ammonia. in this way,
However, there is the following problem. That is, even if the metal surface is covered with aluminum nitride, the metal inside is difficult to nitride, and the reaction does not proceed to the inside. For this purpose, a method is adopted in which the aluminum surface is nitrided, then crushed and nitrided again. However, according to this method, contamination of impurities due to pulverization cannot be avoided.

また生成されたA t N粉末の粒子の大きさが制御し
にくい、るつぼと金褐アルミニウムの反応による不純物
混入がさけられない等の問題がある。
Further, there are problems such as the particle size of the produced A t N powder is difficult to control, and impurity contamination due to the reaction between the crucible and golden brown aluminum is unavoidable.

一方、高周波誘導熱プラズマを用いる方法は無甑放電に
よっているので電極からの汚染の問題はなく優れた方法
で5rCt、とN2ガスの反応によってSi、N、、5
rCt4とCH,との反応によって、SiC等の超微粒
子が得られることは知られている。アルミニウムと窒素
との反応によって窒化アルミニウムの合成に用いると、
先に述べたと同様の問題が生じていた。即ち、高周波熱
プラズマの温度は通常20000℃〜30000℃であ
るため、一旦窒化されて、窒化アルミニウムとなっても
、高温下で再び分解され、金属アルミニウムが混入する
という問題および金属アルミニウムの表面2が窒化され
窒化アルミニウムが表面に合成されると、内部まで窒化
されないため、窒化アルミニウムを単相で合成すること
ができないという問題があった。
On the other hand, the method using high-frequency induction thermal plasma is an excellent method that eliminates the problem of contamination from the electrode because it uses a non-electrode discharge.
It is known that ultrafine particles such as SiC can be obtained by the reaction of rCt4 and CH. When used in the synthesis of aluminum nitride by the reaction of aluminum and nitrogen,
A similar problem was occurring as mentioned above. That is, since the temperature of high-frequency thermal plasma is usually 20,000°C to 30,000°C, even if it is once nitrided and becomes aluminum nitride, it will be decomposed again at high temperatures, resulting in the problem of contamination of metal aluminum and the problem of the surface 2 of metal aluminum. When is nitrided and aluminum nitride is synthesized on the surface, the inside is not nitrided, so there is a problem that aluminum nitride cannot be synthesized in a single phase.

更に高周波誘導熱プラズマを用いた従来の合成法では、
放電用アルゴンガスと、窒素ガスのみを用いるため、ア
ルミニウムの窒化反応が完全には進行しないのみならず
、粒度が制御でさないという問題もあった。一般に粉末
原料の粒径はできるだζプ小さく明瞭な結晶面を持ちか
つ粒度分布が狭い方が、焼結温度を低下でき、焼結体密
度も上げられることが云われている。アルゴンガスと、
窒素ガスのみを用いる方法では合成されるAtN粒子は
針状となりやすく、また粒子径は02μm以上のものが
混入したものしか得られなかった。また、比表面積が3
0シ勺以上は得られなかった。
Furthermore, in the conventional synthesis method using high-frequency induction thermal plasma,
Since only argon gas for discharge and nitrogen gas are used, there is a problem that not only does the nitriding reaction of aluminum not proceed completely, but also that the particle size cannot be controlled. Generally, it is said that the smaller the grain size of the powder raw material is, the smaller the size of the grain, the clearer the crystal planes, and the narrower the grain size distribution, the lower the sintering temperature and the higher the density of the sintered body. Argon gas and
In the method using only nitrogen gas, the AtN particles synthesized tend to be acicular, and only particles with particle diameters of 02 μm or more were obtained. Also, the specific surface area is 3
I couldn't get more than 0.

(発明の目的) 本発明は以上述べた種々の欠点を取り除くことが可能な
、高周波誘導熱プラズマを利用した窒化アルミニウム微
粒子の合成法を提供するところにある。
(Object of the Invention) An object of the present invention is to provide a method for synthesizing aluminum nitride fine particles using high-frequency induction thermal plasma, which can eliminate the various drawbacks described above.

