JPS5853975A - Production of pressure-sensitive adhesive tape - Google Patents

Production of pressure-sensitive adhesive tape

Info

Publication number
JPS5853975A
JPS5853975A JP15332581A JP15332581A JPS5853975A JP S5853975 A JPS5853975 A JP S5853975A JP 15332581 A JP15332581 A JP 15332581A JP 15332581 A JP15332581 A JP 15332581A JP S5853975 A JPS5853975 A JP S5853975A
Authority
JP
Japan
Prior art keywords
polymerization
polymer
reactor
bulk
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15332581A
Other languages
Japanese (ja)
Inventor
Keiji Matsumoto
啓司 松本
Makoto Sunakawa
砂川 誠
Ichiro Ijichi
伊地知 市郎
Michio Satsuma
道夫 薩摩
Kenji Sano
建志 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP15332581A priority Critical patent/JPS5853975A/en
Publication of JPS5853975A publication Critical patent/JPS5853975A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:An acrylic monomer and an acidic group-containing unsaturated monomer are fed to a special reactor to form a bulk polymer, the polymer is neutralized with an aqueous alkali into a hydrosol and the hydrosol is spread on a support to produce the titled tape with high water resistance and a thin layer coated uniformly. CONSTITUTION:Raw materials for bulk polymerization of less than 10 poise at room temperature, consisting of an acrylic monomer as the major component and of an acidic group-containing unsaturated monomer as a copolymerization component, are fed into a reactor that can continuously transfer the contents, as being always renewing the surface of the contents, and is provided with a temperature control mechanism all over the transferring process, preferably a single- or twin-screw extruder to effect rapid polymerization in the first half under heat control until the polymerization conversion reaches 93-99wt% to form a bulk polymer that is tacky at room temperature. An alkali aqueous solution is continuously fed to the resultant polymer to effect neutralization and they are made into a hydrosol stably dispersed in water. The hydrosol is spread on a support to give the objective tape.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は感圧性接着テープの製造方法に関する。 従来、感圧性接着テープは、1)サスペンション重合、
エマルジョン重合または溶液重合により得られるポリ、
マー分散体ないしポリマー溶液からなる接着剤組成物を
支持体上にリバース塗工する方法、あるいは2)種々の
重合法で得られる固形の接着剤組成物を支持体上に押出
塗工する方法で製造されるのが一般的である。 しかる1こ、上記1)の方法では、ポリマー分散体とす
る場合乳化剤や分散剤が混入してくるため耐水性が悪く
なるし、乳化剤や分散剤のブルームによって経口的に接
着特性が変化する欠点があり、またポリマー溶液とする
場合有機溶剤の使用による環境衛生上の問題やコスト面
での不利を免れない。また上記2)の方法では、押出塗
工時に加熱して接着剤組成物の粘度を低下させるが、支
持体上に薄層均一に塗工できるまで粘度低下させ1こく
く、一方低い粘度を与えるような組成物では、感圧性接
着テープとしての耐熱性]こ乏しくなり、また支持体へ
