JPS6241523B2 - - Google Patents

Info

Publication number
JPS6241523B2
JPS6241523B2 JP56153327A JP15332781A JPS6241523B2 JP S6241523 B2 JPS6241523 B2 JP S6241523B2 JP 56153327 A JP56153327 A JP 56153327A JP 15332781 A JP15332781 A JP 15332781A JP S6241523 B2 JPS6241523 B2 JP S6241523B2
Authority
JP
Japan
Prior art keywords
polymerization
temperature
raw material
supply port
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56153327A
Other languages
Japanese (ja)
Other versions
JPS5853901A (en
Inventor
Naoki Matsuoka
Yutaka Hori
Ichiro Ijichi
Makoto Sunakawa
Keiji Matsumoto
Kenji Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP15332781A priority Critical patent/JPS5853901A/en
Publication of JPS5853901A publication Critical patent/JPS5853901A/en
Publication of JPS6241523B2 publication Critical patent/JPS6241523B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明はアクリル酸アルキルエステル系ポリ
マーの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an acrylic acid alkyl ester polymer.

従来、エチレン性不飽和モノマーのラジカル重
合方法としては、エマルジヨンないしサスペンジ
ヨン重合法、溶液重合法および塊状重合法が知ら
れている。このうちエマルジヨンないしサスペン
ジヨン重合法は重合物中に乳化剤や分散剤が混入
し純粋なものを得にくい欠点があるほか、重合物
を取り出す場合に水の揮散のためのエネルギー、
工数がかかりコスト高となる。また、溶液重合法
は有機溶剤の大量使用による環境衛生上の問題や
コスト上の問題を免れず、さらに重合物の取り出
しに当たつてエマルジヨンないしサスペンジヨン
重合法の場合と同様の問題を生じやすい。
Conventionally, emulsion or suspension polymerization methods, solution polymerization methods, and bulk polymerization methods are known as methods for radical polymerization of ethylenically unsaturated monomers. Among these methods, emulsion or suspension polymerization methods have the disadvantage that emulsifiers and dispersants are mixed into the polymer, making it difficult to obtain pure products.
It takes a lot of man-hours and costs are high. In addition, the solution polymerization method is not free from environmental health problems and cost problems due to the use of large amounts of organic solvents, and also tends to cause the same problems as the emulsion or suspension polymerization method when removing the polymerized product. .

これに対し、塊状重合法は上述の如き問題がな
く工業的に有利な方法といえるが、その反面モノ
マーの種類により急激な反応進行に伴なう増粘の
ため温度制御が難しくなつて反応が暴走しやす
い。その結果、重合作業に危険を伴なうばかり
か、重合物の分子量設計が困難となつたり副生物
としてゲル化物や劣化物が発生しやすく、均質な
重合物を得にくく、また次工程での加工上の問題
を生じるおそれがある。
On the other hand, the bulk polymerization method does not have the above-mentioned problems and can be said to be an industrially advantageous method, but on the other hand, it is difficult to control the temperature due to the thickening caused by the rapid reaction progress depending on the type of monomer, and the reaction is slow. Easy to get out of control. As a result, not only is the polymerization work dangerous, but it is also difficult to design the molecular weight of the polymer, gelled products and degraded products are likely to occur as by-products, it is difficult to obtain a homogeneous polymer, and it is difficult to obtain a homogeneous polymer in the next step. Processing problems may occur.

エチレン性不飽和モノマーのなかでもスチレン
などでは比較的高転化率のところまでコントロー
ル可能なものとして知られ、古くからその塊状重
合につき検討され工業化されている。そのほとん
どは、釜形式の予備重合器にて転化率30〜70%ま
で重合させ残りを脱モノマーして製品とするか、
あるいは上記転化率としたものを押出機に供給し
ておだやかな反応にて95〜96%の転化率まで反応
を進めるものである。
Among ethylenically unsaturated monomers, styrene and the like are known to be able to control relatively high conversion rates, and their bulk polymerization has been studied and industrialized for a long time. Most of it is polymerized in a kettle-type prepolymerization vessel to a conversion rate of 30 to 70%, and the remainder is demonomerized to make the product.
Alternatively, the above-mentioned conversion rate is fed to an extruder and the reaction is carried out in a gentle manner up to a conversion rate of 95 to 96%.

一方、アクリル酸アルキルエステル系モノマー
は重合時の発熱量が大きく、上記スチレンの如き
釜形式による重合法をとつてもその温度制御が困
難で、暴走反応による前記欠点をさけることはで
きなかつた。このため、アクリル酸アルキルエス
テル系モノマーについての工業的な塊状重合法は
いまだ実用化されていないのが実状である。
On the other hand, acrylic acid alkyl ester monomers generate a large amount of heat during polymerization, and even when using a pot-based polymerization method such as the above-mentioned styrene, it is difficult to control the temperature, and the above-mentioned drawbacks due to runaway reactions cannot be avoided. For this reason, the reality is that industrial bulk polymerization methods for acrylic acid alkyl ester monomers have not yet been put to practical use.

この発明者らは、このようなアクリル酸アルキ
ルエステル系モノマーの塊状重合法につき長年に
亘り研究を続けてきたが、その研究過程におい
て、既述した塊状重合法適用の阻害要因である重
合時の大きな発熱量に伴なう急激な増粘性を逆に
利用することにより、均質でしかも任意に特性を
改質した塊状重合物を連続的に得る方法を究明
し、この発明をなすに至つた。
The inventors have been conducting research on the bulk polymerization method of such acrylic acid alkyl ester monomers for many years, but in the course of their research, they were able to solve the problem during polymerization, which is a factor that inhibits the application of the bulk polymerization method mentioned above. By taking advantage of the rapid viscosity that accompanies a large calorific value, we have investigated a method for continuously obtaining homogeneous bulk polymers with optionally modified properties, and have achieved this invention.