(発明の構成) 本発明は高周波誘導熱プラズマ法による窒化アルミニウ
ムの合成法において、原料混合ガスとしテ、アルコン、
窒素、水素およびアンモニアガスを用い、金属アルミニ
ウムを窒化することを特徴とする窒化アルミニウムの合
成法である。
(Structure of the Invention) The present invention provides a method for synthesizing aluminum nitride using a high-frequency induction thermal plasma method.
This is an aluminum nitride synthesis method characterized by nitriding metal aluminum using nitrogen, hydrogen, and ammonia gas.

(構成の詳細な説明) 以下に本発明に柑いた合成装置を図面に基き説明する。(Detailed explanation of configuration) The synthesis apparatus according to the present invention will be explained below based on the drawings.

第1図は本発明になる合成装置の概略を示す。FIG. 1 schematically shows a synthesis apparatus according to the present invention.

高周波コイル1は、冷却水人口3から冷却水出ロアへ冷
却水を流すことによって水冷する石英製プラズマ発生管
2の外側に置き、ガス供給口4よりアルゴンおよび窒素
ガスを導入し、原料供給口14より金属粉末ないしはア
ルミニウム線材を導入する。アルコンおよび窒素ガスは
、高周波誘導によって、プラズマフレーム5とする。合
成された窒化アルミニウムの粒径制御用に水素ガス入口
/6から水素ガスを管壁に沿って流すことが有効であっ
た。
The high-frequency coil 1 is placed outside a quartz plasma generating tube 2 which is water-cooled by flowing cooling water from a cooling water port 3 to a cooling water outlet lower, and argon and nitrogen gas are introduced from a gas supply port 4, and a raw material supply port 14, metal powder or aluminum wire is introduced. Alcon and nitrogen gas are made into a plasma flame 5 by high frequency induction. It was effective to flow hydrogen gas along the tube wall from hydrogen gas inlet/6 to control the particle size of the synthesized aluminum nitride.

プラズマフレーム5の下部にはアンモニアと窒素ないし
は水素との混合ガスをガス混合器13を通して、混合ガ
ス人口8,8Iから導入する。プラズマ発生管上部から
導入された金属アルミニウム粉末ないしは線材は、プラ
ズマフレーム中で溶解気化され、一部は窒化し、下部お
よび反応容器9の空間−輸送され更に高温プラズマガス
化したアンモニアガス雰囲気中を通過させることによっ
て完全1こ窒化が完了する。生成された微粉末は、粉末
捕集装置10によって集められガスと分離し、排気装置
11.、12によってガスは、排気される。
A mixed gas of ammonia and nitrogen or hydrogen is introduced into the lower part of the plasma flame 5 through a gas mixer 13 from mixed gas ports 8 and 8I. The metal aluminum powder or wire rod introduced from the upper part of the plasma generation tube is melted and vaporized in the plasma flame, a part of which is nitrided, and transported to the lower part and the space of the reaction vessel 9, where it is further passed through the ammonia gas atmosphere where it is gasified into high-temperature plasma. Complete nitriding is completed by passing it through. The generated fine powder is collected by a powder collector 10 and separated from the gas, and then sent to an exhaust device 11. , 12, the gas is exhausted.

反応に先だって石英プラズマ発生管や反応容器9はあら
かじめ別の排気装置12によって1.0−’以下に十分
排気し、内部の空気、水分等は取り除き、窒素で置換す
ることは云うまでもない。
Needless to say, prior to the reaction, the quartz plasma generating tube and the reaction vessel 9 are sufficiently evacuated to 1.0-' or less by a separate exhaust device 12 to remove internal air, moisture, etc., and replace with nitrogen.