の保持特性の面でも劣る結果となる。 この発明は、上記従来法の欠点を克服し、乳化剤や分散
剤に起因した耐水性や経1」的な接着特性の変化をきた
さず、しかも有機溶側番こよる環境衛生上の問題やコス
ト面での不利をきたさない一方、支持体上(こ薄層均一
に塗工可能な感圧性接着テープの製造方法を提供せんと
するものである。 すなわち、この発明は、内容物を表面更新しつつ連続的
に移送可能でかつ」−記移送過程の全域1こ亘る温度制
御機構を備えた反応器を使用し、この反応器内へアクリ
ル系モノマーを主体としかつ酸性基を有する不飽和モノ
マーを共重合成分とした常温での粘度が10ポイズ以下
の塊状重合用原料を連続供給し、」−記移送過程の全域
に亘って所定の温度に加熱制御しつつ、移送過程の前半
領域内で急速小合番こより増粘させると共1こ以降の重
合進行
The present invention relates to a method for manufacturing pressure sensitive adhesive tapes. Conventionally, pressure-sensitive adhesive tapes are produced using 1) suspension polymerization;
Poly obtained by emulsion polymerization or solution polymerization,
2) A method in which an adhesive composition consisting of a polymer dispersion or a polymer solution is reverse coated onto a support, or 2) a method in which a solid adhesive composition obtained by various polymerization methods is extrusion coated onto a support. Generally manufactured. However, in method 1) above, if a polymer dispersion is made, emulsifiers and dispersants are mixed in, resulting in poor water resistance, and the adhesive properties change due to blooming of emulsifiers and dispersants. Moreover, when used as a polymer solution, there are environmental health problems and cost disadvantages due to the use of organic solvents. In addition, in method 2) above, the viscosity of the adhesive composition is lowered by heating during extrusion coating, but the viscosity is lowered by 1 kg until a thin layer can be coated uniformly on the support, while giving a lower viscosity. Such a composition has poor heat resistance as a pressure-sensitive adhesive tape, and also has poor retention properties on a support. This invention overcomes the drawbacks of the conventional methods described above, does not cause changes in water resistance or adhesive properties caused by emulsifiers or dispersants, and also eliminates environmental hygiene problems and costs caused by organic solvents. It is an object of the present invention to provide a method for producing a pressure-sensitive adhesive tape that can be coated uniformly in a thin layer on a support while not causing any disadvantages in surface area. A reactor is used that is capable of continuous transfer and is equipped with a temperature control mechanism throughout the entire transfer process. A raw material for bulk polymerization with a viscosity of 10 poise or less at room temperature as a copolymerization component is continuously supplied, and while heating is controlled to a predetermined temperature throughout the entire transfer process, it is rapidly heated in the first half of the transfer process. When the viscosity is increased from the small polymerization number, the polymerization progresses after the 1st polymerization.

【こよって所定の転化率となし、さらに移送過程
の後半領域内で上記所定の転化率とされた常温で粘着性
を有する塊状重合物1こアルカリ水溶液を連続供給して
塊状重合物分子内の酸性基を中和するとともにこの重合
物が水中に安定に分散されたヒドロシルとなし、これを
反応器から連続曲番こ取り出す一方、支持体上に塗布し
乾燥することを特徴とする感圧性接着テープの製造方法
に係るものである。 ところで、一般番こ、塊状重合法は、急激な反応進行に
伴なう増粘のため温度制御が難しくなって反応が暴走し
やすい。その結果、重合作業1こ危険を伴なうばかりか
、重合物の分子量設計か困難となったり副生物としてゲ
ル化物や劣化物が発生しやすく、均質な重合物を得【こ
くく、また次工程での加工上の問題を生じるお刊tがあ
る。 □、1 エチレン性不飽和モノマーのなかでもスチレンなどでは
比較的高転化率のところまでコントロール可能なものと
して知られ、古くからその塊状重合【こつき検討され工
業化されている。そのほとんどは、整形式の予備重合器
にて転化率30〜70%まで重合させ残りを脱モノマー
して製品とするか、あるいは」−配転化率としたものを
押出機(こ供給しておだやかな反応器こて95〜96%
の転化率まで反応を進めるものである。 一方、アクリル系モノマーは重合時の発熱附が大きく、
上記スチレンの如き整形式1こよる重合法をとってもそ
の温度制御が困難で、暴走反応による前記欠点をさける
ことはできなかった。このため、アクリル系モノマー(
こついての工業的な塊状重合法はいまだ実用化されてい
ないのが実状である。 この発明者らは、このようなアクリル糸モノマーの塊状
市合法番こつき長年1こ亘りtill究を続けてきたが
、その1IJl究過程において、既述した塊状重合法適
用の阻害要因である重合時の大きな発熱端に伴なう急激
な増粘性を通番こ利用して均質な塊状重合物を連続的に
得る方法を究明した。また、このよう番こして得られる
塊状重合物はそのモノマー組成(こよって常温で粘着性
を持たせることができるが、これをそのまま加熱押出塗
」二して支持体」二に薄層均一な接着剤層を形成するに
は粘度特性」−なお困難な問題を伴なうことから、上記
塊状重合物をさらにアルカリ水溶液で中和するととも1
こ」−記共重合体が水中に安定番こ分散されたヒドロシ
ルとなすこと1こより、支持体上への薄層均一塗工が可
能となることを見い出し、前記この発明を完成するに至
ったものである。 図面はこの発明に用いる反応器の1例である1軸スクリ
ュー押出機の断面構造を示したもので、以下この図面を
参考にしてこの発明の感圧性接着テープの製造方法を説
明する。 図において、1は押出機外筒を構成するバレルで、その
一端に重合原料の供給口2が、他端に重合内容物の取り
出し口3が設けられている。)<シル1内部には回転す
る軸心41こ複数個のスクリュー5が形成されており、
このスクリュー5によって供給された重合原料を軸心4
の回転で混和しながら前進させる。スクリュー5とバレ
ル1との間隔は混和性をよくするため(こ適宜設定され
る。 一般番こは0.5〜2 mm程度が適当である。6.7
.8,9.10.11はバレル全長の各部]こ設けられ
た加熱制御器で、各部1こよって適当な温度に制御でき
る構成とされているが、全長(こ亘って均等に加熱制御
する構成とすることはもちろん可能である。 この押出機内に、供給口2からアクリル系モノマーを主
体とし酸性)i(を有する不飽和上ツマ−を共重合成分
とした常温での粘度が10ボイズ以下の塊状重合用原料
を好ましくは予め窒素置換して一定速度で連続供給する
。供給された原料はスクリュー5の回転1こよって混和
され表1f[1更新しつつ移送される。このとき、供給
口2から取り出し口3へ至る移送過程の図中aで示す1
1半領域内で急速重合によって増粘するように、例えは
加熱制御器6にて領域al−a2で徐々番こ温度を上昇
させ、加熱制御器7にて領域a3で瞬間的に重合開始し
て急速に重合反応を進行させるよう昏こ温度制御する。 このようにして粘度上昇した重合内容物はさらに混和・
表面更新されつつ中間領域すへ移送され。 加熱制御器8.9にて温度制御されながら所望の転化率
まで重合反応を進める。ついで、所望の転化率に達した
常温で粘着性を有する塊状重合物は、後半領域Cに移送
され、ここで加熱制御器10゜111こて温度制御され
ながら供給口12からアルカリ水溶液を連続供給して塊
状重合物分子内の酸性基を中和するとともにこの重合物
が水中に安定1こ分散されたヒドロシルとなし、最終的
1こ開口端の取り出し口3から連続曲番こ取り出される
。取り出されたヒドロシルは、これをロールコータやフ
ァンテンコータなどの従来公知の低粘度塗工機によって
ポリエステルフィルムその他の支持体上に塗布乾燥され
感圧性接着テープが製造される。 この例1こおいて、1軸スクリユー5の軸心4は各スク
リュー5.5間で同心とされているが、反応制量を目的
としてバレル各部でその径が異なるような構成として重
合原料ないし重合内容物の移送量1こ変化をもたせても
よい。 また、上記の例では、1軸スクリュー押出機を用いてい
るが、2軸スクリユ一担1出機を用いても上記同様の操
作で重合できる。2軸スクリユーの場合、各軸心を同方
向ないし異方向1こ回転させることができる。これらス
クリュー押出機においては、先にも述べたように、スク
リューとバレルトの間隔は好ましくは0.5〜2mm程
度に設定されるが、その速度勾配、つまり〔円周率(π
)×回転数Xスクリュー外径/バレルとスクリューの間
隙〕は一般に1,0007分以上がよい。また、この発
明【こ用いる反応器としては、上記スクリュー押出機の
ほか、内容物を表面更新しつつ連続曲番こ移送可能でか
つこの移送過程の全域1こ亘る温度制御機構を備えたも
のであればいずれも使用できる。この表面更新は内容物
と反応器壁との接触面の更新を含み、これ1こ両者間の
熱交換で反応物の温度制御が効率よく行なわれて副反応
が抑制される。 上記方法1こおいて、バレル内の移送量[呈の作り半領
域内で急速に重合反応を進行させて重合内容物を増粘さ
せることは、この発明方法において非常に重要であって
重合内容物の安定移送と温度制御を可能とする要件とな
る。すなわち、上述のスクリュー押出機の如きこの発明
に用いる反応器では、一定粘度のものの安定移送は極め
て容易であるが、バレル長さ方向に大きな粘度勾配を有
して且つ低粘度領域部分が長い場合は例えば上記スクリ
ュー押出機1こおけるスクリューが低粘度領域で部分的
に空転した状態となって内容物の滞溜ないし逆流を生じ
て安定移送が困難となる。このため、移送過程のできる
だけ長い領域に亘って粘度勾配が少ない状態とすること
が肝要である。 アクリル系モノマーは既述したよう1こ重合反応の急激
な進行による増粘を生じ易く、これが従来では塊状重合
法適用−書となっていたが、この発明ではこの性質が逆
に利用される。すなわち、アクリル系モノマーを主とし
た重合原料の粘度が10ポイズ以下であっても、移送過
程の少なくとも前半領域内で急速重合によって僅か数分
で安定移送1こ必要な程度まで粘度上昇させることがで
き、しかもこの発明方法は表面更新しつつ移送するので
移送過程中の細分された領域に応じた温度制御が可能で
あるから上記急速重合が暴走反応に達しないよう1こ充
分に制御できる。 上記安定移送に必要な粘度は、反応器の種類や大きさ、
アクリル系モノマーの種類、重合内容物の移送速度、所
望する塊状重合物の性状等1こよって異なるが、一般的
1こは100〜数1,000ポイズの範囲である。また
、急速重合を行なう領域は、前記例では移送過程の前半
領域a内のa3領域としたが、より初期の領域例えば前
記例のa2領域としてもよいことは言うまでもない。 なお、アクリル系モノマーにおいて有機溶剤希釈制御で
ある従来の整形式の溶液重合法では、上記必要粘度とな
る転化率とするため1こ一般的lこ】〜10時間の長時
間を要する。 この発明で使用するアクリル系モノマーを主成分としか
つ酸性基を有する不飽和モノマーを共重合成分とした重
合原料は、アクリル酸ないしメタクリル酸のアルキルエ
ステルまたはその誘導体を主モノマーとし、必要に応じ
てこれと共重合可能なスチレン、酢酸ビニル、アクリロ
ニトリルなどの各種エチレン性不飽和モノマーを使用し
、かつこれらモノマーとともに酸性基を有する不飽和モ
ノマーを併用したモノマー混合物でこれをポリマーとし
たときに常温で粘着性を示すものからなり、かかるモノ
マーにさらにラジカル重合触媒と要すれば分子量調節剤
などを添加混合したもので、常温で10ポイズ以下の粘
度を有する液剤である。 七ツマー混合物中の酸性基を有する不飽和モノマーとし
ては、たとえばアクリル酸、メタクリル酸、クロトン酸
、イタコン酸、マレイン酸、フマル酸などの酸性基とし
てカルボキシル基ヲ有スル不飽和カルボン酸、スチレン
スルホン酸、アクリフ ロイルオキシプロパンスルホネート、メタリルス/\ ルホネート、アクリルアミドプロパンスルホネートなど
の酸性基としてスルホン基を有する不飽和スルホン酸な
どを挙げることができ、またその他の酸性基を有するも
のであってもよく、これらの1種もしくは2種以上を使
用する。 上記酸性基を有する不飽和モノマーの使用口は、全モノ
マー中通常1〜20重晰%とするのがよい。 たとえば不飽和カルボン酸の場合5〜15重最%が好適
で、また不飽和スルホン酸の場合3〜10重鑑%が好適
である。この種のモノマーの使用けが少なすぎるとヒド
ロシル化に好結果が得られない。また一般的にこの種の
モノマーはポリマーのガラス転移温度を高くするためこ
れが多くなりすぎると良好な感圧性接着剤となりえない
。 重合原料のひとつであるラジカル重合触媒としては、た
とえばベンゾイルパーオキサイド、クメンハイドロパー
オキサイド、ジー[−ブチルパーオキシド、ラウロイル
パーオキシドなどの有機過酸化物や、アゾビスイソブチ
ロニトリルの如きアゾ化合物などを広く用いることがで
きる。これらの触媒量はモノマー100ffi最部に対
して一般番こ0.01〜1市量部程度である。また、上
記触媒のばか低温でラジカルを発生しうるレドックス系
触媒の使用も可能である。分子量調節剤としては、チオ
グリコール、チオグリコール酸、ブチルメルカプタン、
ラウリルメルカプタン、デシルメルカプタンの如き連鎖
移動剤が用いられる。 ラジカル重合触媒や分子量調節剤は、モノマーに最初か
ら混合するのではなく、反応器中にモノマーを単独で加
えたのち1こ添加混合してもよい。 たとえば、図示される1軸スクリュー押出機のバレルの
領域a内の所望位置1こ適当な供給口を設けてこれらを
導入できる。図中の13は領域a3の前段側のスクリュ
ー5の軸心4か細くなった部分に設けられた供給口であ
り、14は重合反応によって副生ずるあるいは任意の添
加剤の導入によって発生する低分子揮発物の排気口であ
る。 このような重合原料を、移送過程の前半領域および中間
領域で所定の転化率まで重合させるが、このときの重合
転化率は通常93〜99重量%であり、また重合物の平
均分子量は10万以上、好適1こは20万〜80万であ
る。この平均分子量が低すぎると、得られる感圧性接着
テープの凝集力に劣り、また高くなりすぎるとそのどの
ヒドロシル化番こ支障をきたすなどの問題を生じやすい
。 移送過程の後半領域では、所定転化率に達した常温で粘
着性を有する塊状重合物番こアルカリ水溶液が供給され
るが、ここに用いるアルカリとしては支持体」二に塗布
し加熱する際に簡単に揮散でき、耐水耐湿特性1ことく
に好結果を与えるアンモニアが望ましい。他のアルカリ
としては、プロピルアミン、アニリン、アルカノールア
ミンなどの窒素含有化合物や水酸化ナトリウム、水酸化
カリウムの如き苛性アルカリ金属などが挙げられる。ア
ルカリの使用量は、塊状重合物分子出番こ含まれる酸性
基に対して通常0.1〜1.5当鮒とされているのがよ
い。 このようなアルカリ水溶液の供給により、塊状重合物に
含まれる酸性基の1部もしくは全部が中和され、水の導
入による転相現象によってヒドロシルつまり重合物粒子
が粒子径0,01〜0.1μの範囲で水中番こ均一にか
つ安定に分散された分散体が生成する。このヒドロシル
は、ロールコータヤファンテンコータなどで塗工可能な
低い粘度を有するものであるが、必要なら反応器の取り
出し口から取り出されたのちに、さらに水を加えて所定
の粘度に希釈することもできる。反応器中1こ供給され
また反応器より取り出されたのちに添加できる水の合計
割合は、一般に固形分濃度で10〜60重量%となるよ
う1こ設定されるのがよい。このときのヒドロシルの粘
度は通常25℃で30〜1,000ボイズである。 以上の製造方法において、反応器の各部における加熱温
度は、使用するモノマーや重合触媒の種類、重合内容物
の各部における移送量など番こよって適当に制御される
が、一般1こは移送過程の前半領域および中間領域で重
合内容物の温度が40〜150°C1好適には60〜1
00℃の範囲で調整されるのが望ましく、とくに急速重
合によって増粘させる領域部分における加熱温度は、重
合触媒の種類と鮒ならび1こ反応器の構造と移送条件に
応じて設定すべきである。また、移送過程の後半領域で
は、内容物の温度が20〜100℃、好適には40〜8
0°C1こ設定されるのがよい。 この発明においては、上記の如く反応器から取り出され
たヒドロシルを支持体上に塗布乾燥して感圧性接着テー
プを得るが、このテープの特性をさらに改質する目的で
、通常は、前記反応器における移送過程の後半領域、つ
まりアルカリ水溶液を供給する領域で、また場合1こよ
り中間領域で、種々の添加剤を供給添加することができ
る。この供給添加は、アルカリ水溶液の供給口12から
同時に添加させてもよいし、別途供給口を設けて添加さ
せるようIこしてもよい。また、同様の添加剤をヒドロ
シル生成ご反応器から取り出したのち1こ添加すること
もできる。 このような添加剤の例としては、たとえば初期接着力(
タック)をより向上させるために、一般の感圧性接着剤
に用いられているフェノール系樹脂、石油系樹脂、スチ
レン系樹脂、キシレン系樹脂、テルペン系樹脂などの液
状粘着附与樹脂やポリエーテルポリオール類の如き親水
性可塑剤などがある。これらの添加量は、ヒドロシル中
のポリマー成分100重量部に対して50屯艙部までと
するのがよく、多くなりすぎると凝集力や耐熱性などの
特性を損ない、またヒドロシルの安定性1こ悪影響を与
えるから好ましくない。 また、室温で液状である平均分子量がs、oo。 〜20万の低分子量ポリマーを初期接着力を向上させる
ために添加することもできる。このような低分子量ポリ
マーとしてはこの発明に使用するアクリル系モノマーと
組成が類似するアクリル系低分子量ポリマーが相溶性の
面から好ましい。これらポリマーの添加量はその組成に
より変化するが、ヒドロシルのポリマー成分100重量
部に対して200重殖部までとするのがよく、多くなり
すぎると凝集力や耐熱性などの特性を損なうし、またヒ
ドロシルの安定性を阻害する。 さら1こ、凝集力の向上のために、適宜の架橋剤、たと
えば塩化カルシウム、酢酸アルミニウムの如き多価金属
塩、水溶性のグリシジル化合物、水溶性メラミンなどを
添加してもよい。その添加量は、ヒドロシルのポリマー
成分100重曖部番こ対して通常2重量部まで、好適に
は0.005〜1市量部の範囲内とするのがよい。 この発明により製造できる感圧性接着テープとしては、
一般の包装用のテープから両面接着テープ、電気絶縁用
テープなど感圧性接着剤組成と支持体を選択すること1
こより種々のテープが得られる。 以上詳述したとおり、この発明は、従来のサスペンショ
ン重合、エマルジョン爪台または溶液重合による問題点
を解決するアクリル系モノマーの塊状重合法を見い出す
一方、この方法で得られる塊状取合物をさらにアルカリ
水溶液fこよってヒドロシル化して支持体上への均一薄
層塗工を可能ならしめたものであり、しかもこれら一連
の製造工程を連続化させることにより、品質安定でかつ
製造効率という面からも理想的な感圧性接着テープの製
造法を提供でき、工業的に極めて有意義である。 つぎに、この発明の実施例を記載する。なお、実施例中
の接着力は、JIS7.−1528により180度引き
剥がし接着力(91720am )を測定したものであ
り、また保持力(凝集力)はベークライト板に25 X
 25 mmに貼り合わせ、40℃でI Kgの荷重を
かけてベークライト板が落下するまでの時間を測定した
ものである。 実施例1 反応器は内部1こ1本のスクリュー型攪拌機を有する押
出機を用いた。なお、スクリュー径40mm、バレルの
長さ1,250mmで、A、B、C,D、Eのゾーン]
こ分けられ、それぞれ独自に温調可能であり、A、Dの
ゾーンに供給口があり、温度はA:B:C:I):E=
100℃:]00’C:100℃:30°C:30°C
1こ設定した。バレルとスクリュー山との間隙は1mm
でスクリュー山とバレル間での速度勾配は6.280/
分であった。 上記の反応器を用いて、アクリル酸ブチル:アクリル酸
:アゾビスイソブチロニトリル−90:10:0.15
(ili量比)からなる0、8センチボイズの重合原料
を、Aゾーンの供給口より50y/分のスピードで定量
供給した。更1こDゾーンの供給口より5重量%アンモ
ニア水溶液と1市鮒%エポキシ架橋剤水溶液をそれぞれ
100y/分、5y/分のスピードで定量供給した。 こうして得られた水分散型感圧性接着剤(ヒドロシル)
は、ポリマー転化率98.5@酎%、固形分30市醋%
、ポリマー粒子の平均分子は40万であった。これを、
ロールコータにて乾燥後の糊厚が50μとなるよう(こ
、25μポリ工ステルフイルム番こ塗布し、130°C
で5分乾燥した。得られたテープは、接着力820 y
/ 201nm、作持力i、ooo分以上であった。 なお、上記の方法1こおいてDゾーンの供給口からアン
モニア水溶液および架橋剤水溶液を供給せずして得た塊
状重合物の200 ’C1こおける溶融粘度は10,0
00ポイズで、押出塗工によりポリエステルフィルム上
に均一薄層に塗布することはできなかった。 実施例2 反応器は実施例1のものと同じで、A 、B 、C、D
、Eゾーンの温度はそれぞれ100℃、120’C、1
20℃、80°C140°Cに設定した。他条件は実施
例1と同様である。重合原料は、アクリル酸フチル:ア
クリル酸2−エチルへキシル:アクリル酸:アゾビスイ
ソブチロニトリル−45:45 : 10 : O,1
,5(市駄比)からなる粘度0.9センチポイズのもの
であり、Aゾーンの供給口より毎分70yのスピードで
供給した。更(こD・/−ンの供給口より25重量%ア
ンモニア水溶液と1重晰%エポキシ架橋剤水溶液をそれ
ぞれ30y/分、7y/分のスピードで定量供給した。 こうして得られた水分散型感圧性接着剤(ヒドロシル)
は、固形分30重最%、ポリマー転化率98.7重量%
、ポリマー粒子の平均分子耐35万であった。これを実
施例1と同様にテープ化したものは、接着カフ 20 
gI/ 20 rnmで、保持力1.000分以上であ
った。 実施例3 反応器は内部番こ2本のスクリュー軸を有する2軸の押
出機を用いた。バレル(全長1.500 mm )はA
、B、C,D、E、Fの6ゾーン1こ分けられ、それぞ
れの温度は100℃、100°C,100°C150°
C150°C180°C(こ設定した。またA。 D、Eゾーン1こそれぞれ供給口を有しており、スクリ
ュー径は50mmでバレルとスクリュー山との間隙はI
 mmで、スクリュー山とバレル間での速度勾配は9,
980/分であった。 重合原料は実施例1と同様であり、Aゾーンの供給口よ
り毎分]00p/分で定量供給した。史に1)ゾーンの
供給口より液状キシレン樹脂を20y/分で定置的に供
給し、Eゾーンの供給口より1.0重置%水酸化すトリ
ウム水溶液と1重量%エポキシ架橋剤水溶液をそれぞれ
201’/分、10y/分のスピードで定は供給した。 こうして得られた水分散型感圧性接着剤(ヒドロシル)
の固形分含量は30屯1m%、ポリマー転化率は99市
酎%で、ポリマー粒子の平均分子附は50万であった。 これを実施例1と同様にテープ化したものは、接着力9
80 y/ 20 am、保持カフ50分であった。 比較例 実施例1と比較して、樽拌機、窒素置換器及び冷却管を
取り付けた三ツロフララコ中に、アクリル酸ブチル:ア
クリル酸:アゾビスイソブチロニトリル=100:10
:0.15(重肘比)からな(至) 示した1軸スクリュー押出機の断面図である。 る重合原料500yをトルエン1こて40市量%とじた
ものを投入し、窒素置換後、60〜65°c1こ温度を
制御しながら6時間重合し、さらに80°Cにて4時間
熟成させた。 こうして得られた溶液重合物番こメチルエチルケトンに
て溶解した1市川%エポキシ架橋剤溶液を509−配合
し、実施例1と同様1こリバースコーターにてテープ化
した。得られたテープは、接着力840f;’/20r
nm、保持力1,000分であった。 上記の各実施例および比較例から明らかなように、この
発明番こより得られるテープの特性は有機溶剤系のもの
とほとんど同等であり、有機溶媒を媒体としないことか
ら環境上かつコスト曲番こすぐれており、またサスペン
ション重合やエマルジョン重合により得られるもの1こ
較べて耐水性、耐湿性などにすぐれていることは明らか
で、さら1こ各実施側番こみられるように均一薄層塗工
を容易【こ行なうことができる。
[Thus, a predetermined conversion rate is achieved, and in the second half of the transfer process, an alkaline aqueous solution is continuously supplied to the bulk polymer, which is sticky at room temperature and has the above-described predetermined conversion rate. A pressure-sensitive adhesive characterized in that the acidic groups are neutralized and the polymer is stably dispersed in water to form hydrosil, which is continuously removed from the reactor and then applied onto a support and dried. This relates to a method for manufacturing a tape. By the way, in the general bulk polymerization method, temperature control becomes difficult due to thickening caused by rapid reaction progress, and the reaction tends to run out of control. As a result, not only is the polymerization process dangerous, but it is also difficult to design the molecular weight of the polymer, gelling and deterioration products are likely to occur as by-products, and it is difficult to obtain a homogeneous polymer. There are some publications that cause processing problems during the process. □, 1 Among ethylenically unsaturated monomers, styrene and the like are known to be able to control relatively high conversion rates, and their bulk polymerization has been studied and industrialized for a long time. Most of the polymer is either polymerized to a conversion rate of 30 to 70% in a well-formed prepolymerization vessel, and the remainder is demonomerized to produce a product, or the converted product is fed into an extruder (an extruder) in a gentle manner. Reactor trowel 95-96%
The reaction proceeds to a conversion rate of . On the other hand, acrylic monomers generate a large amount of heat during polymerization,
Even if a polymerization method using a regular type 1 such as the above-mentioned styrene is used, it is difficult to control the temperature, and the above-mentioned drawbacks due to runaway reactions cannot be avoided. For this reason, acrylic monomer (
The reality is that the difficult industrial bulk polymerization method has not yet been put into practical use. The inventors have continued to investigate the bulk commercial method of such acrylic yarn monomers for many years. We investigated a method to continuously obtain homogeneous bulk polymers by taking full advantage of the rapid viscosity that accompanies the large exothermic end of the process. In addition, the monomer composition of the bulk polymer obtained by this method (which allows it to have tackiness at room temperature) can be coated as it is by hot extrusion coating on a support in a thin, uniform layer. Since forming an adhesive layer is accompanied by a difficult problem, the above bulk polymer is further neutralized with an alkaline aqueous solution.
The present inventors discovered that the copolymer described above can be uniformly coated in a thin layer on a support by forming a hydrosil in which the copolymer is stably dispersed in water, leading to the completion of this invention. It is something. The drawing shows the cross-sectional structure of a single-screw extruder, which is an example of a reactor used in the present invention, and the method for manufacturing the pressure-sensitive adhesive tape of the present invention will be explained below with reference to this drawing. In the figure, reference numeral 1 denotes a barrel constituting the outer cylinder of the extruder, and one end thereof is provided with a supply port 2 for polymerization raw materials, and the other end is provided with a discharge port 3 for polymerization contents. )<A plurality of screws 5 having a rotating shaft center 41 are formed inside the sill 1,