すなわち、この発明は、主原料供給口から連続
供給された内容物を表面更新しつつ連続的に取り
出し口まで移送する手段と移送過程の全域に亘る
温度制御機構とを備えかつ上記移送過程の途上に
少なくとも1つの副原料供給口を有する1軸もし
くは2軸のスクリユー押出機からなる反応器を使
用し、上記主原料供給口からアクリル酸アルキル
エステルを全モノマー中50重量%以上の割合で含
むアクリル酸アルキルエステル系モノマー(以
下、アクリル系モノマーという)を主体とした常
温で10ポイズ以下の粘度を示す塊状重合用原料を
連続供給し、上記移送過程の前半領域内で100℃
以下の温度で急速重合により増粘させてさらに以
降の領域内で150℃以下の温度で所定転化率まで
重合進行させると共に、上記副原料供給口から付
加重合用モノマーを主体とした重合用原料を連続
供給して150℃以下の温度で反応させることによ
り、アクリル酸アルキルエステル系ポリマーに付
加重合用モノマーが付加した塊状重合物を連続的
に製出させることを特徴とするアクリル酸アルキ
ルエステル系ポリマー(以下、アクリル系ポリマ
ーという)の製造方法に係るものである。
That is, the present invention includes means for continuously transferring the contents continuously supplied from the main raw material supply port to the takeout port while renewing the surface thereof, and a temperature control mechanism over the entire transfer process, and a temperature control mechanism that covers the entire transfer process. A reactor consisting of a single-screw or twin-screw extruder having at least one auxiliary raw material supply port is used to produce an acrylic material containing an acrylic acid alkyl ester in a proportion of 50% by weight or more based on the total monomers from the main raw material supply port. A bulk polymerization raw material mainly consisting of acid alkyl ester monomers (hereinafter referred to as acrylic monomers) having a viscosity of 10 poise or less at room temperature is continuously supplied, and the temperature is increased to 100°C within the first half of the above transfer process.
The viscosity is increased by rapid polymerization at the following temperature, and the polymerization proceeds to a predetermined conversion rate at a temperature of 150°C or less in the following region, and the polymerization raw material mainly consisting of addition polymerization monomers is supplied from the auxiliary raw material supply port. An acrylic alkyl ester polymer characterized by continuously producing a bulk polymer in which an addition polymerization monomer is added to an acrylic alkyl ester polymer by continuously supplying the polymer and reacting at a temperature of 150°C or lower. (hereinafter referred to as acrylic polymer).

図面は上記反応器の1例である1軸スクリユー
押出機の断面構造を示したもので、以下この図面
を参考としてこの発明のアクリル系ポリマーの製
造方法を説明する。
The drawing shows the cross-sectional structure of a single-screw extruder, which is an example of the above-mentioned reactor, and the method for producing an acrylic polymer of the present invention will be explained below with reference to this drawing.

図において、1は押出機外筒を構成するバレル
で、その一端に主原料供給口2が、他端に重合内
容物の取り出し口3が、中間部に副原料供給口4
が設けられている。バレル1内部には回転する軸
心5に複数個のスクリユー6が形成されており、
このスクリユー6によつて主原料供給口2より供
給された重合原料を軸心5の回転で混和し表面更
新させつつ前進させる。スクリユー6とバレル1
との間隔は混和性をよくするために適宜設定され
るが、一般には0.5〜2mm程度が適当である。
7,8,9,10,11はバレル1の全長の各部
に設けられた加熱制御器で対応する領域a1,a2
a3,b1,b2をそれぞれ独立して所定温度に制御で
きる構成となつているが、バレル1の全長に亘つ
て均等に加熱制御する構成としてもよい。また、
加熱制御器の種類、配置数、配置間隔等も所望す
る反応条件に応じて設定できる。
In the figure, reference numeral 1 denotes a barrel constituting the outer cylinder of the extruder, with a main raw material supply port 2 at one end, a polymerization contents takeout port 3 at the other end, and an auxiliary raw material supply port 4 at the middle part.
is provided. Inside the barrel 1, a plurality of screws 6 are formed around a rotating shaft center 5.
The polymerization raw material supplied from the main raw material supply port 2 is mixed by the screw 6 by rotation of the shaft center 5, and is advanced while renewing the surface. screw 6 and barrel 1
The distance between the two is appropriately set in order to improve miscibility, but generally about 0.5 to 2 mm is appropriate.
7, 8, 9, 10, 11 are heating controllers provided at each part of the entire length of the barrel 1, and the corresponding areas a 1 , a 2 ,
Although the configuration is such that a 3 , b 1 , and b 2 can each be independently controlled to a predetermined temperature, the configuration may be such that the heating is controlled uniformly over the entire length of the barrel 1. Also,
The type, number, and spacing of heating controllers can also be set depending on desired reaction conditions.