水冷しノ、ニプラズマ発生管2はプラズマの発生状態が
容易に観察でき耐熱性のあるものとして石英を用いたが
、必ずしもプラズマが観察できなくても耐熱性のある拐
科で、プラズマを発生さぜることかできれば何を由いて
もよい。反応容器9は装置としての加工性からステンレ
ス製ないしは石英製が適当である。プラズマガスとして
は、プラズマ化しやすいガスとしてアルゴンを用いるが
、高周波電力が十分太きければ窒素ガスのみでもかまわ
ない。アンモニアの量は窒素ないしは水素あるいは窒素
と水素の混合ガス中に1%以上の量が望ましい結果であ
った。アンモニアは高温プラズマ中に導入されると、 
NH,やNH等の非平衡な励起ガスの状態となり、窒化
反応が促進される効果を持っている。
For the water-cooled plasma generator tube 2, quartz was used because it is heat resistant and allows the state of plasma generation to be easily observed. You can use anything as long as you can do it. The reaction vessel 9 is suitably made of stainless steel or quartz from the viewpoint of workability as an apparatus. As the plasma gas, argon is used as it is a gas that easily becomes plasma, but nitrogen gas alone may be used as long as the high frequency power is sufficiently large. The desired result was that the amount of ammonia in nitrogen or hydrogen or a mixed gas of nitrogen and hydrogen was 1% or more. When ammonia is introduced into high temperature plasma,
This creates a non-equilibrium excited gas state such as NH, NH, etc., which has the effect of promoting the nitriding reaction.

このアンモニア混合ガスは、混合ガス供給口8および8
Iから導入する。
This ammonia mixed gas is supplied to the mixed gas supply ports 8 and 8.
Introduced from I.

第1図では2ケ所しか書いていないが、3ケ所ないしは
それ以上から同時に供給する方が、ガスの均一性が向上
でき好ましい結果が得られることは当然である。
Although only two locations are shown in FIG. 1, it is natural that gas uniformity can be improved and favorable results can be obtained by simultaneously supplying gas from three or more locations.

排気装置11は導入するガスの流量以上の排気速度が得
られるものであれば何を用いても良い。
Any device may be used as the exhaust device 11 as long as it can achieve an exhaust speed higher than the flow rate of the gas to be introduced.

用いるアルミニラt・原料は、3oメツシユ以下の粒子
状のものを用いるか、1.0flφ程度の線材を用いれ
ばよい。アルミニウムの原料純度は少くとも99.99
%以上が望ましい。
The aluminum laminated raw material used may be in the form of particles of 3o mesh or less, or may be wire rods of about 1.0flφ. Aluminum raw material purity is at least 99.99
% or more is desirable.

本装置を用いた実施例について以下に説明する。Examples using this device will be described below.

(実施例) 第1図に示す装置を用い、あらかじめ排気装置12によ
って10−’ Torrまで真空排気した後、窒素ガス
を充填した。アルゴンガスの流量を40/、7分・N、
ガスを10t/分として供給口4から導入し、高周波電
力20I(Wを投入し、プラズマを発生させた。
(Example) Using the apparatus shown in FIG. 1, the apparatus was evacuated to 10-' Torr using the exhaust device 12 and then filled with nitrogen gas. Argon gas flow rate 40/, 7 minutes/N,
Gas was introduced from the supply port 4 at 10 t/min, and high frequency power of 20 I (W) was applied to generate plasma.

NI(3とH2はそれぞれ201/分以下として混合ガ
ス入口8.8Iより導入した。粒径制御用H7は5t/
分以下の流量とした。
NI (3) and H2 were each introduced from the mixed gas inlet 8.8I at 201/min or less. H7 for particle size control was introduced at 5t/min.
The flow rate was set to less than 1 minute.

