JPS6241665A - Production of artificial dialyser - Google Patents

Production of artificial dialyser

Info

Publication number
JPS6241665A
JPS6241665A JP18048285A JP18048285A JPS6241665A JP S6241665 A JPS6241665 A JP S6241665A JP 18048285 A JP18048285 A JP 18048285A JP 18048285 A JP18048285 A JP 18048285A JP S6241665 A JPS6241665 A JP S6241665A
Authority
JP
Japan
Prior art keywords
artificial dialysis
water vapor
artificial
manufacturing
dialysis device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18048285A
Other languages
Japanese (ja)
Other versions
JPH0121987B2 (en
Inventor
下起 幸郎
剛 高橋
直人 佐藤
守 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP18048285A priority Critical patent/JPS6241665A/en
Publication of JPS6241665A publication Critical patent/JPS6241665A/en
Publication of JPH0121987B2 publication Critical patent/JPH0121987B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ■9発明の背景 (技術分野) 本発明は、人工透析装置の製造方法に関するものである
。詳しく述べると本発明は、再生セルロース中空繊維を
用いた人工透析装置において、高透析能および低除水能
を有する人工透析装置を製造する方法に関するものであ
る。
Detailed Description of the Invention (9) Background of the Invention (Technical Field) The present invention relates to a method for manufacturing an artificial dialysis device. Specifically, the present invention relates to a method for manufacturing an artificial dialysis device using regenerated cellulose hollow fibers, which has high dialysis ability and low water removal ability.

(先行技術) 腎不全、毒劇物中毒等の患者の血液透析に用いられる人
工透析装置は、体液中に含まれる尿素、尿酸、クレアチ
ニン等の毒性代謝産物もしくは毒劇物4、シ、血液から
該人−1掲界析装置の透析膜を透過さゼ二で透析液中へ
と濃度差によって移動させるbのて”あるか、体液中の
水分の一部を・除くJとも人1:透析装置の重要な機能
の1つ(7゛ある9゜従来、く2のような人工透析装置
に組込まれる透析膜どじで1.t、再任セル[]−ス、
酢酸セルロース等のt−ル11−ス系物質、ポリスルホ
ン、ポリアク1月]、−1・リル、ポリメチルメタクル
ー1・簀が知l]′)tトCいるが、現在実用化されて
いるものは、ゴニと1・−rJfJ′牛1′でル[−1
−・ス膜であり、特#J、銅アシ!、)71“ノル1」
−スからの再生セルロース膜である。また人十透彷1・
8首(31、ぞのtM造1こより中空糸型、−1イル型
、平膜k)゛(に人別できるが、中空糸型のものが、゛
−1ンパタ1へ(゛かつ高い透析性能を示し2得るもの
テ゛゛あるl、”め歓、現在最も広く用いられている3
゜さて、クー゛のような人工透析装置は、患者の症状に
応じで、適切な除水能、透析能のものが選定される必要
が必り、例えば、人工透析の初期導入患者に対し7ては
、比較的除水能の低い人工透析装置が適当である。。
(Prior art) Artificial dialysis machines used for hemodialysis of patients suffering from renal failure, poisonous poisoning, etc. are designed to remove toxic metabolites such as urea, uric acid, and creatinine contained in body fluids, Part of the water in the body fluid is removed by passing through the dialysis membrane of the dialysis device and transferring it into the dialysate due to the concentration difference.Person 1: Dialysis One of the important functions of the device is the dialysis membrane installed in artificial dialysis devices such as 7 and 9.
There are t-Rose-based substances such as cellulose acetate, polysulfone, polyacrylic acid, -1, methylmethacryl, and polymethylmethacrylate, but these are currently in practical use. The thing is goni and 1・-rJfJ′ cow 1′ and le[-1
-・S film, special #J, copper reed! , ) 71 “Nor 1”
- regenerated cellulose membrane from Also, Hitojutoru Aki 1.
8 necks (31, ZonotM made 1-strand hollow fiber type, -1 tile type, flat membrane k) (can be classified into 8 types), but the hollow fiber type is 1-strand type (31, 1-strand hollow fiber type, 1-layer type, flat membrane k). There are some things that show performance and can be obtained from 2.
Now, it is necessary to select an artificial dialysis device such as Kui with appropriate water removal and dialysis capabilities depending on the patient's symptoms.For example, for patients who are initially introduced to artificial dialysis, Therefore, an artificial dialysis device with relatively low water removal capacity is appropriate. .

この低除水能の人工透析装置は、従来、用いられる再生
セル11−ス中空繊維の膜厚を厚べする、必るいは、再
生セルロース中空繊維の製造」]程(5°。
This artificial dialysis device with a low water removal capacity is required to thicken the membrane thickness of the regenerated cellulose hollow fibers used conventionally, or to produce regenerated cellulose hollow fibers (5°).

C3いて、可塑化時に含ませるグリセリン量の加減、ノ
ルンン化濃m′の調整も1ツクは乾燥条件の変化などじ
より得られるものFあっIこ。しかしむがらこ(7)J
、)な方法1.・−よる除水量の制御(4、不安定(゛
あり、さらにこのように、種々の性能の中空繊維を紡糸
するl、めk”: t;t、それぞれに対応り゛る′f
5A数の製造ラインを必要どし、非常1、:不合理(゛
あった。。
In C3, adjustment of the amount of glycerin included during plasticization and adjustment of the concentration m' of Nornization can also be obtained by changing the drying conditions. But Mugarako (7) J
) Method 1. - Control of the amount of water removed by
It would require a 5A production line, which was extremely unreasonable.

II 、発明の[1的 従っズ′、本発明は、新規な人工透析装置の製造方法を
提供り−ることを1]的と“弓−る。本発明はまた、高
透析能、高除水能の再生セルロース中空繊維を用いた人
工透析装置にC3い℃、高透析能を維持1ノつつ除水能
を低下させる人に透析装置の製造プj法を提供すること
を目的とする。本発明(3J5、dうに、人工透析の初
期導入患者に好適な人、1皿透析装置の製造方法を提供
するごとを[」的とする333本発明さ“らに高透析能
および低除水能を石“する蒸気滅菌へ11の人1−透析
装置製造方法を提供覆ることを目的とする。
II. According to one aspect of the invention, an object of the present invention is to provide a method for manufacturing a novel artificial dialysis device. The purpose of the present invention is to provide a method for manufacturing a dialysis device to a person who uses regenerated cellulose hollow fibers with a water capacity at temperatures as low as C3°C, maintains high dialysis ability, and reduces water removal ability. The present invention (3J5, d) is aimed at providing a method for manufacturing a one-dish dialysis device suitable for patients who are initially introduced to artificial dialysis. The purpose of this invention is to provide a method for manufacturing a dialysis device in 11 ways to steam sterilize the ability to perform sterilization.

これらの諸l」的は、再生セルロース中空繊維束を人工
透析装置の筒状本体内に装填し・、ぞの両端をiイ■記
筒状体)、::固定12だ後、該再生セル[1−ス中空
繊紺4.:100=120°Cの水蒸気を接触させるこ
とを特徴どする人工透析装置の製造方法により達成され
る3゜ 本発明はまた、水蒸気が30−120秒間通されるもの
−((N6る人工透析装置の製造方法を承寸ものである
。本発明はさらに、人工透析装置は、人工透析装置内i
;″:生体に無害4【水溶液を充填1−21ζ:後高汗
蒸気滅菌を行4【t)れるちのである人工透析装置の′
fA造方法を示3ノものである。本発明はざらに再生セ
ノ圀−トス中空繊維が銅)7ン(ニアセル「1−ス紡糸
原液から得られるものである人」]透透析膜の装3m 
I〕法4・:示りものである。本発明(まさら(:、前
記水蒸気の接触C,t、、水蒸気を前記中空繊維内に通
′1−こと1こよi′)行うものである人工透析装置の
製造方?7、をポリ−(、)のぐある、1本発明はよl
、“]前前記水気の接触は、水蒸気を前記中空繊維の外
側1−二通りことにより行うものである人工透析装置を
示″g′ものである。
For these purposes, the regenerated cellulose hollow fiber bundle is loaded into the cylindrical body of an artificial dialysis device, and both ends of the bundle are fixed to the cylindrical body). [1-S hollow fiber navy blue4. :100=120 degrees C The present invention further provides an artificial dialysis device with an internal dialysis device.
;'': Harmless to living organisms 4 [Fill with aqueous solution 1-21ζ: Perform high perspiration steam sterilization after 4 [t]
This is the third example of the fA construction method. The present invention is based on a method in which the hollow fibers are made of copper) 7 m (near cell "1-spun spinning dope") dialysis membrane packaging 3 m
I] Method 4: Demonstrate. Method of manufacturing an artificial dialysis apparatus according to the present invention (Masara (:, Contact C, t, water vapor is passed into the hollow fiber) 7) ,) Noguar, 1 This invention is good.
, ``]'' refers to an artificial dialysis apparatus in which the above-mentioned contact with water is carried out by passing water vapor through one or two passages outside the hollow fiber.