この押出機内に、供給口2からアクリル系モノ
マーを主体とした常温での粘度が10ポイズ以下の
塊状重合用原料を一定速度で連続供給する。供給
された原料はスクリユー6の回転によつて混和さ
れ表面更新しつつ移送される。このとき、供給口
2から取り出し口3へ至る移送過程の図中aで示
す前半領域内で急速重合によつて増粘するよう
に、例えば加熱制御器7にて領域a1で徐々に温度
を上昇させ、加熱制御器8にて領域a2で瞬間的に
重合開始して急速に塊状重合反応を進行させるよ
うに温度制御する。このようにして増粘した重合
内容物はさらに混和・表面更新されつつ前進して
重合を続け、加熱制御器9にて温度制御された領
域a3を経て所定の転化率、例えば反応がほぼ終了
する95%以上の転化率に達し、この時点で副原料
供給口4から付加重合用モノマーを主体とした重
合原料が供給され、同様に混和・表面更新されつ
つ加熱制御器10,11で温度制御された領域
b1,b2を経る間に付加重合反応が行なわれ、最終
的に上記付加重合用モノマーが付加したアクリル
系ポリマーからなる塊状重合物が開口端の取り出
し口3から連続的に製出される。
A raw material for bulk polymerization containing mainly acrylic monomer and having a viscosity of 10 poise or less at room temperature is continuously fed into this extruder from the supply port 2 at a constant rate. The supplied raw materials are mixed by the rotation of the screw 6 and transferred while the surface is renewed. At this time, the temperature is gradually increased in the region a 1 using the heating controller 7, for example, so that the viscosity increases due to rapid polymerization in the first half region indicated by a in the figure during the transfer process from the supply port 2 to the take-out port 3 . The temperature is controlled by the heating controller 8 so that polymerization starts instantaneously in area a2 and the bulk polymerization reaction rapidly proceeds. The polymerized contents thickened in this way advance while being further mixed and surface renewed to continue polymerization, and pass through the temperature-controlled area a3 by the heating controller 9 to a predetermined conversion rate, for example, the reaction is almost completed. At this point, a polymerization raw material mainly consisting of monomers for addition polymerization is supplied from the auxiliary raw material supply port 4, and while being mixed and surface renewed in the same way, the temperature is controlled by heating controllers 10 and 11. area
An addition polymerization reaction takes place during the steps b 1 and b 2 , and finally a bulk polymer consisting of an acrylic polymer to which the monomer for addition polymerization has been added is continuously produced from the outlet 3 at the open end.

この例において、1軸スクリユー6の軸芯5は
各スクリユー6,6間で同芯とされているが、反
応制御を目的としてバレル1の各部でその径が異
なるような構成として重合原料ないし重合内容物
の移送量に変化をもたせてもよい。
In this example, the axis 5 of the single screw 6 is coaxial between the screws 6, 6, but for the purpose of reaction control, the barrel 1 is configured so that its diameter differs in each part. The amount of content transferred may be varied.

また、上記の例では、1軸スクリユー押出機を
用いているが、2軸スクリユー押出機を用いても
上記同様の操作で重合できる。2軸スクリユーの
場合、各軸心を同方向ないし異方向に回転させる
ことができる。これらスクリユー押出機において
は、先にも述べたように、スクリユーとバレルと
の間隔は好ましくは0.5〜2mm程度に設定される
が、その速度勾配、つまり〔円周率(π)×回転
数×スクリユー外径/バレルとスクリユーとの間
隙〕は一般に1000/分以上がよい。
Further, in the above example, a single-screw extruder is used, but polymerization can be carried out using a twin-screw extruder in the same manner as above. In the case of a two-axis screw, each axis can be rotated in the same direction or in different directions. In these screw extruders, as mentioned earlier, the distance between the screw and the barrel is preferably set to about 0.5 to 2 mm, but the speed gradient, that is, [pi (π) × rotation speed × Screw outer diameter/gap between barrel and screw] is generally 1000/min or more.

上記方法において、バレル内の移送過程の前半
領域内で急速に重合反応を進行させて重合内容物
を増粘させることは、この発明方法において非常
に重要であつて重合内容物の安定移送と温度制御
を可能とする要件となる。すなわち、上述のスク
リユー押出機の如きこの発明に用いる反応器で
は、一定粘度のものの安定移送は極めて容易であ
るが、バレル長さ方向に大きな粘度勾配を有して
かつ低粘度領域部分が長い場合は例えば上記スク
リユー押出機におけるスクリユーが低粘度領域で
部分的に空転した状態となつて内容物の滞溜ない
し逆流を生じて安定移送が困難となる。このた
め、移送過程のできるだけ長い領域に亘つて粘度
勾配が少ない状態とすることが肝要である。
In the above method, it is very important to rapidly advance the polymerization reaction in the first half of the transfer process in the barrel to increase the viscosity of the polymerized content. This is a requirement to enable control. That is, in the reactor used in this invention, such as the above-mentioned screw extruder, it is extremely easy to stably transport materials with a constant viscosity, but if the reactor has a large viscosity gradient in the barrel length direction and the low viscosity region is long, For example, the screw in the above-mentioned screw extruder becomes partially idle in the low viscosity region, causing stagnation or backflow of the contents, making stable transfer difficult. For this reason, it is important to maintain a state in which the viscosity gradient is small over as long a region as possible during the transfer process.

アクリル系モノマーは既述したように重合反応
の急激な進行による増粘を生じ易く、これが従来
では塊状重合法適用の障害となつていたが、この
発明ではこの性質が逆に利用される。すなわち、
アクリル系モノマーを主とした重合原料の粘度が
10ポイイズ以下であつても、移送過程の少なくと
も前半領域内で急速重合によつて僅か数分で安定
移送に必要な程度まで粘度上昇させることができ
る。しかもこの発明方法では、移送過程中の細分
された領域に応じた温度制御が能であり、かつ内
容物が表面更新されつつ移送されて内容物と反応
器壁との接触面が常に更新されて両者間の熱交換
が効率よく行なわれて内容物の温度分布幅が小さ
くなることから、副反応や暴走反応を生起させな
いように充分に制御できる。このような理由によ
り、従来では困難とされていたアクリル系モノマ
ーの塊状重合が他のエチレン性モノマーでもなし
得なかつた連続方式にて生産可能となるのであ
る。
As mentioned above, acrylic monomers tend to thicken due to the rapid progress of the polymerization reaction, and this has hitherto been an obstacle to the application of bulk polymerization, but in the present invention, this property is used to the contrary. That is,
The viscosity of polymerization raw materials mainly made of acrylic monomers is
Even if the viscosity is less than 10 poise, the viscosity can be increased to the extent necessary for stable transfer in just a few minutes by rapid polymerization in at least the first half of the transfer process. Moreover, in the method of this invention, it is possible to control the temperature according to subdivided areas during the transfer process, and the surface of the contents is transferred while being renewed, so that the contact surface between the contents and the reactor wall is constantly renewed. Since heat exchange between the two is performed efficiently and the temperature distribution width of the contents is narrowed, it is possible to sufficiently control side reactions and runaway reactions so as not to occur. For these reasons, bulk polymerization of acrylic monomers, which has been considered difficult in the past, can be produced in a continuous manner, which has not been possible with other ethylenic monomers.

上記安定移送に必要な粘度は、反応器の種類や
大きさ、アクリル系モノマーの種類、重合内容物
の移送速度、所望する塊状重合物の性状等によつ
て異なるが、一般的には100〜数1000ポイズの範
囲である。また、急速重合を行なう領域は、前記
例では移送過程の前半領域a内のa2領域とした
が、より初期の領域例えば前記例のa1領域として
もよいことは言うまでもない。
The viscosity required for the above-mentioned stable transfer varies depending on the type and size of the reactor, the type of acrylic monomer, the transfer rate of the polymerized contents, the properties of the desired bulk polymer, etc., but is generally 100~ It is in the range of several 1000 poise. Furthermore, although the region in which rapid polymerization is carried out is the a2 region in the first half region a of the transfer process in the above example, it goes without saying that it may be an earlier region, such as the a1 region in the above example.

なお、有機溶剤希釈制御である従来の釜形式の
アクリル系モノマーの溶液重合法では、上記必要
粘度となる転化率とするために一般的に1〜10時
間の長時間を要する。
In addition, in the conventional pot-type solution polymerization method of acrylic monomers, which is controlled by organic solvent dilution, it generally takes a long time of 1 to 10 hours to achieve the conversion rate that provides the above-mentioned required viscosity.

この発明で使用するアクリル系モノマーを主と
した重合原料は、アクリル酸アルキルエステルを
全モノマー中50重量%以上の割合で含み、必要に
応じてこれと共重合可能なメタクリル酸アルキル
エステル、アクリル酸、メタクリル酸、マレイン
酸、スチレン、酢酸ビニル、アクリロニトリルな
どの各種エチレン性不飽和モノマーを用いたモノ
マーに、一般にラジカル重合触媒と要すれば分子
量調節剤などを添加混合したもので、常温で10ポ
イズ以下の粘度を有する液剤である。
The polymerization raw material mainly composed of acrylic monomers used in this invention contains acrylic acid alkyl ester in a proportion of 50% or more by weight based on the total monomers, and if necessary, methacrylic acid alkyl ester and acrylic acid that can be copolymerized with this. It is a mixture of monomers using various ethylenically unsaturated monomers such as , methacrylic acid, maleic acid, styrene, vinyl acetate, and acrylonitrile, with the addition of a radical polymerization catalyst and, if necessary, a molecular weight regulator. It is a liquid agent with the following viscosity.

上記のラジカル重合触媒としては、たとえばベ
ンゾイルパーオキシド、クメンハイドロパーオキ
シド、ジ―t―ブチルパーオキシド、ラウロイル
パーオキシドなどの有機過酸化物や、アゾビスイ
ソブチロニトリルの如きアゾ化合物などを広く用
いることができる。これらの触媒量はモノマー
100重量部に対して一般に0.01〜1重量部程度で
ある。また、上記触媒のほか低温でラジカルを発
生しうるレドツクス系触媒の使用も可能である。
分子量調節剤としては、チオグリコール、チオグ
リコール酸、ブチルメルカプタン、ラウリルメル
カプタン、デシルメルカプタンの如き連鎖移動剤
が用いられる。
Examples of the above radical polymerization catalyst include organic peroxides such as benzoyl peroxide, cumene hydroperoxide, di-t-butyl peroxide, and lauroyl peroxide, and azo compounds such as azobisisobutyronitrile. Can be used. These catalyst amounts are monomer
It is generally about 0.01 to 1 part by weight per 100 parts by weight. In addition to the above catalysts, it is also possible to use redox catalysts that can generate radicals at low temperatures.
As the molecular weight regulator, a chain transfer agent such as thioglycol, thioglycolic acid, butyl mercaptan, lauryl mercaptan, and decyl mercaptan is used.

ラジカル重合触媒や分子量調節剤は、モノマー
に最初から混合するのではなく、反応器中にモノ
マーを単独で加えたのちに添加反応してもよい。
たとえば、図示される1軸スクリユー押出機のバ
レルの領域a内の所望位置に適当な供給口を設け
てこれらを導入できる。図中の12は領域a2の前
段側のスクリユー6の軸心5が細くなつた部分に
設けられた供給口であり、13は重合反応によつ
て副生するあるいは任意の添加剤の導入によつて
発生する低分子揮発物の排気口である。
The radical polymerization catalyst and the molecular weight regulator may not be mixed with the monomers from the beginning, but may be added to the monomers alone and then reacted with the monomers.
For example, they can be introduced by providing a suitable feed port at a desired location in region a of the barrel of the single screw extruder shown. 12 in the figure is a supply port provided at the part where the axis 5 of the screw 6 on the front stage side of area a2 is tapered, and 13 is a supply port for introducing by-products or arbitrary additives in the polymerization reaction. This is an exhaust port for low-molecular volatile substances generated as a result.

一方、付加重合用モノマーを主体とした重合用
原料は、前記アクリル系モノマーを主体とした重
合原料からなる重合物の特性を改質するためのも
ので、上記重合物に対して付加重合しうるモノマ
ー成分であればいずれも使用できる。重合物の特
性を改質する例としては、たとえば重合物に親水
性を付与したり、重合物の弾性や接着剤用途にあ
つては凝集力を向上させるなどの例があり、前者
の場合それ自体親水性ないし水溶性ポリマーを与
えうるようなモノマー成分が用いられ、また後者
の場合それ自体ガラス転移温度の高い(たとえば
300〓以上)ポリマーを与えうるようなモノマー
成分が用いられる。
On the other hand, the polymerization raw material mainly composed of monomers for addition polymerization is used to modify the properties of the polymer made of the polymerization raw material mainly composed of the acrylic monomer, and is capable of addition polymerization to the above-mentioned polymer. Any monomer component can be used. Examples of modifying the properties of polymers include, for example, imparting hydrophilicity to polymers, and improving the elasticity of polymers and cohesive force when used as adhesives. Monomer components that are themselves hydrophilic or capable of providing water-soluble polymers are used, and in the latter case monomer components that themselves have a high glass transition temperature (e.g.
300〓 or more) Monomer components that can give a polymer are used.

このように、付加重合用モノマーを主体とした
重合原料は、塊状重合物の用途目的に応じて適宜
その種類および使用量を選択すればよく、重合用
触媒等の他の配合成分も上記に応じて決定すれば
よい。また、これらは2種以上を併用してもよい
ことは言うまでもなく、反応器に複数の副原料供
給口を設けて段階的に付加重合を行なわせて所望
の特性を付与することも可能である。
In this way, the type and amount of polymerization raw materials mainly consisting of monomers for addition polymerization can be selected according to the intended use of the bulk polymer, and other components such as polymerization catalysts can also be selected according to the above. You just have to decide. In addition, it goes without saying that two or more of these may be used in combination, and it is also possible to provide desired characteristics by providing a plurality of sub-material supply ports in the reactor and performing addition polymerization in stages. .

また、この発明では、生成塊状重合物に適当な
性状を付与するために、所望により少量の溶剤、
可塑剤、ポリマー等を原料中に配合していてもよ
い。この配合量はこれら成分の総量で全モノマー
100重量部に対して25重量部以下であることが望
ましい。
In addition, in this invention, in order to impart appropriate properties to the produced bulk polymer, if desired, a small amount of solvent,
Plasticizers, polymers, etc. may be blended into the raw materials. This compounding amount is the total amount of these components, including all monomers.
It is desirable that the amount is 25 parts by weight or less per 100 parts by weight.

なお、上述したアクリル系モノマーを主体とし
た塊状重合用原料と付加重合用原料とは、使用に
際して反応性を高めるために溶存酸素を除く窒素
ガス置換処理を施すことが望ましい。この窒素ガ
ス置換は予め原料液に施してもよいし、反応器の
適当な部分に供給口を設けて窒素ガスを吹き込む
ことによつて行なつてもよい。
In addition, it is desirable that the above-mentioned raw materials for bulk polymerization and raw materials for addition polymerization mainly composed of acrylic monomers be subjected to nitrogen gas purging treatment to remove dissolved oxygen in order to increase reactivity when used. This nitrogen gas replacement may be performed on the raw material liquid in advance, or may be performed by providing a supply port in an appropriate portion of the reactor and blowing nitrogen gas into the reactor.

以上の連続式重合方法において、反応器の各部
における加熱温度は、使用するモノマーや重合触
媒の種類、重合内容物の各部における移送量など
によつて適当に制御されるが、一般には重合原料
ないし重合内容物の温度が40〜150℃となる範囲
で調整されるのが望ましい。特に急速重合によつ
て増粘させる領域部分における加熱温度は、重合
触媒の種類と量ならびに反応器の構造と移送条件
に応じて100℃以下の温度に設定すべきである。
なお、この発明方法で得られる塊状重合物の転化
率は通常、93〜99重量%である。
In the continuous polymerization method described above, the heating temperature in each part of the reactor is appropriately controlled depending on the type of monomer and polymerization catalyst used, the amount of polymerization contents transferred to each part, etc. It is desirable to adjust the temperature of the polymerized contents within a range of 40 to 150°C. In particular, the heating temperature in the area where the viscosity is increased by rapid polymerization should be set at a temperature of 100° C. or lower depending on the type and amount of the polymerization catalyst, the structure of the reactor, and the transfer conditions.
Incidentally, the conversion rate of the bulk polymer obtained by the method of this invention is usually 93 to 99% by weight.

以上詳述したとおり、この発明によれば従来で
は不可能とされていたアクリル系モノマーの塊状
重合が可能となり、また分子量分布の比較的小さ
く均質でかつゲル化物や劣化物のみられない良品
質でしかも所望特性の塊状重合物を連続的に生産
できるという卓越した効果が得られる。
As detailed above, according to the present invention, it is possible to perform bulk polymerization of acrylic monomers, which was previously considered impossible, and to achieve high quality polymerization with a relatively small and homogeneous molecular weight distribution and no gelled or degraded products. Furthermore, the outstanding effect of being able to continuously produce bulk polymers with desired properties is achieved.

つぎに、この発明の実施例を記載する。以下に
おいて部および%とあるはそれぞれ重量部および
重量%を意味するものとする。
Next, examples of this invention will be described. In the following, parts and % mean parts by weight and % by weight, respectively.

実施例 1 反応器として、スクリユー外径40mm、バレル長
さ1250mm、バレルとスクリユー山との間隙1mm
で、内部が前端側よりA,B,C,D,Eの5ゾ
ーンに分かれて各ゾーンがそれぞれ独立して温度
制御可能であつてかつA,Dのゾーンの前端側に
供給口を有する1軸スクリユー押出機を用い、速
度勾配を5024/分、各ゾーンの設定温度はA,
B,C,D,E=80℃,100℃,120℃,120℃,
120℃とした。
Example 1 As a reactor, screw outer diameter is 40 mm, barrel length is 1250 mm, and gap between barrel and screw peak is 1 mm.
The interior is divided into five zones A, B, C, D, and E from the front end side, and each zone can be independently temperature controlled, and the A and D zones have a supply port on the front end side. Using an axial screw extruder, the speed gradient was 5024/min, and the set temperature of each zone was A,
B, C, D, E = 80℃, 100℃, 120℃, 120℃,
The temperature was 120℃.

この反応器のAゾーンの供給口に、アクリル酸
ブチル85部、アクリロニトリル15部、2―ヒドロ
キシエチルアクリレート3部およびアゾビスイソ
ブチロニトリル0.15部からなる常温での粘度が
0.8センチポイズの重合原料液を予め窒素ガスで
置換した上で50g/分の速度で連続供給するとと
もに、Dゾーンの供給口にメチルメタクリレート
100部およびベンゾイルパーオキシド0.6部からな
る重合原料液を予め窒素ガスで置換した上で25
g/分の速度で連続供給して反応させた。
A mixture of 85 parts of butyl acrylate, 15 parts of acrylonitrile, 3 parts of 2-hydroxyethyl acrylate, and 0.15 parts of azobisisobutyronitrile with a viscosity at room temperature was added to the feed port of the A zone of this reactor.
The polymerization raw material liquid of 0.8 centipoise was replaced with nitrogen gas in advance and then continuously supplied at a rate of 50 g/min, and methyl methacrylate was added to the supply port of the D zone.
A polymerization raw material solution consisting of 100 parts and 0.6 parts of benzoyl peroxide was replaced with nitrogen gas in advance, and
The reaction was carried out by continuously feeding at a rate of g/min.

この方法で連続的に得られた塊状重合物は、ポ
リマー転化率97.5%、重量平均分子量(w)=
51.6万、数平均分子量(n)=3.9万、w/
n=13.2であつた。また、この塊状重合物を熱プ
レスにて1mm厚のシートし、このシートの物性を
応力―歪曲線より測定した結果、弾性率19.8Kg/
cm2、100%モジユラス14.8Kg/cm2、破断強度40
Kg/cm2、伸び900%であつた。これより、上記の
塊状重合物はアクリル酸アルキルエステル系の弾
性材料として好適に利用できるものであることが
判る。
The bulk polymer obtained continuously by this method has a polymer conversion rate of 97.5% and a weight average molecular weight (w) =
516,000, number average molecular weight (n) = 39,000, w/
n=13.2. In addition, this bulk polymer was heat-pressed into a 1 mm thick sheet, and the physical properties of this sheet were measured from a stress-strain curve. As a result, the elastic modulus was 19.8 kg/
cm2 , 100% modulus 14.8Kg/ cm2 , breaking strength 40
Kg/cm 2 and elongation was 900%. This shows that the above bulk polymer can be suitably used as an acrylic acid alkyl ester-based elastic material.

一方、Aゾーンの供給口からの供給のみで得ら
れた塊状重合物(ポリマー転化率97.9%、w58
万)につき上記同様のシート特性を調べた結果、
弾性率2.5Kg/cm2、100%モジユラス2.3Kg/cm2
破断強度2.7Kg/cm2、伸び1830%であつた。
On the other hand, the bulk polymer obtained only by supplying from the supply port of the A zone (polymer conversion rate 97.9%, w58
As a result of investigating the same sheet characteristics as above for
Elastic modulus 2.5Kg/cm 2 , 100% modulus 2.3Kg/cm 2 ,
The breaking strength was 2.7 Kg/cm 2 and the elongation was 1830%.

実施例 2 反応器としてスクリユー外径50mm、バレル長さ
1250mm、バレルとスクリユー山との間隙1mmで、
内部が前端側よりA,B,C,D,Eの5ゾーン
に分かれて各ゾーンがそれぞれ独立して温度制御
可能であつてかつA,Dのゾーンの前端側に供給
口を有する2軸スクリユー押出機を用い、速度勾
配を7850/分、各ゾーンの設定温度をA,B,
C,D,E=100℃,100℃,100℃,120℃,150
℃とした。
Example 2 Screw outer diameter 50mm, barrel length as reactor
1250mm, with a gap of 1mm between the barrel and the screw mountain,
A twin-shaft screw whose interior is divided into five zones A, B, C, D, and E from the front end, each zone can be temperature controlled independently, and has a supply port at the front end of zones A and D. Using an extruder, the speed gradient is 7850/min, and the set temperature of each zone is A, B,
C, D, E = 100℃, 100℃, 100℃, 120℃, 150
℃.

上記反応器のAゾーンの供給口に、アクリル酸
ブチル70部、アクリロニトリル30部、アクリル酸
5部およびアゾビスイソブチロニトリル0.1部か
らなる常温での粘度が0.8センチポイズの重合原
料液を予め窒素ガスで置換した上で50g/分の速
度で連続供給するとともに、Dゾーンの供給口よ
りアクリル酸100部およびベンゾイルパーオキシ
ド0.2部からなる重合原料液を予め窒素ガスで置
換した上で15g/分の速度で連続供給して反応さ
せた。
A polymerization raw material solution with a viscosity of 0.8 centipoise at room temperature consisting of 70 parts of butyl acrylate, 30 parts of acrylonitrile, 5 parts of acrylic acid, and 0.1 part of azobisisobutyronitrile was placed in advance in the supply port of the A zone of the above reactor under nitrogen. After purging with gas, the polymerization raw material solution consisting of 100 parts of acrylic acid and 0.2 parts of benzoyl peroxide is supplied continuously from the supply port of the D zone at a rate of 50 g/min, and the gas is purged with nitrogen gas beforehand, and then being supplied at a rate of 50 g/min. The reaction was carried out by continuously feeding at a rate of .

この方法で連続的に得られた塊状重合物は、ポ
リマー転化率98.1%、w=45万、n=5.29
万、w/n=8.5であつた。また、この塊状
重合物をこれに含まれるカルボキシル基に対して
0.1当量の苛性ソーダで中和処理して塩としたの
ち、25℃の水中に24時間浸漬して、その膨潤率お
よび溶解分を求めた。
The bulk polymer obtained continuously by this method had a polymer conversion rate of 98.1%, w = 450,000, and n = 5.29.
10,000, w/n=8.5. In addition, the carboxyl group contained in this bulk polymer
After neutralizing with 0.1 equivalent of caustic soda to form a salt, it was immersed in water at 25°C for 24 hours to determine its swelling ratio and dissolved content.

なお、各特性は、初期(浸漬前)の重量W、浸
漬ごの膨潤重量をW1、浸漬ご100℃で5時間乾燥
したのちの乾燥重量をW2とし、下記の式にもと
ずいて算出したものである。
In addition, each characteristic is based on the following formula, where the initial weight (before immersion) is W, the swelling weight after immersion is W1 , and the dry weight after drying at 100℃ for 5 hours after immersion is W2 . This is the calculated value.

膨潤率(%)=〔(W1−W)/W〕×100 溶解分(%)=〔(W−W2)/W〕×100 その結果は、膨潤率320%、溶解分5%であつ
た。これより、上記の塊状重合物は水膨潤材とし
て好適に利用できるものであることが判る。
Swelling rate (%) = [(W 1 - W) / W] × 100 Dissolved content (%) = [(W - W 2 ) / W] × 100 The result is that the swelling rate is 320% and the dissolved content is 5%. It was hot. This shows that the above bulk polymer can be suitably used as a water-swellable material.

一方、Aゾーンの供給口からの供給のみで得ら
れた塊状重合物(ポリマー転化率99.5%、w=
40万)につき上記同様の試験を行なつた結果は、
膨潤率10%、溶解分2%であつた。
On the other hand, the bulk polymer obtained only by supplying from the supply port of the A zone (polymer conversion rate 99.5%, w =
400,000), the results were as follows:
The swelling rate was 10% and the dissolved content was 2%.

実施例 3 実施例1と同一の反応器を用い、各ゾーンの設
定温度はA,B,C,D,E=100℃,100℃,
120℃,120℃,120℃とし、速度勾配は同一とし
た。
Example 3 Using the same reactor as Example 1, the set temperatures of each zone were A, B, C, D, E = 100°C, 100°C,
The temperature was 120℃, 120℃, 120℃, and the velocity gradient was the same.

この反応器のAゾーンの供給口に、アクリル酸
ブチル80部、アクリル酸2―エチルヘキシル20
部、アクリル酸5部およびアゾビスイソブチロニ
トリル0.2部からなる常温での粘度が0.9センチポ
イズの重合原料液を予め窒素ガスで置換した上で
50g/分の速度で連続供給するとともに、Dゾー
ンの供給口にメチルメタクリレート100部および
ベンゾイルパーオキシド0.5部からなる重合原料
液を予め窒素ガスで置換した上で15g/分の速度
で連続供給して反応させた。
80 parts of butyl acrylate and 20 parts of 2-ethylhexyl acrylate were added to the supply port of zone A of this reactor.
A polymerization raw material solution with a viscosity of 0.9 centipoise at room temperature consisting of 5 parts of acrylic acid and 0.2 parts of azobisisobutyronitrile was replaced with nitrogen gas in advance.
At the same time, a polymerization raw material solution consisting of 100 parts of methyl methacrylate and 0.5 parts of benzoyl peroxide was continuously supplied at a rate of 15 g/min to the supply port of the D zone after being replaced with nitrogen gas in advance. and reacted.

この方法で連続的に取り出された塊状重合物
は、ポリマー転化率98.9%,w45.1万,n5.34
万,w/n=8.45であつた。また、この塊状
重合物をトルエンに溶解して30%トルエン溶液を
調製し、これを25μ厚のポリエステルフイルムに
25μ厚に塗布して得た接着テープの接着特性を調
べた結果、接着力850g/20mm、保持力1000分以
上であつた。
The bulk polymer continuously extracted by this method has a polymer conversion rate of 98.9%, w 451,000, n 5.34
1,000, w/n = 8.45. In addition, this bulk polymer was dissolved in toluene to prepare a 30% toluene solution, and this was applied to a 25μ thick polyester film.
The adhesive properties of the adhesive tape obtained by applying it to a thickness of 25 μm were investigated, and the adhesive strength was 850 g/20 mm, and the holding power was over 1000 minutes.

なお、上記の接着力はJIS―Z―1528に準じて
180度引き剥し接着力を測定したものであり、ま
た保持力はベークライト板に接着テープ(25mm×
25mm)を貼りつけ40℃中で1Kgの荷重をかけ落下
するまでの時間を測定したものである。上記の試
験結果から明らかなように、上記実施例の塊状重
合物によれば接着力と凝集力とに共にすぐれる接
着剤が得られることが判る。
The above adhesive strength is based on JIS-Z-1528.
The adhesive strength was measured after 180 degree peeling, and the retention strength was measured using adhesive tape (25 mm x
25mm) was attached and a load of 1 kg was applied at 40°C, and the time taken for it to fall was measured. As is clear from the above test results, it can be seen that the bulk polymers of the above examples provide adhesives with excellent adhesive strength and cohesive strength.