その後純度99.99 %のアルミニウム粉末(30メ
ツシユ以下)を原料供給口より100グラム/分を導入
し反応させた。その結果、NH,流量とHA量の比NH
s/′H2は、およそ01〜70の範囲で100チの窒
化率が得られた。得られた粉末の比表面積は3orMy
以上であった。、一方NH,を混合しない場合には約3
0チのAzNのみで残部は金属アルミニウムであった。
Thereafter, 100 g/min of aluminum powder (30 mesh or less) with a purity of 99.99% was introduced from the raw material supply port and reacted. As a result, the ratio of NH, flow rate and HA amount NH
A nitriding rate of 100% was obtained with s/'H2 in the range of approximately 01 to 70. The specific surface area of the obtained powder is 3orMy
That was it. , while when NH, is not mixed, about 3
Only 0% of AzN was used, and the rest was metal aluminum.

窒化アルミニウムの量は金属アルミニウムの供給量およ
び高周波電力にもよるが、  20KWの高周波電力で
、最大500 y/Lであった。
The amount of aluminum nitride depends on the amount of metal aluminum supplied and the high frequency power, but was up to 500 y/L at a high frequency power of 20 KW.

窒化アルミニウム中の不純物金属イオンの量は発光分光
分析によって調べたが、’toopprri以下であっ
た。酸素は放射化分析によって分析したが、1重量%以
下で極めて高純度であることが判明した。プラズマ発生
中の真空度は100〜250Torrが最も良好の結果
であった。真空度を上げ1oOTorr以下にすると、
更に粒径の小さい窒化アルミニウムも合成できた。
The amount of impurity metal ions in aluminum nitride was investigated by emission spectroscopy, and was found to be less than 'toopprri'. Oxygen was analyzed by activation analysis and was found to be extremely pure with less than 1% by weight. The best results were obtained when the degree of vacuum during plasma generation was 100 to 250 Torr. When the vacuum level is increased to below 1oOTor,
We were also able to synthesize aluminum nitride with a smaller particle size.

(発明の効果) 以上述べた様に本発明によれば、アルミニウム金属をプ
ラズマ中に導入し、溶解蒸発させ、アルミニウム金属蒸
気をプラズマ励起した窒素およびNH,の混合ガス中で
窒化反応させることによって高純度の窒化アルミニウム
超微粒子を極めて高効率で合成できる方法が提供でき実
用的価値は極めて大きい。
(Effects of the Invention) As described above, according to the present invention, aluminum metal is introduced into plasma, melted and evaporated, and the aluminum metal vapor is subjected to a nitriding reaction in a mixed gas of nitrogen and NH excited by the plasma. The present invention provides a method for synthesizing ultrafine aluminum nitride particles with extremely high efficiency, and has extremely high practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高周波プラズマ反応装置の一例を示す図。第1
図において、1は高周波コイル、2は石英製プラズマ発
生管、3は冷却水入口、4はガス供給口、5はプラズマ
フレーム、6は水素ガス入口、7は冷却水出口、8;混
合ガス入口、9二反応容器、10:粉末捕集器、11:
排気装置512:真空排気装置、13はガス混合器、1
4:原料供給口。
FIG. 1 is a diagram showing an example of a high frequency plasma reaction device. 1st
In the figure, 1 is a high frequency coil, 2 is a quartz plasma generation tube, 3 is a cooling water inlet, 4 is a gas supply port, 5 is a plasma flame, 6 is a hydrogen gas inlet, 7 is a cooling water outlet, 8 is a mixed gas inlet , 92 reaction vessel, 10: powder collector, 11:
Exhaust device 512: vacuum exhaust device, 13 is a gas mixer, 1
4: Raw material supply port.

Claims (2)

【特許請求の範囲】[Claims] (1)高周波誘導熱プラズマ法による窒化アルミニウム
の合成法において、原料混合ガスとして、アルゴン、窒
素、水素およびアンモニアガスを用いることを特徴とす
る窒化アルミニウムの合成法。
(1) A method for synthesizing aluminum nitride using a high-frequency induction thermal plasma method, which is characterized in that argon, nitrogen, hydrogen, and ammonia gas are used as a raw material mixed gas.
(2)アンモニアと水素の流量比NH_3/H_1を0
.1〜70とする特許請求の範囲第1項記載の窒化アル
ミニウムの合成法。
(2) The flow rate ratio of ammonia and hydrogen NH_3/H_1 is 0
.. 1 to 70. The method for synthesizing aluminum nitride according to claim 1.
JP60180681A 1985-08-16 1985-08-16 Method for synthesizing aluminum nitride Expired - Fee Related JPH0649566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60180681A JPH0649566B2 (en) 1985-08-16 1985-08-16 Method for synthesizing aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60180681A JPH0649566B2 (en) 1985-08-16 1985-08-16 Method for synthesizing aluminum nitride

