JPS6241584B2 - - Google Patents

Info

Publication number
JPS6241584B2
JPS6241584B2 JP55066089A JP6608980A JPS6241584B2 JP S6241584 B2 JPS6241584 B2 JP S6241584B2 JP 55066089 A JP55066089 A JP 55066089A JP 6608980 A JP6608980 A JP 6608980A JP S6241584 B2 JPS6241584 B2 JP S6241584B2
Authority
JP
Japan
Prior art keywords
catalyst
value
reaction
methacrolein
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55066089A
Other languages
Japanese (ja)
Other versions
JPS56161342A (en
Inventor
Atsushi Aoshima
Ryoichi Mitsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6608980A priority Critical patent/JPS56161342A/en
Priority to GB8112733A priority patent/GB2077257B/en
Priority to FR8108893A priority patent/FR2482585B1/en
Priority to US06/263,667 priority patent/US4446328A/en
Priority to DE19813119331 priority patent/DE3119331C2/en
Publication of JPS56161342A publication Critical patent/JPS56161342A/en
Publication of JPS6241584B2 publication Critical patent/JPS6241584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はイソブチレン又はターシヤリーブタノ
ールを分子状酸素により酸化してメタクロレイン
を製造するに際し、特定の触媒を使用して、メタ
クロレインを高収率で製造する方法に関する。 これまでイソブチレン又はターシヤリーブタノ
ールの気相接触酸化反応用触媒として多くの触媒
が提唱されている。しかし工業的見地からすると
まだまだ改良すべき点が多い。 例えばメタクロレインを製造する際の原料(イ
ソブチレン又はターシヤリーブタノール)より製
品であるメタクロレインを得る収率はまだまだ低
く、これまですぐれた触媒といわれるものでも、
イソブチレンに対する選択率は高々82〜86%程度
であり、さらに高選択率の触媒系が望まれてい
る。モリブデンを主成分とし、さらにテルルを含
んだ触媒は、反応初期においては、かなりの高収
率を示すものがあるが、テルルの構造変化や飛散
等のため活性低下が著しく、長期間高収率でメタ
クロレインを得ることの出来る触媒はほとんどみ
られない。 又、特にメタクロレインを酸素とアルコールを
用いて直接不飽和エステルを製造する反応の原料
として用いる場合には、例えばメタクリル酸、酢
酸のような副生成物ができるだけ少ないことが望
まれている等工業触媒として用いるためには数多
くの問題点があげられる。我々は上記問題を解決
すべく鋭意努力し、詳細に検討を行なつた結果、
本発明をなすに至つた。 すなわち、本発明はイソブチレン又はターシヤ
リーブタノールを分子状酸素により酸化してメタ
クロレインを製造するに際し、一般組成 Mo12FeaNibTecXdTifYgOh (ただし、a,b,c,d,f,gはモリブデ
ン12molに対するモル数を表わし、XはRb,
Cs,Tlの中から、YはCu,Pb,Nd,Smの中か
ら、それぞれ選ばれた少なくとも一種の元素を表
わし、aは0.2から6までの値であり、bは0.2か
ら6までの値であり、a+bは1から10までの値
であり、cは0.1から4までの値であり、dは0.1
から3までの値であり、fは0.1から4までの値
であり、gは0から5までの値であり、hは存在
する他の原子価を満足する酸素の原子数であ
る。)を有する触媒を用いることを特徴とするメ
タクロレインの製造方法に関するものである。 本発明の特色は、該触媒を用いるとメタクロレ
インの選択率が90%以上もあり、イソブチレンあ
るいはターシヤリーブタノールよりメタクロレイ
ンが高選択率で得られることである。従つて副生
物であるメタクリル酸、酢酸、アセトン、一酸化
炭素、二酸化炭素が少ない。又該触媒は活性低下
が極めて少なく、長期間高活性、高選択率を維持
しつづける能力を有している。 本発明の触媒においてモリブデンは必須成分で
ある。触媒組成よりモリブデンを除いた系では極
めて活性が低くメタクロレインの向上は望めな
い。 又、テルルはプロモーターとして用いる。なお
プロモーターとしてテルルを用いた触媒は従来か
らも触媒活性および選択率を高めるために用いら
れていたが、初期活性および選択率はすぐれてい
るが、その活性がすぐに低下し実用化されにくい
とされてきた。 本発明はプロモーターとしてテルルを用いた触
媒の欠点の一つである触媒の活性が低下すること
を防止し、さらに高活性を付与するために本発明
の触媒系においては、チタンを用い、さらには鉄
およびニツケルを共に含有させている。 触媒の活性低下は工業触媒としては致命的であ
るが、チタン、さらには鉄およびニツケルを適当
量用いることにより防止することができる。チタ
ン、鉄およびニツケルの上記効果はどれが欠けて
も失なわれ、又鉄およびニツケルの合計量がモリ
ブデンに比して多く含まれるようになると、モリ
ブデンの主触媒の機能に影響を与えるので好まし
くない。 さらにチタンの添加は上記効果に加え、水溶性
の酸類(酢酸、メタクリル酸)の副生が特に少な
くなるという効果を奏する。従つて、これまでク
エンチタワー等で反応生成ガス中の水溶性の酸類
等を除去する操作が行なわれているが、該触媒を
用いると酸類の生成が少ないために、要処理排水
の量が少なくなり、排水処理施設を小型のものに
することが可能である。又該触媒をメタクロレイ
ンより直接不飽和エステル(例えばメタクリル酸
メチル)を製造する反応の原料供給用のメタクロ
レイン製造プロセスに用いる場合には、副生のメ
タクリル酸が極めて少ないためにメタクロレイン
の収率が高くなり、メタクリル酸を処理するコス
トも極めて安くなる。 本発明触媒におけるX成分は微量でも効果を発
揮する成分であり、ルビジウム、セシウム、タリ
ウムから選ばれた少なくとも一種の元素であり、
本発明触媒においては必須成分である。X成分の
含有しない系、および他のアルカリ(ナトリウ
ム、リチウム)の系ではメタクロレインの選択率
を向上せしめることは出来ない。 本発明触媒の担体としては、例えばシリカ、シ
リコンカーバイド、アルミナ等の公知のものを使
用することができるが、特にシリカゾル、シリカ
ゲルがすぐれている。本発明の触媒は例えば次の
ように調製することができる。モリブデン酸アン
モニウムの水溶液に水溶性の鉄、ニツケル、X成
分の化合物、チタンの化合物および水溶性のY成
分化合物を添加し、次にテルルの酸化物又は酸を
添加し、さらに担体としてシリカゾルを添加して
湯浴上で蒸発乾固し、空気又は酸素の存在下で予
備焼成、続いて、本焼成を行う。通常予備焼成温
度は100〜500℃、好ましくは200〜400℃で行なわ
れる。本焼成は通常400〜1000℃、好ましくは500
〜700℃、さらに好ましくは500〜650℃の温度範
囲で行なわれる。 本発明の調製に用いられる各元素の原料物質と
しては、酸化物のみならず、焼成により本発明の
触媒を構成するものであればいかなるものでも使
用できる。例えば各元素のアンモニウム塩、硝酸
塩、炭酸塩などの無機酸塩、酢酸塩などの有機酸
塩を挙げることができる。触媒は粉状あるいは粒
状あるいは錠剤として用いることができる。 反応器は、固定床、流動床のどちらを使用して
も良い。本発明に係る反応は250℃〜550℃、好ま
しくは350〜450℃の温度範囲で、圧力は0.5〜10
気圧、好ましくは常圧〜2気圧で行なわれる。 イソブチレン又はターシヤリーブタノール、空
気(又は酸素)、水蒸気及び不活性ガスの混合原
料ガスと前記触媒との接触時間は、常圧の場合
0.1〜15秒であり、好ましくは0.2〜10秒である。
触媒に対する原料ガスの流量は空筒速度(SV)
で一般に100〜5000Hr-1であり、好ましくは200
〜2000Hr-1である。 ガス混合物の組成は、イソブチレン又はターシ
ヤリーブタノール1モル当り酸素0.5〜4モル、
好ましくは1.4〜2.5モルで、水蒸気は必須ではな
いが、イソブチレン又はターシヤリーブタノール
1モル当り1〜30モル、好ましくは2〜15モル加
えるのが収率面で有利である。その他不活性ガス
(例えばN2,He,Ar,CO2等)の添加は、他の組
成の変化に応じて自由に変えることが出来る。 以上詳細に説明した本発明の触媒を用いると、
メタクロレインの選択率は90〜94%にも達する。
このような高選択率でしかも長期間安定に活性を
維持する触媒は極めて画期的である。 以下に実施例を示すが、本発明をこれに限定す
るものではない。 実施例 1 パラモリブデン酸アンモニウム21.2gを200ml
の蒸留水に溶解し硝酸タリウム0.80gを加え溶解
する。これをA液とする。さらに硝酸ニツケル
2.9gを200mlの蒸留水に溶解し硝酸第二鉄4.04
g、硝酸鉛6.6g、三塩化チタン1.54g、テルル
酸4.55gを溶解する。これを先に示したA液と混
合し、シリカゾル(スノーテツクス)52.43gを
添加する。 次に、この溶液を湯浴上で蒸発乾固し、その後
250℃の空気中で2時間仮焼を行ない、その焼成
物を10〜28meshに粉砕し650℃で4時間空気焼成
を行なつた。触媒組成は Mo12Pb2Fe1Ni1Tl0.3Ti1Te2Ox であつた。 実施例 2 実施例1で調製した触媒5gを内径5mmφのパ
イレツクス反応管に充填し反応温度400℃で反応
した。原料ガス組成はイソブチレン/O2
H2O/Heのモル比が3/6/20/71で接触時間
は2.5秒であつた。分析はシマズ6APrTFガスク
ロを用いて、カラムはクロモソルブ101を用い
た。結果は第1表に示す。 実施例 3〜4 実施例1と同様な調製条件で第1表に示す組成
の触媒を用いて実施例2と同様な反応条件で反応
を行なつた。結果は第1表に示す。 比較例 1〜2 実施例1と同様な調製条件で第2表に示すよう
な組成の触媒を用いて実施例2と同様な反応条件
で反応を行なつた。結果は第2表に示す。
The present invention relates to a method for producing methacrolein in high yield by using a specific catalyst when producing methacrolein by oxidizing isobutylene or tertiary-butanol with molecular oxygen. Many catalysts have been proposed so far as catalysts for gas phase catalytic oxidation reactions of isobutylene or tert-butanol. However, from an industrial standpoint, there are still many points to be improved. For example, when producing methacrolein, the yield of the product methacrolein from the raw material (isobutylene or tert-butanol) is still low, and even with what has been said to be an excellent catalyst,
The selectivity to isobutylene is about 82 to 86% at most, and a catalyst system with even higher selectivity is desired. Catalysts containing molybdenum as a main component and also tellurium may show quite high yields in the early stage of the reaction, but their activity decreases significantly due to structural changes and scattering of tellurium, resulting in long-term high yields. There are very few catalysts that can obtain methacrolein. In addition, especially when methacrolein is used as a raw material for a reaction that directly produces unsaturated esters using oxygen and alcohol, it is desirable for by-products such as methacrylic acid and acetic acid to be as low as possible in industrial applications. There are many problems when using it as a catalyst. As a result of our earnest efforts and detailed study to resolve the above issues, we have found that:
The present invention has been accomplished. That is, in the present invention, when producing methacrolein by oxidizing isobutylene or tertiary-butanol with molecular oxygen, the general composition Mo 12 Fe a Ni b Te c X d Ti f Y g O h (however, a, b, c, d, f, g represent the number of moles per 12 mol of molybdenum, X is Rb,
From Cs and Tl, Y represents at least one element selected from Cu, Pb, Nd, and Sm, a has a value from 0.2 to 6, and b has a value from 0.2 to 6. , a+b is a value from 1 to 10, c is a value from 0.1 to 4, and d is 0.1
f is a value from 0.1 to 4, g is a value from 0 to 5, and h is the number of oxygen atoms satisfying other valences present. ) The present invention relates to a method for producing methacrolein, characterized by using a catalyst having the following. A feature of the present invention is that when the catalyst is used, the selectivity for methacrolein is 90% or more, and methacrolein can be obtained with a higher selectivity than isobutylene or tert-butanol. Therefore, the amount of by-products such as methacrylic acid, acetic acid, acetone, carbon monoxide, and carbon dioxide is small. In addition, the catalyst exhibits extremely little decrease in activity and has the ability to maintain high activity and high selectivity for a long period of time. Molybdenum is an essential component in the catalyst of the present invention. In a system in which molybdenum is excluded from the catalyst composition, the activity is extremely low and no improvement in methacrolein can be expected. Also, tellurium is used as a promoter. Catalysts using tellurium as a promoter have been used in the past to increase catalytic activity and selectivity, but although their initial activity and selectivity are excellent, their activity quickly declines, making it difficult to put them into practical use. It has been. The present invention prevents a decrease in catalyst activity, which is one of the drawbacks of catalysts using tellurium as a promoter, and furthermore uses titanium in the catalyst system of the present invention in order to impart high activity. Contains both iron and nickel. Although a decrease in catalyst activity is fatal for industrial catalysts, it can be prevented by using appropriate amounts of titanium, iron, and nickel. The above-mentioned effects of titanium, iron, and nickel will be lost if any one of them is missing, and if the total amount of iron and nickel becomes larger than that of molybdenum, it will affect the function of the main catalyst of molybdenum, so it is preferable. do not have. Furthermore, in addition to the above-mentioned effects, the addition of titanium has the effect of particularly reducing by-products of water-soluble acids (acetic acid, methacrylic acid). Therefore, operations such as quench towers have been used to remove water-soluble acids from the reaction product gas, but when this catalyst is used, fewer acids are produced, so the amount of wastewater that needs to be treated is reduced. Therefore, it is possible to downsize the wastewater treatment facility. In addition, when this catalyst is used in a methacrolein production process for supplying raw materials for a reaction that directly produces unsaturated esters (for example, methyl methacrylate) from methacrolein, the yield of methacrolein is reduced because the amount of by-product methacrylic acid is extremely small. The cost of processing methacrylic acid is also very low. The X component in the catalyst of the present invention is a component that exhibits an effect even in a small amount, and is at least one element selected from rubidium, cesium, and thallium.
It is an essential component in the catalyst of the present invention. The selectivity of methacrolein cannot be improved in systems that do not contain the X component and systems that contain other alkalis (sodium, lithium). As the carrier for the catalyst of the present invention, known carriers such as silica, silicon carbide, and alumina can be used, but silica sol and silica gel are particularly excellent. The catalyst of the present invention can be prepared, for example, as follows. Add water-soluble iron, nickel, X-component compounds, titanium compounds, and water-soluble Y-component compounds to an aqueous solution of ammonium molybdate, then add tellurium oxide or acid, and then add silica sol as a carrier. The mixture is evaporated to dryness on a hot water bath, and pre-calcined in the presence of air or oxygen, followed by main firing. The pre-calcination temperature is usually 100-500°C, preferably 200-400°C. Main firing is usually 400-1000℃, preferably 500℃
The temperature range is 700°C to 700°C, more preferably 500 to 650°C. As the raw materials for each element used in the preparation of the present invention, not only oxides but also any material that forms the catalyst of the present invention by calcination can be used. Examples include inorganic acid salts such as ammonium salts, nitrates, and carbonates of each element, and organic acid salts such as acetates. The catalyst can be used in the form of powder, granules, or tablets. The reactor may be either a fixed bed or a fluidized bed. The reaction according to the invention is carried out at a temperature range of 250°C to 550°C, preferably 350°C to 450°C, and a pressure of 0.5 to 10°C.
The reaction is carried out at atmospheric pressure, preferably normal pressure to 2 atmospheres. The contact time of the mixed raw material gas of isobutylene or tert-butanol, air (or oxygen), water vapor and inert gas with the catalyst is at normal pressure.
It is 0.1 to 15 seconds, preferably 0.2 to 10 seconds.
The flow rate of the raw material gas to the catalyst is the cylinder velocity (SV)
Generally 100 to 5000Hr -1 , preferably 200
~2000Hr -1 . The composition of the gas mixture is 0.5 to 4 moles of oxygen per mole of isobutylene or tert-butanol;
The amount is preferably 1.4 to 2.5 moles, and although steam is not essential, it is advantageous in terms of yield to add 1 to 30 moles, preferably 2 to 15 moles, per mole of isobutylene or tert-butanol. The addition of other inert gases (for example, N2 , He, Ar, CO2 , etc.) can be freely changed according to changes in other compositions. When using the catalyst of the present invention described in detail above,
The selectivity of methacrolein reaches as high as 90-94%.
A catalyst that has such high selectivity and maintains its activity stably for a long period of time is extremely innovative. Examples are shown below, but the present invention is not limited thereto. Example 1 21.2g of ammonium paramolybdate in 200ml
Dissolve in distilled water, add 0.80 g of thallium nitrate, and dissolve. This is called liquid A. Furthermore, nickel nitrate
Dissolve 2.9g in 200ml of distilled water to obtain ferric nitrate 4.04
g, lead nitrate 6.6 g, titanium trichloride 1.54 g, and telluric acid 4.55 g. This is mixed with the liquid A shown above, and 52.43 g of silica sol (Snowtex) is added. This solution was then evaporated to dryness on a water bath and then
Calcining was performed in air at 250°C for 2 hours, and the fired product was pulverized to 10 to 28 mesh and air fired at 650°C for 4 hours. The catalyst composition was Mo 12 Pb 2 Fe 1 Ni 1 Tl 0.3 Ti 1 Te 2 O x . Example 2 5 g of the catalyst prepared in Example 1 was charged into a Pyrex reaction tube with an inner diameter of 5 mm and reacted at a reaction temperature of 400°C. Raw material gas composition is isobutylene/O 2 /
The H 2 O/He molar ratio was 3/6/20/71 and the contact time was 2.5 seconds. The analysis was performed using Shimaz 6APrTF gas chromatography, and Chromosolve 101 was used as the column. The results are shown in Table 1. Examples 3 to 4 A reaction was carried out under the same reaction conditions as in Example 2 using a catalyst having the composition shown in Table 1 under the same preparation conditions as in Example 1. The results are shown in Table 1. Comparative Examples 1-2 A reaction was carried out under the same reaction conditions as in Example 2 using the same preparation conditions as in Example 1 and using a catalyst having the composition shown in Table 2. The results are shown in Table 2.

【表】【table】

【表】 実施例 5〜23 実施例1と同様な調製条件で第3表に示す様な
組成の触媒を用いて実施例2と同様な反応条件で
反応を行なつた。結果は第3表に示す。 比較例 3〜10 実施例1と同様な調製条件で第4表に示す様な
組成の触媒を用いて実施例2と同様な反応条件で
反応を行なつた。結果は第4表に示す。
[Table] Examples 5 to 23 A reaction was carried out under the same reaction conditions as in Example 2 using a catalyst having the composition shown in Table 3 under the same preparation conditions as in Example 1. The results are shown in Table 3. Comparative Examples 3 to 10 A reaction was carried out under the same reaction conditions as in Example 2 using a catalyst having the composition shown in Table 4 under the same preparation conditions as in Example 1. The results are shown in Table 4.

【表】【table】

【表】【table】

【表】 実施例24〜26,比較例11〜12 実施例2〜4、比較例1〜2で使用した触媒を
用いて、それぞれの例と同様な反応条件で100時
間連続反応を行なつた。結果は第5表に示す。
[Table] Examples 24-26, Comparative Examples 11-12 Using the catalysts used in Examples 2-4 and Comparative Examples 1-2, continuous reactions were carried out for 100 hours under the same reaction conditions as in each example. . The results are shown in Table 5.

【表】 実施例 27〜29 実施例1と同様な調製条件で第6表に示す様な
組成の触媒5gを内径5mmφのパイレツクス反応
管に充填し反応温度は380〜440℃で反応した。 原料ガス組成はターシヤリーブタノール/
O2/H2O/Heのモル比が3/6/20/71で接触
時間は2.5秒であつた。結果は第6表に示す。 比較例 13,14 実施例1と同様な調製条件で第7表に示す様な
組成の触媒を用いて実施例27〜29と同様な反応条
件で反応を行なつた。結果は第7表に示す。 実施例 30〜48 実施例1と同様な調製条件で第8表に示す様な
組成の触媒を用いて実施例27〜29と同様な反応条
件で反応を行なつた。結果は第8表に示す。
[Table] Examples 27 to 29 Under the same preparation conditions as in Example 1, 5 g of the catalyst having the composition shown in Table 6 was filled into a Pyrex reaction tube with an inner diameter of 5 mm, and the reaction was carried out at a reaction temperature of 380 to 440°C. Raw material gas composition is tertiary butanol/
The molar ratio of O 2 /H 2 O/He was 3/6/20/71 and the contact time was 2.5 seconds. The results are shown in Table 6. Comparative Examples 13 and 14 Under the same preparation conditions as in Example 1, a reaction was carried out under the same reaction conditions as in Examples 27 to 29 using a catalyst having the composition shown in Table 7. The results are shown in Table 7. Examples 30 to 48 Reactions were carried out under the same conditions as in Examples 27 to 29 using catalysts having the compositions shown in Table 8 under the same preparation conditions as in Example 1. The results are shown in Table 8.

【表】【table】

【表】【table】

【表】 比較例 15〜22 実施例1と同様な調製条件で第9表に示す様な
組成の触媒を用いて実施例27〜29と同様な反応条
件で反応を行なつた。結果は第9表に示す。
[Table] Comparative Examples 15-22 Reactions were carried out under the same reaction conditions as Examples 27-29 using catalysts having the compositions shown in Table 9 under the same preparation conditions as in Example 1. The results are shown in Table 9.

【表】【table】

【表】 実施例49〜51,比較例23〜24 実施例2〜4で使用した触媒を用いてそれぞれ
の実施例と同様な条件で100時間連続反応を行な
つた。結果は第10表に示す。
[Table] Examples 49 to 51, Comparative Examples 23 to 24 Using the catalysts used in Examples 2 to 4, a continuous reaction was carried out for 100 hours under the same conditions as in each Example. The results are shown in Table 10.

【表】【table】

Claims (1)

【特許請求の範囲】 1 イソブチレン又はターシヤリーブタノールを
分子状酸素により酸化してメタクロレインを製造
するに際し、一般組成 Mo12FeaNibTecXdTifYgOh (ただし、a,b,c,d,e,f,gはモリ
ブデン12molに対するモル数を表わし、Xは、
Rb,Cs,Tlの中から、YはCu,Pb,Nd,Smの
中から、それぞれ選ばれた少なくとも一種の元素
を表わし、aは0.2から6までの値であり、bは
0.2から6までの値であり、a+bは1から10ま
での値であり、cは0.1から4までの値であり、
dは0.1から3までの値であり、fは0.1から4ま
での値であり、gは0から5までの値であり、h
は存在する他の原子価を満足する酸素の原子数で
ある。)を有する触媒を用いることを特徴とする
メタクロレインの製造方法。
[Claims] 1. When producing methacrolein by oxidizing isobutylene or tert-butanol with molecular oxygen, the general composition Mo 12 Fe a Ni b Te c X d Ti f Y g O h (however, a, b, c, d, e, f, g represent the number of moles relative to 12 mol of molybdenum, and X is
Among Rb, Cs, and Tl, Y represents at least one element selected from among Cu, Pb, Nd, and Sm, a is a value from 0.2 to 6, and b is
The value is from 0.2 to 6, a+b is the value from 1 to 10, c is the value from 0.1 to 4,
d is a value from 0.1 to 3, f is a value from 0.1 to 4, g is a value from 0 to 5, and h
is the number of oxygen atoms that satisfy the other valences present. ) A method for producing methacrolein, characterized by using a catalyst having the following.
JP6608980A 1980-05-19 1980-05-19 Preparation of methacrolein Granted JPS56161342A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6608980A JPS56161342A (en) 1980-05-19 1980-05-19 Preparation of methacrolein
GB8112733A GB2077257B (en) 1980-05-19 1981-04-24 Process for producing methacrolein
FR8108893A FR2482585B1 (en) 1980-05-19 1981-05-05 PROCESS AND CATALYST FOR THE PREPARATION OF METHACROLEIN
US06/263,667 US4446328A (en) 1980-05-19 1981-05-14 Process for producing methacrolein
DE19813119331 DE3119331C2 (en) 1980-05-19 1981-05-15 Process for the production of methacrolein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6608980A JPS56161342A (en) 1980-05-19 1980-05-19 Preparation of methacrolein

Publications (2)

Publication Number Publication Date
JPS56161342A JPS56161342A (en) 1981-12-11
JPS6241584B2 true JPS6241584B2 (en) 1987-09-03

Family

ID=13305778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6608980A Granted JPS56161342A (en) 1980-05-19 1980-05-19 Preparation of methacrolein

Country Status (1)

Country Link
JP (1) JPS56161342A (en)

Also Published As

Publication number Publication date
JPS56161342A (en) 1981-12-11

Similar Documents

Publication Publication Date Title
US3775474A (en) Process for the preparation of acrylic acid
JP5192495B2 (en) Catalysts for the oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acids and methods for their production and use
US4354044A (en) Method for preparing methacrolein
US4174459A (en) Process for producing methacrylic acid
US4042625A (en) Process and catalyst for preparing unsaturated carboxylic acid
JPS5827255B2 (en) Method for producing unsaturated fatty acids
US4258217A (en) Process for producing methacrolein
US4209640A (en) Catalysts for the oxidation of unsaturated aldehydes
US4446328A (en) Process for producing methacrolein
US4552978A (en) Oxidation of unsaturated aldehydes
JP2558036B2 (en) Method for producing methacrolein and / or methacrylic acid
JP3772392B2 (en) Composite oxide catalyst and method for producing methacrylic acid
JPH0547265B2 (en)
JP3855298B2 (en) Process for producing alkene and / or oxygen-containing compound
JP3146486B2 (en) Method for producing catalyst for producing methacrylic acid
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPH029014B2 (en)
JPS6241584B2 (en)
US4560673A (en) Catalyst for the oxidation of unsaturated aldehydes
JP3117265B2 (en) Method for producing α, β-unsaturated nitrile
JPH0924277A (en) Catalyst and process for preparing methacrylic acid
JPS6241583B2 (en)
US3853792A (en) Catalytic metal oxide
US3966802A (en) Process for preparing acrylic acid and oxidation catalyst
JP2671040B2 (en) Method for preparing catalyst for producing unsaturated carboxylic acid