一方、Aゾーンの供給口からの供給のみで得ら
れた塊状重合物(ポリマー転化率99.1%,w54
万)につき上記同様の試験を行なつた結果は、接
着力550g/20mm、保持力45分であつた。
On the other hand, the bulk polymer obtained only by supplying from the supply port of the A zone (polymer conversion rate 99.1%, w54
The same test as above was carried out for 1,000 yen), and the results were that the adhesive force was 550 g/20 mm and the holding force was 45 minutes.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明に使用する反応器の1例として
示した1軸スクリユー押出機の断面図である。
The drawing is a sectional view of a single-screw extruder shown as an example of a reactor used in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 主原料供給口から連続供給された内容物を表
面更新しつつ連続的に取り出し口まで移送する手
段と移送過程の全域に亘る温度制御機構とを備え
かつ上記移送過程の途上に少なくとも1つの副原
料供給口を有する1軸もしくは2軸のスクリユー
押出機からなる反応器を使用し、上記主原料供給
口からアクリル酸アルキルエステルを全モノマー
中50重量%以上の割合で含むアクリル酸アルキル
エステル系モノマーを主体とした常温で10ポイズ
以下の粘度を示す塊状重合用原料を連続供給し、
上記移送過程の前半領域内で100℃以下の温度で
急速重合により増粘させてさらに以降の領域内で
150℃以下の温度で所定転化率まで重合進行させ
ると共に、上記副原料供給口から付加重合用モノ
マーを主体とした重合用原料を連続供給して150
℃以下の温度で反応させることにより、アクリル
酸アルキルエステル系ポリマーに付加重合用モノ
マーが付加した塊状重合物を連続的に製出させる
ことを特徴とするアクリル酸アルキルエステル系
ポリマーの製造方法。
1. A means for continuously transporting the contents continuously supplied from the main raw material supply port to the take-out port while renewing the surface, and a temperature control mechanism over the entire transfer process, and at least one sub-container in the middle of the transfer process. An acrylic acid alkyl ester monomer containing an acrylic acid alkyl ester in a proportion of 50% by weight or more based on the total monomers from the main raw material supply port using a reactor consisting of a single or twin screw extruder having a raw material supply port. Continuously supplies raw materials for bulk polymerization that have a viscosity of 10 poise or less at room temperature, mainly consisting of
The viscosity is increased by rapid polymerization at a temperature of 100℃ or less in the first half of the above transfer process, and then in the subsequent region.
Polymerization is allowed to proceed to a predetermined conversion rate at a temperature of 150°C or less, and polymerization raw materials mainly consisting of addition polymerization monomers are continuously supplied from the auxiliary raw material supply port to 150 °C.
A method for producing an acrylic alkyl ester polymer, which comprises continuously producing a bulk polymer in which an addition polymerization monomer is added to an acrylic alkyl ester polymer by reacting at a temperature of 0.degree. C. or lower.
JP15332781A 1981-09-28 1981-09-28 Preparation of acrylic polymer Granted JPS5853901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15332781A JPS5853901A (en) 1981-09-28 1981-09-28 Preparation of acrylic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15332781A JPS5853901A (en) 1981-09-28 1981-09-28 Preparation of acrylic polymer

Publications (2)

Publication Number Publication Date
JPS5853901A JPS5853901A (en) 1983-03-30
JPS6241523B2 true JPS6241523B2 (en) 1987-09-03

Family

ID=15560061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15332781A Granted JPS5853901A (en) 1981-09-28 1981-09-28 Preparation of acrylic polymer

Country Status (1)

Country Link
JP (1) JPS5853901A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619979A (en) * 1984-03-28 1986-10-28 Minnesota Mining And Manufacturing Company Continuous free radial polymerization in a wiped-surface reactor
US4843134A (en) * 1984-03-28 1989-06-27 Minnesota Mining And Manufacturing Company Acrylate pressure-sensitive adhesives containing insolubles
US4695608A (en) * 1984-03-29 1987-09-22 Minnesota Mining And Manufacturing Company Continuous process for making polymers having pendant azlactone or macromolecular moieties
JP2558600B2 (en) * 1992-10-05 1996-11-27 三洋化成工業株式会社 Continuous production method of compounded acrylic rubber
CN1221571C (en) 1999-07-14 2005-10-05 约翰逊聚合物公司 Process for continuous production of epoxy addition polymers and powder and liquid coating applications contg. same
PT1203029E (en) * 1999-07-14 2005-01-31 Johnson Polymer Inc PROCESS FOR THE CONTINUOUS PREPARATION OF FREE GEL POLYMER AND COATING APPLICATIONS IN PO AND LIQUIDS CONTAINING FREE GEL POLYMERS
CN111566133B (en) * 2018-01-11 2022-11-15 株式会社Lg化学 Process for producing low molecular weight acrylic resin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153322A (en) * 1980-04-28 1981-11-27 Seiko Epson Corp Reflection type liquid-crystal display device using semiconductor substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153322A (en) * 1980-04-28 1981-11-27 Seiko Epson Corp Reflection type liquid-crystal display device using semiconductor substrate

Also Published As

Publication number Publication date
JPS5853901A (en) 1983-03-30

Similar Documents

Publication Publication Date Title
EP0160394B1 (en) Continuous free radical polymerization in a wiped-surface reactor
JP4218902B2 (en) Composition comprising a copolymer and a macromolecular organic compound having a hydrophobic cavity
US4843134A (en) Acrylate pressure-sensitive adhesives containing insolubles
JP3654532B2 (en) Multi-stage method for producing polymethacrylate molding materials with high heat dimensional stability
US4487897A (en) Process for radical polymerizing acrylic monomers
JPH07258340A (en) Extrusion-molded plate and sheet, injection-molded part, molded item, and workpiece produced from polymethacrylate molding material thermoplastically processible
JPS6241523B2 (en)
CA2135010A1 (en) Polymethacrylate molding compound with high heat deflection temperature and stability against thermal degradation
JP4509279B2 (en) Method for producing acrylic pressure-sensitive adhesive
JP2582510B2 (en) Method for producing acrylic polymer
JPH04226504A (en) Polymer of olefinically unsaturated monomer, solution of this polymer, and pressure-sensitive adhesive
JPH0255448B2 (en)
JPH024632B2 (en)
JP3434225B2 (en) Method for producing methacrylic polymer
JPS5853975A (en) Production of pressure-sensitive adhesive tape
JPH0143792B2 (en)
JPS58168610A (en) Production of pressure-sensitive adhesive
JPS5853974A (en) Production of pressure-sensitive adhesive tape
JPS6164705A (en) Production of styrene prepolymer
JPS5853969A (en) Pressure-sensitive adhesive composition
JPH06239905A (en) Sheet production of methacrylic polymer
JPS6348881B2 (en)
JPS5853970A (en) Pressure-sensitive adhesive composition
JPH0368605A (en) Continuous production of polymer board
JPH04146903A (en) Production of sheetlike polymer