Publications (2)

Publication Number Publication Date
JPS6241704A true JPS6241704A (en) 1987-02-23
JPH0649566B2 JPH0649566B2 (en) 1994-06-29

Family

ID=16087442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60180681A Expired - Fee Related JPH0649566B2 (en) 1985-08-16 1985-08-16 Method for synthesizing aluminum nitride

Country Status (1)

Country Link
JP (1) JPH0649566B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283805A (en) * 1986-05-31 1987-12-09 Natl Res Inst For Metals Production of extremely fine aluminum nitride powder
KR100252590B1 (en) * 1997-09-09 2000-04-15 노건일 Process for manufacturing ultra-fine powders by using thermal plasma
KR101395578B1 (en) * 2012-09-04 2014-05-19 한국세라믹기술원 Thermal plasma apparatus for manufacturing aluminum nitride powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174107A (en) * 1985-01-28 1986-08-05 High Frequency Heattreat Co Ltd Production of ultrafine aluminum nitride particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174107A (en) * 1985-01-28 1986-08-05 High Frequency Heattreat Co Ltd Production of ultrafine aluminum nitride particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283805A (en) * 1986-05-31 1987-12-09 Natl Res Inst For Metals Production of extremely fine aluminum nitride powder
JPH0460046B2 (en) * 1986-05-31 1992-09-25 Kagaku Gijutsucho Kinzoku Zairyo Gijutsu Kenkyu Shocho
KR100252590B1 (en) * 1997-09-09 2000-04-15 노건일 Process for manufacturing ultra-fine powders by using thermal plasma
KR101395578B1 (en) * 2012-09-04 2014-05-19 한국세라믹기술원 Thermal plasma apparatus for manufacturing aluminum nitride powder

Also Published As

Publication number Publication date
JPH0649566B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
JPS60175537A (en) Preparation of ultra-fine ceramic particles
Oh et al. Preparation of AlN fine powder by thermal plasma processing
JPS5963732A (en) Thin film forming device
JPS6241704A (en) Synthesis of aluminum nitride
KR20130097288A (en) Manufacturing method of aluminum nitride nano powder
JPS62158195A (en) Synthesizing method of diamond
JPS62282635A (en) Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder
JPS6054996A (en) Synthesis of diamond
JPS58150427A (en) Preparation of fine powder of metal compound
JPS59162110A (en) Preparation of fine powder of silicon nitride
JP3024712B2 (en) Al-on-based composite material and method for synthesizing the same
JPS62283805A (en) Production of extremely fine aluminum nitride powder
JPS5825045B2 (en) Method for producing SiC ultrafine particles
JPH01230779A (en) Production of aluminum nitride
JPS61141606A (en) Method for producing ultrafine powder of metal nitride, and apparatus therefor
JPS6019034A (en) Chemical reaction apparatus using composite plasma
JPS60239316A (en) Manufacture of hyperfine sic powder
JPS593098A (en) Synthesizing method of diamond
JPS62171903A (en) Synthesis of fine aluminum nitride powder
JPS63156009A (en) Synthesis of fine diamond powder
JPH01275412A (en) Production of aluminum nitride fine powder
JPH03115578A (en) Method for coating powder particle
JPS62171902A (en) Synthesis of fine aluminum nitride powder
JPH035314A (en) Method for synthesizing diamond powder
JPS6395103A (en) Readily sinterable aluminum nitride powder and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees