JPS63156009A - Synthesis of fine diamond powder - Google Patents

Synthesis of fine diamond powder

Info

Publication number
JPS63156009A
JPS63156009A JP61304965A JP30496586A JPS63156009A JP S63156009 A JPS63156009 A JP S63156009A JP 61304965 A JP61304965 A JP 61304965A JP 30496586 A JP30496586 A JP 30496586A JP S63156009 A JPS63156009 A JP S63156009A
Authority
JP
Japan
Prior art keywords
plasma
nuclei
diamond
forming
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61304965A
Other languages
Japanese (ja)
Inventor
Mutsukazu Kamo
加茂 睦和
Yoichiro Sato
洋一郎 佐藤
Nobuo Sedaka
瀬高 信雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP61304965A priority Critical patent/JPS63156009A/en
Publication of JPS63156009A publication Critical patent/JPS63156009A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain fine powder of spherical polycrystalline diamond which is not bonded to a substrate, by introducing the nuclei for forming diamond into plasma when fine diamond powder is formed by the plasma chemical vapor deposition process. CONSTITUTION:A nuclei-forming substance 13 (e.g. boron, silicon oxide, etc.) is mounted on a boat 8 for forming the nuclei, and the inside of a plasma forming chamber 11 is evacuated by an evacuating apparatus 2. Then, a gaseous mixture of a volatile org. compd. (e.g. methane) contg. carbon and H2 is supplied from a reaction gas feeding apparatus 1, and high frequency wave of >=100kHz is introduced by operating a high frequency wave generator 3 generating plasma. At the same time, the nuclei forming substance 13 is heated by a heating electric source 4, and the fine diamond powder is obtd. on a saucer 12 by forming the nuclei. In this case, plasma can be also generated by introducing microwave of >=300MHz using a microwave generator in place of the high frequency wave generator 3.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はダイヤモンド微粉末の合成法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for synthesizing fine diamond powder.

従来技術 従来のダイヤモンド微粉末の合成法としては黒鉛を原料
とし、(1)金属触媒を用いた高温高圧法、(2)火薬
もしくは爆薬を用いた衝撃圧縮法、または炭化水素等の
炭素を含む揮発性有機化合物を用いたプラズマ化学気相
析出法が知られている。
Prior Art Conventional methods for synthesizing fine diamond powder include using graphite as a raw material, (1) high temperature and high pressure method using a metal catalyst, (2) impact compression method using gunpowder or explosives, or containing carbon such as hydrocarbons. Plasma chemical vapor deposition methods using volatile organic compounds are known.

本発明は前記(3)の方法に関するものである。The present invention relates to the method (3) above.

本発明者らはさきに、マイクロ波無極放電中を通過させ
た水素に炭化水素を混合したガスまたはマイクロ波無極
放電中を通過させた水素と炭化水素の混合ガスを、30
0〜1300℃に加熱した基板に導き、炭化水素の分解
によりダイヤモンドを析出させるダイヤモンドの合成法
(特願昭56−204321号)及び炭化水素と水素ガ
スまたは炭化水素と水素ガス及び不活性ガスとの混合ガ
スに300 M +1 z以上のマイクロ波を導入して
マイクロ波プラズマを発生させ、そのマイクロ波中に基
板を設置すると、基板は他の加熱を必要とすることなく
、ダイヤモンドの合成に必要な300〜1300℃の温
度が得られ基板上にダイヤモンドが析出する合成法を開
発した。(特願昭57−109044号) しかし、これらの方法で合成したダイヤモンドは、プラ
ズマ中に置かれた基板上で、基板に結合して核発生成長
が行われ、生成した微粉粒子は基板によって半分に分割
された状態でかつ単結晶状のものとなる欠点がある。
The present inventors previously prepared a gas containing a mixture of hydrogen and hydrocarbons passed through a microwave non-polar discharge, or a mixed gas of hydrogen and hydrocarbons passed through a microwave non-polar discharge.
A diamond synthesis method (Japanese Patent Application No. 56-204321) in which diamond is precipitated by decomposing hydrocarbons into a substrate heated to 0 to 1300°C, and hydrocarbons and hydrogen gas, or hydrocarbons and hydrogen gas, and inert gas. When microwave plasma is generated by introducing microwaves of 300 M + 1 z or more into a mixed gas of We have developed a synthesis method that allows a temperature of 300 to 1,300°C to be obtained and deposits diamond on a substrate. (Japanese Patent Application No. 57-109044) However, diamonds synthesized by these methods bond to the substrate and undergo nucleation growth on a substrate placed in plasma, and the resulting fine powder particles are halved by the substrate. It has the disadvantage that it is divided into two parts and is in the form of a single crystal.

発明の目的 本発明はこの欠点をなくすべくなされたもので、その目
的は基板と結合を持たない球状多結晶状のダイヤモンド
微粉末の合成法を提供するにある。
OBJECTS OF THE INVENTION The present invention has been made to eliminate this drawback, and its purpose is to provide a method for synthesizing fine spherical polycrystalline diamond powder that has no bond to a substrate.

発明の構成 本発明者らは前記目的を達成すべく鋭意研究の結果、前
記プラズマ中にダイヤモンドの核を生成するに必要な元
素及び化合物を導入して合成すると、基板と結合を持た
ない多結晶状のダイヤモンド微粉末が得られることを究
明し得た。この知見に基づいて本発明を完成した。
Structure of the Invention As a result of intensive research to achieve the above object, the present inventors found that by introducing and synthesizing the elements and compounds necessary for generating diamond nuclei into the plasma, a polycrystalline material having no bond with the substrate was produced. It was found that fine diamond powder with a shape of The present invention was completed based on this knowledge.

本発明の要旨は 炭素を含む揮発性有機化合物と水素の混合ガスに、10
0 kHz以上の高周波または300 MHz以上のマ
イクロ波を導入してプラズマを発生させ、該プラズマ中
にダイヤモンド生成のための核を導入してダイヤモンド
微粉末を生成させることを特徴とするダイヤモンド微粉
末の合成方法にある。
The gist of the present invention is to add 10% to a mixed gas of a volatile organic compound containing carbon and hydrogen.
A method for producing fine diamond powder, which is characterized in that a high frequency of 0 kHz or higher or a microwave of 300 MHz or higher is introduced to generate plasma, and a nucleus for diamond generation is introduced into the plasma to generate fine diamond powder. It's in the synthesis method.

本発明の方法において使用するダイヤモンド生成の核と
しては、周期律表のm、rv族に属する。
The diamond-producing nuclei used in the method of the present invention belong to the m and rv groups of the periodic table.

水素と炭素を含む揮発性有機化合物の混合ガスプラズマ
中で炭素と結合して炭化物を作り得る元素、例えばほう
素、けい素、アルミニウム、また、該プラズマ中で分解
して炭化物を作り得る、前記元素化合物、例えば酸化は
う素、酸化けい素、酸化アルミニウム、窒化はう素、窒
化けい素、窒化アルミニウム、及び炭素の同素体例えば
黒鉛、無定形炭素、カルビンが挙げられる。
Elements that can combine with carbon to form carbides in a mixed gas plasma of volatile organic compounds containing hydrogen and carbon, such as boron, silicon, aluminum, and elements that can decompose in the plasma to form carbides. Mention may be made of elemental compounds such as boron oxide, silicon oxide, aluminum oxide, boron nitride, silicon nitride, aluminum nitride, and allotropes of carbon such as graphite, amorphous carbon, carbyne.

核発生数が多く、微粉末にするためには炭素と結合して
炭化物を作り得る元素であるほう素、アルミニウム、け
い素、および炭素が好ましく、また生成するダイヤモン
ドの純度を良くするためには無定形炭素、黒鉛が好まし
い。
Boron, aluminum, silicon, and carbon, which are elements that generate a large number of nuclei and can combine with carbon to form carbides in order to form a fine powder, are preferable, and in order to improve the purity of the diamond produced. Amorphous carbon and graphite are preferred.

本発明の合成法を図面に基づいて説明すると、第1図は
高周波によるプラズマを用いる方法、第2図はマイクロ
波によるプラズマを用いる方法の概要図を示す。
The synthesis method of the present invention will be explained based on the drawings. FIG. 1 shows a schematic diagram of a method using high frequency plasma, and FIG. 2 shows a schematic diagram of a method using microwave plasma.

第1図において、1は反応ガス供給装置、2は排気装置
、3は高周波発振機、4は核発生用加熱電源、7は高周
波印加用コイル、8は核発生用加熱ボート、11はプラ
ズマ発生室、12は生成したダイヤモンドの受皿、13
は核発生物質、15.16.17゜18は調整弁を示す
In Fig. 1, 1 is a reaction gas supply device, 2 is an exhaust device, 3 is a high frequency oscillator, 4 is a heating power source for nuclear generation, 7 is a coil for high frequency application, 8 is a heating boat for nuclear generation, and 11 is a plasma generator. Chamber, 12 is a saucer for the generated diamond, 13
15, 16, 17, and 18 indicate the nucleating material and the regulating valve.

その操作を示すと、核発生用ボート8上に核発生物質1
3を置いた後、排気装置2を作動し、調整弁18を調整
してプラズマ発生室11内を減圧する。
To illustrate this operation, the nuclear generating material 1 is placed on the nuclear generating boat 8.
3, the exhaust device 2 is operated and the regulating valve 18 is adjusted to reduce the pressure inside the plasma generation chamber 11.

これと共に反応ガス供給装置1より調整弁15.16゜
17を通して水素ガス、炭素を含む揮発性有機化合物を
供給し、所定圧に保持する。次に高周波発振機3を作動
してプラズマを発生させると共に、核発生用加熱電源4
を作動し核発生物質13を加熱して核を発生させる。こ
れによりダイヤモンド微粉末が受皿12に得られる。
At the same time, hydrogen gas and a volatile organic compound containing carbon are supplied from the reaction gas supply device 1 through the regulating valve 15.16.degree. 17 to maintain a predetermined pressure. Next, the high frequency oscillator 3 is activated to generate plasma, and the heating power source 4 for nuclear generation
is activated to heat the nuclear generating material 13 and generate nuclei. As a result, fine diamond powder is obtained in the saucer 12.

第2図は第1図の高周波発振機3に代えマイクロ波発振
機5を用い、さらに核発生用加熱電源7に代え核発生用
マイクロ波発振機6を使用する。
In FIG. 2, a microwave oscillator 5 is used in place of the high-frequency oscillator 3 in FIG. 1, and a microwave oscillator 6 for nuclear generation is used in place of the heating power source 7 for nuclear generation.

マイクロ波発振機5を作動してプラズマを発生させた後
、核発生用マイクロ波発振機6を作動してプラズマを誘
発して核発生物質13の加熱及び蒸発を行わせる。他は
第1図における操作と同様にして、ダイヤモンド微粉末
が受皿12に得られる。
After activating the microwave oscillator 5 to generate plasma, the nucleation microwave oscillator 6 is activated to induce plasma and heat and evaporate the nucleation material 13. Fine diamond powder is obtained in the saucer 12 in the same manner as in FIG. 1 in other respects.

本発明における炭素を含む揮発性有機化合物としては、
例えば、メタン、エタン、エチレン、アセチレン、ブタ
ン等の炭化水素類、メチルアルコール、エチルアルコー
ル等のアルコール類、ジメチルエーテル、ジエチルエー
テル等のエーテル類。
The volatile organic compound containing carbon in the present invention includes:
For example, hydrocarbons such as methane, ethane, ethylene, acetylene, butane, alcohols such as methyl alcohol and ethyl alcohol, and ethers such as dimethyl ether and diethyl ether.

アセトン等のケトン類が挙げられる。水素との混合割合
は、炭素原子と水素の割合に換算して0.0001から
100の範囲であるが0.001から1の間が好ましい
Examples include ketones such as acetone. The mixing ratio with hydrogen is in the range of 0.0001 to 100 in terms of the ratio of carbon atoms to hydrogen, but preferably in the range of 0.001 to 1.

実施例1゜ 第1図に示す装置を使用し、核発生物質として酸化はう
素を用い、これを核発生用加熱ボート8に置き、プラズ
マ発生室11内を排気装置2により排気した後、水素に
メタンを2容量%混合したガスを100 ml/ ll
l1nで流し、プラズマ発生室11を40Torrに保
持した。次に高周波発振機3を1に−の出力で作動して
プラズマを発生させた後、核発生用加熱電源4を作動し
、核発生用加熱ボート8を約2000℃に加熱した。加
熱ボート8上で水素と反応して生成したほう素原子のク
ラスター(数個以上の原子のかたまり)がプラズマ中を
通過する間に、クラスターを核にして約5000オング
ストロームの球状で多結晶のダイヤモンド微粉末が生成
し、受皿12上に得られた。核発生物質を用いない場合
は同様な操作を行うことによって受皿と強く結合した半
分に分割された単結晶状の約2ミクロンの微粒子が得ら
れた。
Example 1 Using the apparatus shown in FIG. 1, using boron oxide as the nucleation material, placing it in the nucleation heating boat 8, and evacuating the inside of the plasma generation chamber 11 with the exhaust device 2, 100 ml/ll of a gas mixture of hydrogen and methane at 2% by volume
11n, and the plasma generation chamber 11 was maintained at 40 Torr. Next, the high frequency oscillator 3 was operated at an output of -1 to generate plasma, and then the nuclear generation heating power source 4 was activated to heat the nuclear generation heating boat 8 to about 2000°C. While clusters of boron atoms (groups of several or more atoms) generated by reacting with hydrogen on the heating boat 8 pass through the plasma, a spherical polycrystalline diamond of about 5000 angstroms is formed with the clusters as the core. A fine powder was produced and obtained on the saucer 12. When a nucleating substance was not used, a similar operation was performed to obtain half-divided, single-crystal fine particles of about 2 microns that were strongly bonded to the receiving plate.

実施例2゜ 第2図に示す装置を使用し、核発生物質13としてけい
素粉束を用いた。プラズマ発生室11を排気装置2によ
り排気した後、水素にエタンを0.5容量%混合した混
合ガスを毎分50m1で流し、プラズマ発生室11内を
30Torrに保持した。次にマイクロ波発振機5を出
力500誓で作動してプラズマを発生させた後、核発生
用マイクロ波発振機6を出力300−で作動して核発生
物質13の周囲にプラズマを発生させて核発生物質13
の加熱及び蒸発を行った。蒸発したけい素原子のクラス
ターを核にして約3000オングストロームの球状で多
結晶状のダイヤモンド微粉末が受皿12上に得られた。
Example 2 The apparatus shown in FIG. 2 was used, and a bundle of silicon powder was used as the nucleating material 13. After the plasma generation chamber 11 was evacuated by the exhaust device 2, a mixed gas of hydrogen and ethane in an amount of 0.5% by volume was flowed at a rate of 50 ml per minute to maintain the inside of the plasma generation chamber 11 at 30 Torr. Next, the microwave oscillator 5 is operated at an output of 500 to generate plasma, and then the microwave oscillator for nuclear generation 6 is operated at an output of 300- to generate plasma around the nuclear generating material 13. Nuclear generating material 13
was heated and evaporated. A spherical polycrystalline fine diamond powder of about 3000 angstroms was obtained on the saucer 12 with clusters of vaporized silicon atoms as nuclei.

核発生用マイクロ波発振機6の作動なしでは受皿に結合
して半分に分割された単結晶状のものであった。
Without the operation of the microwave oscillator 6 for nuclear generation, it was in the form of a single crystal that was combined with the saucer and divided into halves.

実施例3゜ 第2図の装置を使用し、核発生物質として黒鉛成形体を
用い、これを受皿12上に置き、プラズマ発生室11内
を排気装置2により排気した後、反応ガス供給装置1よ
り調整弁15.16.17を調整して水素にアセチレン
を0.5容量%混合した混合ガスを毎分120 ml流
し、プラズマ発生室11内を20Torrに保持した。
Example 3 Using the apparatus shown in FIG. 2, a graphite molded body is used as the nucleation material, placed on the saucer 12, and after exhausting the inside of the plasma generation chamber 11 with the exhaust device 2, the reactant gas supply device 1 The regulating valves 15, 16, and 17 were adjusted to flow a mixed gas of 0.5% by volume of hydrogen and acetylene at a rate of 120 ml per minute, and the inside of the plasma generation chamber 11 was maintained at 20 Torr.

次にマイクロ波発振機5を核発生用及びダイヤモンド生
成の両用として出力300讐で作動し、核発生物質の黒
鉛成形体を810℃に保った。これにより受皿及び黒鉛
成形体上に約2000オングストロームの球状で多結晶
状のダイヤモンド微粒子が得られた。
Next, the microwave oscillator 5 was operated at an output of 300 for both nucleation and diamond generation, and the graphite molded body of the nucleation material was maintained at 810°C. As a result, spherical polycrystalline diamond fine particles of about 2000 angstroms were obtained on the saucer and graphite compact.

黒鉛成形体なしでは、受皿に結合して半分に分割された
単結晶状のものであった。
Without the graphite compact, it was a single crystal that was bonded to the saucer and split in half.

実施例4゜ 第1図に示す装置を使用し、核発生物質として酸化アル
ミニウムを用い、これを核発生用加熱ボート8に置き、
プラズマ発生室11内を排気装置2により排気した後、
水素にメタンを3容量%混合したガスを100 ml/
 ll1inで流し、プラズマ発生室11を30Tor
rに保持した。次に高周波発振機3を1.2に−の出力
で作動し、プラズマを発生させた後、核発生用加熱ポー
ト8を約2500℃に加熱した。加熱ボート8上で水素
と反応して生成したアルミニウム原子のクラスターがプ
ラズマ中を通過する間に、そのクラスターを核にして約
3000オングストロームの球状で多結晶のダイヤモン
ド微粉末が生成し、受皿12上に得られた。
Example 4 Using the apparatus shown in FIG. 1, aluminum oxide was used as the nucleation material, and this was placed in the heating boat 8 for nucleation.
After evacuating the inside of the plasma generation chamber 11 using the exhaust device 2,
100 ml/gas of hydrogen and methane mixed at 3% by volume
ll1in, and the plasma generation chamber 11 was heated to 30 Torr.
It was held at r. Next, the high frequency oscillator 3 was operated at an output of 1.2 - to generate plasma, and then the nuclear generation heating port 8 was heated to about 2500°C. While the clusters of aluminum atoms generated by reacting with hydrogen on the heating boat 8 pass through the plasma, spherical polycrystalline fine diamond powder of about 3000 angstroms is generated using the clusters as nuclei, and is placed on the saucer 12. obtained.

酸化アルミニウムを用いない場合は受皿に強く結合した
半分に分割された単結晶状の約2ミクロンの微粒子であ
った。
When aluminum oxide was not used, the particles were divided into halves, single crystals, and about 2 microns in size, which were strongly bonded to the saucer.

実施例5゜ 第2図の装置を使用し、核発生物質として窒化アルミニ
ウムを用い、プラズマ発生室11を排気袋W2により排
気した後、水素にエチレン1容量%混合したガスを毎分
50m lで流し、プラズマ発生室11内を30Tor
rに保持した。次にマイクロ波発振機5を出力300に
で作動してプラズマを発生させた後、核発生用マイクロ
波発振機を出力600Wで作動して核発生物質13の周
囲にプラズマを発生させて核発生物質13の加熱及び蒸
発を行わせた。これによりプラズマ中で活性化された水
素と反応して生成したアルミニウム原子のクラスターを
核にした約2000オングストロームの球状で多結晶状
のダイヤモンド微粉末が受皿上に得られた。
Example 5 Using the apparatus shown in Fig. 2, aluminum nitride was used as the nucleating material, and after the plasma generation chamber 11 was evacuated through the exhaust bag W2, a gas containing hydrogen mixed with ethylene at 1% by volume was added at a rate of 50 ml per minute. The inside of the plasma generation chamber 11 is heated to 30 Tor.
It was held at r. Next, the microwave oscillator 5 is operated at an output of 300 to generate plasma, and then the microwave oscillator for nuclear generation is operated at an output of 600W to generate plasma around the nucleating material 13 to generate nuclei. Heating and evaporation of substance 13 was performed. As a result, a spherical polycrystalline fine diamond powder of about 2000 angstroms was obtained on the saucer, with clusters of aluminum atoms produced by reaction with hydrogen activated in the plasma as the nucleus.

核発生用マイクロ波発振機6の作動させない場合は受皿
に結合して半分に分割された単結晶状粒子であった。
When the microwave oscillator 6 for nuclear generation was not operated, the single crystal particles were bonded to the saucer and divided into halves.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様図で、第1図は高周波によるプ
ラズマを用いる場合、第2図はマイクロ波によるプラズ
マを用いる場合の概要図である。 1:反応ガス供給装置、2:排気装置、3:高周波発振
機、   4:核発生用加熱電源、5:マイクロ波発振
機、 6:核発生用マイクロ波発振機、 7:高周波印加用コイル、 8:核発生用加熱ボート、 9.10:マイクロ波用導波管、 11:プラズマ発生室、 12:受皿、13:核発生物
質、   14:核発生物質支持台、15、16.17
.18:調整弁。
The drawings are diagrams showing embodiments of the present invention; FIG. 1 is a schematic diagram of the case in which plasma generated by high frequency waves is used, and FIG. 2 is a schematic diagram in the case that plasma generated by microwave waves is used. 1: Reaction gas supply device, 2: Exhaust device, 3: High frequency oscillator, 4: Heating power source for nuclear generation, 5: Microwave oscillator, 6: Microwave oscillator for nuclear generation, 7: High frequency application coil, 8: Nuclear generation heating boat, 9.10: Microwave waveguide, 11: Plasma generation chamber, 12: Receiver, 13: Nuclear generating material, 14: Nuclear generating material support, 15, 16.17
.. 18: Adjustment valve.

Claims (1)

【特許請求の範囲】 1)、炭素を含む揮発性有機化合物と水素の混合ガスに
、100kHz以上の高周波または300MHz以上の
マイクロ波を導入してプラズマを発生させ、該プラズマ
中にダイヤモンド生成のための核を導入してダイヤモン
ド微粉末を生成させることを特徴とするダイヤモンド微
粉末の合成方法。 2)、ダイヤモンド生成のための核が、周期律表IIIIV
族に属し、プラズマ中で炭素を結合して炭化物を作る元
素、プラズマ中で分解して炭化物を作る前記元素化合物
及び炭素の同素体から選ばれたものからなる特許請求の
範囲第1項記載の方法。 3)、ダイヤモンド生成のための核が、ほう素、けい素
、アルミニウム、これらの酸化物、窒化物及び炭素の同
素体から選ばれたものからなる特許請求の範囲第1項ま
たは第2項記載の方法。
[Claims] 1) Plasma is generated by introducing high frequency waves of 100 kHz or more or microwaves of 300 MHz or more into a mixed gas of a volatile organic compound containing carbon and hydrogen, and a plasma is generated in the plasma for diamond generation. 1. A method for synthesizing fine diamond powder, characterized in that a fine diamond powder is produced by introducing the nucleus of. 2) The nucleus for diamond formation is found in the periodic table IIIIV.
2. The method according to claim 1, wherein the element belongs to the group consisting of elements selected from the group consisting of elements that combine with carbon to form carbides in plasma, compounds of said elements that form carbides when decomposed in plasma, and allotropes of carbon. . 3) The method according to claim 1 or 2, wherein the nucleus for producing diamond is selected from boron, silicon, aluminum, oxides and nitrides thereof, and allotropes of carbon. Method.
JP61304965A 1986-12-19 1986-12-19 Synthesis of fine diamond powder Pending JPS63156009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61304965A JPS63156009A (en) 1986-12-19 1986-12-19 Synthesis of fine diamond powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61304965A JPS63156009A (en) 1986-12-19 1986-12-19 Synthesis of fine diamond powder

Publications (1)

Publication Number Publication Date
JPS63156009A true JPS63156009A (en) 1988-06-29

Family

ID=17939446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61304965A Pending JPS63156009A (en) 1986-12-19 1986-12-19 Synthesis of fine diamond powder

Country Status (1)

Country Link
JP (1) JPS63156009A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270394A (en) * 1987-04-28 1988-11-08 Showa Denko Kk Flow type method for synthesizing diamond and apparatus therefor
JPH02184597A (en) * 1989-01-10 1990-07-19 Showa Denko Kk Synthesis of diamond through vapor phase process
US5180571A (en) * 1990-05-30 1993-01-19 Idemitsu Petrochemical Company Limited Process for the preparation of diamond
US5557834A (en) * 1993-12-27 1996-09-24 Mazda Motor Corporation Method of and apparatus for assembling component parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137311A (en) * 1983-01-21 1984-08-07 Natl Inst For Res In Inorg Mater Method for synthesizing polycrystalline diamond
JPS60231494A (en) * 1984-04-27 1985-11-18 Showa Denko Kk Manufacture of diamond superfines
JPS61158898A (en) * 1984-12-29 1986-07-18 Kyocera Corp Production of ornamental diamond

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137311A (en) * 1983-01-21 1984-08-07 Natl Inst For Res In Inorg Mater Method for synthesizing polycrystalline diamond
JPS60231494A (en) * 1984-04-27 1985-11-18 Showa Denko Kk Manufacture of diamond superfines
JPS61158898A (en) * 1984-12-29 1986-07-18 Kyocera Corp Production of ornamental diamond

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270394A (en) * 1987-04-28 1988-11-08 Showa Denko Kk Flow type method for synthesizing diamond and apparatus therefor
JPH02184597A (en) * 1989-01-10 1990-07-19 Showa Denko Kk Synthesis of diamond through vapor phase process
US5180571A (en) * 1990-05-30 1993-01-19 Idemitsu Petrochemical Company Limited Process for the preparation of diamond
US5557834A (en) * 1993-12-27 1996-09-24 Mazda Motor Corporation Method of and apparatus for assembling component parts

Similar Documents

Publication Publication Date Title
JPH0346436B2 (en)
JPS5891100A (en) Synthesizing method for diamond
JPH08225395A (en) Production of diamond doped with boron
JPS59137396A (en) Synthetic method of p type semiconductor diamond
JPH04958B2 (en)
JPH0566360B2 (en)
JPH0566359B2 (en)
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPS63156009A (en) Synthesis of fine diamond powder
JPS6221757B2 (en)
JPS6054996A (en) Synthesis of diamond
JPS62158195A (en) Synthesizing method of diamond
JP2569423B2 (en) Gas phase synthesis of boron nitride
JPH0481552B2 (en)
JPS5918197A (en) Gaseous phase synthesis of diamond
JPS63117995A (en) Device for synthesizing diamond in vapor phase
JP2766668B2 (en) Synthesis method without diamond powder
JPH0723279B2 (en) Diamond film manufacturing method
JPS593098A (en) Synthesizing method of diamond
JPH064915B2 (en) Method for synthesizing cubic boron nitride
JPS60200896A (en) Process for synthesizing fibrous diamond
JPS63117996A (en) Device for synthesizing diamond in vapor phase
JPS63230507A (en) Synthesis of highly crystalline hexagonal boron nitride
Tanaka et al. Effect of Water Addition on Diamond Growth in Methane-Hydrogen Plasma
JPH02192415A (en) Syntheses of diamond powder