用8発明の詳細な説明 以下、本発明を図面に基づき、詳細に説明する。Detailed description of the invention for 8 Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は本発明の人工透析装置の製造方法の−・実施例
に14−5けるスチーム処理過程を示ず図面である。
FIG. 1 is a drawing that does not show the steam treatment process in Example 14-5 of the method for manufacturing an artificial dialysis apparatus of the present invention.

第1図に小り−J:うに、本発明の人工透析装置の製造
lj法は、+IN牛ゼルセルス中空繊維束1を人工透析
装置の筒状本体2内(、装填(ハその両端を固定して組
立−′(、られだ人工透析装置′J、3の一方の血液ポ
ー川−4または10へ、途中に温度調節機、溝5を介し
てスヂームジYネレータ−6へと接続された回路アーj
−ブ7を接続し、スチームジェネレーターで発生し]だ
空気を100=120’C,好よ()くは100−・1
10’Cに調整して、該面)(タボ−1へ4または透析
液ボート16より人工透析装訂3内へ送り、人工透析装
置3の再生セル11−・ス中窄繊紺に該水蒸気を・接触
させるC4どを特徴と゛するもの℃゛ある。
The manufacturing method of the artificial dialysis apparatus of the present invention is shown in FIG. Assembling the artificial dialysis machine'J, the circuit arm connected to the blood stream 4 or 10 on one side of the dialysis machine 3, a temperature controller on the way, and the dialysis generator 6 via the groove 5. j
- Connect the tube 7 and heat the air generated by the steam generator to 100=120'C, preferably 100-・1
The water vapor is adjusted to 10'C and sent to the artificial dialysis machine 3 from the turbo 1 or the dialysate boat 16, and the water vapor is transferred to the regeneration cell 11-su of the artificial dialysis machine 3. There are some that are characterized by C4, which makes contact with

本発明の製造方法に用いられる人工透析装置3の再生セ
ルロース中空繊維としては、高い透析能を有するもので
あればいずれでもよいが、望ましくは銅アンモニアセル
ロースから得られる再生セルロース中空繊維であり、例
えば銅アンモニアセルロース溶液に必要に応じて透過性
能制御剤を混合して配位結合させてなる紡糸原液を、環
状紡糸孔から吐出させ、同時に内部中央部に非凝固性液
を導入充填し、ついで凝固性液内を通過させて凝固再生
し、このようにして得られた中空繊維を洗浄し、必要に
応じてグリセリン処理を行なった1麦、適当な方法で乾
燥させることにより得られるものでおる。また該再生セ
ルロース中空繊維は、膜厚5〜30μm、好ましくは1
0〜25μm程度のものである。
The regenerated cellulose hollow fibers of the artificial dialysis device 3 used in the production method of the present invention may be of any material as long as it has a high dialysis ability, but preferably regenerated cellulose hollow fibers obtained from copper ammonia cellulose, such as A spinning stock solution made by mixing a permeation performance control agent with a copper ammonia cellulose solution and coordinating it as necessary is discharged from an annular spinning hole, and at the same time a non-coagulable liquid is introduced and filled into the center of the interior, and then solidified. The wheat is coagulated and regenerated by passing through a liquid, and the hollow fibers thus obtained are washed, treated with glycerin if necessary, and dried by an appropriate method. Further, the regenerated cellulose hollow fiber has a film thickness of 5 to 30 μm, preferably 1
It is about 0 to 25 μm.

このような再生セルロース中空繊維は所定の長さに裁断
された後、必要な膜面積を達成するように束とされて、
人工透析装置の筒状本体2内に装填される。該再生セル
ロース中空繊維束1を筒状本体2へ固定するには、常法
に従い行なわれ、例えば再生セルロース中空繊維束1の
両端部をポリウレタン等のポツティング剤8,9で前記
筒状本体2の両端部とともにそれぞれシールすることで
行なわれる。該筒状本体2の両端には、血液用の流入ポ
ート4または排出ポート10をそれぞれ備えたヘッダー
11.12がそれぞれ当接され、キャップ13.14に
よりヘッダー11.12と筒状本体2がそれぞれ固着さ
れている。なお筒状本体2の両端部位には透析液用の流
入ポート15および排出ポート16がそれぞれ設けられ
ている。
Such regenerated cellulose hollow fibers are cut to a predetermined length and then bundled to achieve the required membrane area.
It is loaded into the cylindrical body 2 of an artificial dialysis machine. The regenerated cellulose hollow fiber bundle 1 is fixed to the cylindrical body 2 in accordance with a conventional method. For example, both ends of the regenerated cellulose hollow fiber bundle 1 are fixed to the cylindrical body 2 with potting agents 8 and 9 such as polyurethane. This is done by sealing both ends together. Headers 11.12 each having an inlet port 4 or an outlet port 10 for blood are abutted on both ends of the cylindrical body 2, and caps 13.14 connect the headers 11.12 and the cylindrical body 2, respectively. It is fixed. Note that an inlet port 15 and an outlet port 16 for dialysate are provided at both ends of the cylindrical body 2, respectively.

このようにして人工透析装置3を組立てた後、人工透析
装置3の血液用の流入ポート4(または排出ポート10
)へ、途中に温度調節機構5を介してスチームジェネレ
ーター6へと接続された回路チューブ7を接続する。こ
の状態でスチームジェネレーター6および温度調節機構
5を作動させて、回路チューブ7より人工透析装置3の
血液ポート4に所定温度の水蒸気を送り込む。該水蒸気
は、100〜120℃、好ましくは100〜11O°C
の温度である。この水蒸気の温度が高いほど、人工透析
装置の除水能低下の効果がみられるが、再生セルロース
中空繊維の熱による劣化を考えると、100〜120°
Cが最適でおる。このスチーム処理時間は、30〜12
0秒、好ましくは60〜120秒が適当であり、またそ
の水蒸気の中空繊維に対する送気圧は0.5〜3kg/
Cm2 、好ましくは1〜2 kM CI’2である。
After assembling the artificial dialysis machine 3 in this way, the blood inflow port 4 (or the discharge port 10) of the artificial dialysis machine 3 is assembled.
) is connected to a circuit tube 7 which is connected to a steam generator 6 via a temperature control mechanism 5 on the way. In this state, the steam generator 6 and temperature adjustment mechanism 5 are operated to send water vapor at a predetermined temperature from the circuit tube 7 to the blood port 4 of the artificial dialysis device 3. The water vapor has a temperature of 100 to 120°C, preferably 100 to 110°C.
temperature. The higher the temperature of this water vapor, the lower the water removal ability of the artificial dialysis machine.
C is optimal. This steam processing time is 30 to 12
0 seconds, preferably 60 to 120 seconds, and the pressure of the steam to the hollow fibers is 0.5 to 3 kg/
Cm2, preferably 1-2 kM CI'2.

血液ポート4より入った水蒸気は、各再生セルロース中
空繊維内部を通過した後、他方の血液ポート10および
透析液ポート15.16より人工透析装置3外部へと流
出する。
The water vapor entering through the blood port 4 passes through the inside of each regenerated cellulose hollow fiber, and then flows out of the artificial dialysis apparatus 3 through the other blood port 10 and dialysate ports 15 and 16.

驚くべきことに、このように簡単なスチーム処理を行な
うことで再生セルロース中空繊維を該中空繊維の透析能
には何ら影響を与えることがなく除水能を低下させるこ
とができることが明らかとなった。その明確な理由はわ
からないが、上記水蒸気処理により、中空繊維の形状が
ほぼ確定した後(再生セルロースであれば、凝固後)の
製造経歴での最高温度付近またはそれ以上に加温される
ため、中空繊維の膜構造に変化が生じたものと思われる
Surprisingly, it has been revealed that by performing such a simple steam treatment, the water removal ability of the regenerated cellulose hollow fibers can be reduced without affecting the dialysis ability of the hollow fibers in any way. . The exact reason for this is not known, but after the shape of the hollow fibers is almost determined by the steam treatment (in the case of regenerated cellulose, after solidification), it is heated to around or above the highest temperature in the manufacturing history. It seems that a change occurred in the membrane structure of the hollow fibers.

以上のようにして、組立てた後スチーム処理を行なわれ
た人工透析装置は、その後、人工透析装置内(血液室、
透析液至)に、生体に無害な水溶液例えば生理食塩水、
蒸溜水を充填し、高圧蒸気滅菌法、放射線滅菌法等によ
り滅菌されてウェットタイプの人工透析装置として提供
される。そして、前記水溶液の充填は、スチーム処理後
、中空繊維が乾燥する前に行うことが好ましい。中空繊
維を乾燥させてしまうと、その性能が低下することがあ
るからでおる。また、滅菌法として、放射線滅菌法を用
いる場合は、人工透析装置内に水溶液を完全に充填する
必要がなく、温調状態程度でよい。
The artificial dialysis machine, which has been assembled and subjected to steam treatment as described above, is then placed inside the machine (blood chamber,
Dialysate) is an aqueous solution that is harmless to living organisms, such as physiological saline,
It is filled with distilled water and sterilized by high-pressure steam sterilization, radiation sterilization, etc., and then provided as a wet-type artificial dialysis device. The filling of the aqueous solution is preferably performed after the steam treatment and before the hollow fibers are dried. If the hollow fibers are allowed to dry, their performance may deteriorate. Furthermore, when radiation sterilization is used as the sterilization method, it is not necessary to completely fill the artificial dialysis device with an aqueous solution, and only a temperature-controlled state is sufficient.

また、水蒸気の導入は、人工透析装置にヘッダー’11
.12を取付ける前に行ってもよい。この場合、回路チ
ューブ7の端部に、筒状本体2の端部にほぼ気密に取付
けられるコネクター(図示せず)設ければよい。上記説
明では、水蒸気を中空繊維内に接触させるもの(−説明
(−〕だが・これ(こ限らず、いづ゛れかの透析液ボー
1−より水蒸気を59人(ハ水蒸気を中窄蕨iffの外
側に接触さP−でもよい。
In addition, water vapor can be introduced into the artificial dialysis machine using the header '11.
.. This may be done before installing 12. In this case, a connector (not shown) may be provided at the end of the circuit tube 7 to be attached to the end of the cylindrical body 2 in a substantially airtight manner. In the above explanation, water vapor is brought into contact with the inside of the hollow fiber. P- may be in contact with the outside of the P-.

尚、水蒸気の名中空繊維への接触1、j:、透析装置の
形態からみて血液ボー 1−より水蒸気4.導入りる方
が確実(−d::5るど考λられる。
In addition, contact of water vapor to the hollow fiber 1, j:, from the viewpoint of the form of the dialysis machine, water vapor 4. It is more certain to introduce (-d::5).

次[5二実扉1例を・あげC4,R明をさらG4二詳細
(、=説明づ−る。
Next [5] Give an example of two actual doors, C4, R light, and G4.

実施例′I 内IY約2 C) OIIカフ、膜Fe 12 tiη
1、有効1(235mn+の銅−)′シしニアセル「−
」−ス中空繊紺約(う、800本を・用いてイi効膜面
積約1.0イの人工透析装置を組x:y(7占、この人
工透析装置の半製品し一片側の血液ボー1へJ、す10
0’Cの水蒸気を30秒間導入し21、.後、中空繊組
、が乾燥する前(3人、■透析装蓄内(こ蒸溜水を充填
(−]圧力1 、 2kMcm2 、温度’116”C
で、?)0分間蒸気滅菌を行なった。得られた人工透析
装置の性能を調べるために、除水能ならびにj尿素、ク
レアチニンおよびビタミンB12の除去能を測定L/た
。結果を第1表に示づ。
Example 'I Inner IY approx. 2 C) OII cuff, membrane Fe 12 tiη
1, Effective 1 (235mn+ copper-)' Shinia cell '-
''-Using 800 hollow fibers to assemble an artificial dialysis device with an effective membrane area of approximately 1.0 Blood bow 1 J, Su 10
Introducing water vapor at 0'C for 30 seconds 21. After that, before the hollow fiber assembly was dried (3 people), the inside of the dialysis device was filled with distilled water (-) the pressure was 1 to 2 kmcm2, the temperature was 116"C.
in,? ) Steam sterilization was performed for 0 minutes. In order to examine the performance of the obtained artificial dialysis device, the water removal capacity and the removal capacity of urea, creatinine, and vitamin B12 were measured. The results are shown in Table 1.

なお、除水1指1.上、1−M1″(?十1 ) 10
0mm1−1gの条(’i −C37°C下流速200
 ml、/分に−で市水を人工透析装置Nの血液側lJ
循環し、限外濾過速度(U FR’)を・測定しI:、
(注’l:(pi−+利’O) /2 =200 mm
Hg )また尿素、クレプノヂ1、ニンよ3J、びビタ
ミン1312の除去能についでは、各成分2mMdlを
含む水溶液を:37°C1,゛で人工透析装置の血液側
l、二流早200mρ/minで流し、−プ)、透析液
側に1よ、37°Cの市水を流量500m1/minで
流しハまたこの時の血液側の汀ツノの差は0どし−(除
水のない状態を・保ち、(7の状態M=uいて血液側の
人口側溶液と出[1側洛液を4ノンシリングし、名成分
の濃度差により算出(〕Iご。
In addition, water removal 1 finger 1. Top, 1-M1″ (?11) 10
0mm 1-1g strip ('i -C37°C downstream speed 200
ml,/min - from the city water to the blood side of the dialysis machine N.
Circulate and measure the ultrafiltration rate (U FR'):
(Note'l: (pi- + interest'O) /2 = 200 mm
Hg) Also, regarding the removal ability of urea, Klepnodzi 1, Ninyo 3J, and vitamin 1312, an aqueous solution containing 2mMdl of each component was run on the blood side of an artificial dialysis machine at 37°C and at a rate of 200mρ/min. , -p), 37°C city water is poured into the dialysate side at a flow rate of 500 ml/min, and the difference in the bottom angle on the blood side at this time is 0. Maintain (state M = u in 7) and the artificial side solution on the blood side.

実施例2 実施例1と同様に組立゛(られた人工透析装置半製品に
ハ側の血液ボー1〜より110°Cの水蒸気を60秒間
通過させでスーy−−−ム処理を行なった後、人工透析
装置内に蒸溜水を充填し圧力1.2kMCm2 、温1
31:116°Cで、90分間蒸気滅菌を行なった。得
られた人工透析装置の性能の除水能ならびに尿素、クレ
アチニンおよびビタミンB12の除去能を測定し11−
゛。結果を・第′]表に示す。
Example 2 A semi-finished artificial dialysis device assembled in the same manner as in Example 1 was subjected to a steam treatment by passing steam at 110°C for 60 seconds from the blood bowl 1 on the C side. , the artificial dialysis machine was filled with distilled water, the pressure was 1.2kMCm2, and the temperature was 1.
31: Steam sterilization was performed at 116°C for 90 minutes. The water removal ability and urea, creatinine, and vitamin B12 removal ability of the obtained artificial dialysis device were measured.
゛. The results are shown in Table 1.

実施例こ3 水蒸気の心入を片側の透析液ポートより119だ以外は
、実施例1と間作に行った。
Example 3 Intercropping was carried out as in Example 1, except that water vapor was introduced from the dialysate port on one side.

比較例1−・2 実施例1ど+i’il様(5:組立てられた人工透析装
置の半製品に熱風処理を行イ【わずに人工透析装置内に
蒸溜水を充填し圧力1 、2 kg/ cni2、fa
lfZ 116℃−(ε〕090分間蒸気滅菌なって製
品を得た。冑られ1り二人]−透透析櫛の除水能ならび
に尿素、クレアチニンおよびビタミン[312の除去能
を測定して実施例と比較した。、端末を第1表に示す。
Comparative Example 1-2 Example 1 Mr. I'il (5: Fill the artificial dialysis machine with distilled water without applying hot air treatment to the half-finished product of the assembled artificial dialysis machine, and the pressure was 1, 2. kg/cni2, fa
A product was obtained by steam sterilization at 116°C (ε) for 90 minutes. The terminals are shown in Table 1.

(以下余白) IV、発明の具体的効果 以上述べたように、本発明は、再生セルロース中空繊維
束を人工透析装置の筒状本体内に挿入し、その両端を前
記筒状体に固定した後、該再生セルロース中空繊維に1
00〜120℃の水蒸気を接触させることを特徴とする
人工透析装置の製造方法でおるから、再生セルロース中
空繊維の製造工程において、可塑化時に含ませるグリセ
1ノンの量の加減、ノルマン化濃度の調整もしくは屹燥
条件の変化などにより、除水能を制御する場合に比へよ
り安定にかつ簡便な操作で除水能を制御することか可能
であり、かつ水蒸気を用いるので、中空繊維に損傷を与
えることが少なく、透析能にはほとんど影響を与えるこ
とがないので、人工透析の初期導入患者等の透析患者に
必要とされる比較的低除水能のウェットタイプの人工透
析装置を好適に提供できるものでおる。また本発明の製
造方法によると、異なる除水能を有する人工透析装置を
、同一条件下で調製された再生セルロース中空繊維を用
いて製造することができ、除水能ごとによる再生セルロ
ース中空繊維の製造ラインの設定は不要となる。
(The following is a blank space) IV. Specific Effects of the Invention As described above, the present invention provides a method for inserting a regenerated cellulose hollow fiber bundle into the cylindrical body of an artificial dialysis device, fixing both ends of the bundle to the cylindrical body, and then , 1 to the regenerated cellulose hollow fibers.
Since the method for manufacturing an artificial dialysis device is characterized by contacting with water vapor at a temperature of 00 to 120°C, in the manufacturing process of regenerated cellulose hollow fibers, the amount of glycerinone to be included during plasticization and the Normanization concentration can be controlled. When controlling the water removal ability through adjustment or changes in drying conditions, it is possible to control the water removal ability more stably and with simple operations, and since water vapor is used, there is no damage to the hollow fibers. Because it has little effect on dialysis performance, it is suitable for providing a wet-type artificial dialysis device with a relatively low water removal capacity, which is required for dialysis patients such as those who are initially introduced to artificial dialysis. I'll do what I can. Furthermore, according to the manufacturing method of the present invention, artificial dialysis devices having different water removal capacities can be manufactured using regenerated cellulose hollow fibers prepared under the same conditions, and the regenerated cellulose hollow fibers have different water removal capacities. There is no need to set up a production line.

また、1qられる人工透析装置はスチーム処理時間が3
0〜120秒間でおり、再生セルロース中空繊維が銅ア
ンモニアセルロース紡糸原液から得られるものである場
合にはより優れたものとなる。
In addition, an artificial dialysis machine that requires 1q requires steam processing time of 3
0 to 120 seconds, and is more excellent when the regenerated cellulose hollow fibers are obtained from a copper ammonia cellulose spinning dope.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の製造方法の一実施例におけるスチー
ム処理過程を示す図面でおる。 1・・・再生セルロース中空繊維束、2・・・筒状本体
、3・・・人工透析装置、 4,10・・・血液ポート
、5・・・温度調節機構、 6・・・スチームジェネレーター。
FIG. 1 is a diagram showing a steam treatment process in an embodiment of the manufacturing method of the present invention. DESCRIPTION OF SYMBOLS 1... Regenerated cellulose hollow fiber bundle, 2... Cylindrical body, 3... Artificial dialysis device, 4, 10... Blood port, 5... Temperature control mechanism, 6... Steam generator.

Claims (6)

【特許請求の範囲】[Claims] (1)再生セルロース中空繊維の束を人工透析装置の筒
状本体内に挿入し、その両端を前記筒状体に固定した後
、該再生セルロース中空繊維に100〜120℃の水蒸
気を接触させることを特徴とする人工透析装置の製造方
法。
(1) Inserting a bundle of regenerated cellulose hollow fibers into the cylindrical body of an artificial dialysis device and fixing both ends to the cylindrical body, and then contacting the regenerated cellulose hollow fibers with water vapor at 100 to 120°C. A method for manufacturing an artificial dialysis device characterized by:
(2)水蒸気は30〜120秒間通されるものである特
許請求の範囲第1項に記載の人工透析装置の製造方法。
(2) The method for manufacturing an artificial dialysis device according to claim 1, wherein the water vapor is passed for 30 to 120 seconds.
(3)人工透析装置は、人工透析装置内に生体に無害な
水溶液を充填した後高圧蒸気滅菌を行なわれるものであ
る特許請求の範囲第1項または第2項に記載の人工透析
装置の製造方法。
(3) Manufacture of an artificial dialysis apparatus according to claim 1 or 2, wherein the artificial dialysis apparatus is subjected to high-pressure steam sterilization after filling the artificial dialysis apparatus with an aqueous solution that is harmless to living organisms. Method.
(4)再生セルロース中空繊維が銅アンモニアセルロー
ス紡糸原液から得られたものである特許請求の範囲第1
項〜第3項のいずれかに記載の人工透析装置の製造方法
(4) Claim 1, wherein the regenerated cellulose hollow fibers are obtained from a copper ammonia cellulose spinning dope.
3. A method for manufacturing an artificial dialysis device according to any one of items 1 to 3.
(5)前記水蒸気の接触は、水蒸気を前記中空繊維内に
通すことにより行うものである特許請求の範囲第1項〜
第4項のいずれかに記載の人工透析装置の製造方法。
(5) The contact with the water vapor is performed by passing the water vapor into the hollow fiber.
A method for manufacturing an artificial dialysis device according to any one of Item 4.
(6)前記水蒸気の接触は、水蒸気を前記中空繊維の外
側に通すことにより行うものである特許請求の範囲第1
項〜第3項のいずれかに記載の人工透析装置の製造方法
(6) The contact with the water vapor is performed by passing the water vapor to the outside of the hollow fiber.
3. A method for manufacturing an artificial dialysis device according to any one of items 1 to 3.
JP18048285A 1985-08-19 1985-08-19 Production of artificial dialyser Granted JPS6241665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18048285A JPS6241665A (en) 1985-08-19 1985-08-19 Production of artificial dialyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18048285A JPS6241665A (en) 1985-08-19 1985-08-19 Production of artificial dialyser

Publications (2)

Publication Number Publication Date
JPS6241665A true JPS6241665A (en) 1987-02-23
JPH0121987B2 JPH0121987B2 (en) 1989-04-24

Family

ID=16083994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18048285A Granted JPS6241665A (en) 1985-08-19 1985-08-19 Production of artificial dialyser

Country Status (1)

Country Link
JP (1) JPS6241665A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180481A (en) * 1984-02-24 1985-09-14 Tadao Totsuka Rotary electric machine
JPS61146306A (en) * 1984-12-20 1986-07-04 Terumo Corp Preparation of hollow yarn for dialysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180481A (en) * 1984-02-24 1985-09-14 Tadao Totsuka Rotary electric machine
JPS61146306A (en) * 1984-12-20 1986-07-04 Terumo Corp Preparation of hollow yarn for dialysis

Also Published As

Publication number Publication date
JPH0121987B2 (en) 1989-04-24

Similar Documents

Publication Publication Date Title
RU2292225C2 (en) Hemodiafiltration/hemofiltration cartridge
JP5711330B2 (en) A device that removes substances partially bound to protein
JP4571621B2 (en) Apparatus and method for extracorporeal treatment of blood by selective extraction of solutes
JP4167058B2 (en) Dual stage filtration cartridge
JP3831048B2 (en) Dialyzer
CA2741572A1 (en) Portable peritoneal dialysis system
JP3011463B2 (en) Therapeutic blood purification apparatus and method for producing transfusion for hemodiafiltration (HDF)
JP2003518995A (en) Sterile liquid filtration cartridge and method using the same
GB2124511A (en) Method and apparatus for the purification of blood
EP2416818B1 (en) System for the treatment of blood
JP2001170171A (en) Semipermeable membrane for blood processing and dialyzer for blood processing using the same
JPS5825465B2 (en) Adsorption water removal type blood purification device
WO2024027470A1 (en) Method and device for purifying blood on basis of blood-repellent breathable film material, apparatus, and device
CN106659834B (en) System for removing pro-inflammatory mediator and granulocyte and monocyte in blood
KR20060092204A (en) Surface treatment of the membrane and associated product
JPS6241665A (en) Production of artificial dialyser
JP4201313B2 (en) Toxic substance binding albumin removal system
JP3353466B2 (en) Dialysis fluid management device for hemodialysis machine
JP2894475B2 (en) Hemodialysis machine using hollow fiber membrane
GB2083761A (en) A combination sorbent, dialyser
JPH07313589A (en) Dialyzing liquid control device for blood dialyzing device
JPH0121986B2 (en)
JPS596663B2 (en) Multi-stage filtration/reabsorption artificial kidney
CN213284806U (en) Blood purification composite set
CN109758631B (en) Adsorption type hemodialyzer