The polymerization raw material supplied by this screw 5 is
Move forward while mixing by rotating. The distance between the screw 5 and the barrel 1 is set appropriately in order to improve miscibility. The general distance is approximately 0.5 to 2 mm. 6.7
.. 8, 9, 10, and 11 are heating controllers installed at each part of the entire length of the barrel, and each part is configured to be able to control the temperature to an appropriate level. Of course, it is possible to do this.Into this extruder, from the supply port 2, a copolymerization component containing an acrylic monomer as a main component and an unsaturated monomer having acidic) The raw material for bulk polymerization is preferably replaced with nitrogen in advance and is continuously supplied at a constant rate.The supplied raw material is mixed by one rotation of the screw 5 and transferred while being updated. The transfer process from 1 to the take-out port 3 is indicated by a in the figure.
For example, the heating controller 6 gradually increases the viscosity in the area al-a2 so that the viscosity increases by rapid polymerization within one and a half areas, and the heating controller 7 instantly starts polymerization in the area a3. The temperature is controlled to allow the polymerization reaction to proceed rapidly. The polymerized contents whose viscosity has increased in this way are further mixed and
The surface is updated and transferred to the intermediate area. The polymerization reaction is allowed to proceed until the desired conversion rate is reached while the temperature is controlled by a heating controller 8.9. Next, the bulk polymer that has reached the desired conversion rate and is sticky at room temperature is transferred to the second half area C, where an alkaline aqueous solution is continuously supplied from the supply port 12 while the temperature of the trowel is controlled by a heating controller 10°111. The acidic groups in the bulk polymer molecules are neutralized, and the polymer is stably dispersed in water to form hydrosil, which is finally taken out continuously through the outlet 3 at the open end. The extracted hydrosil is coated onto a polyester film or other support using a conventionally known low-viscosity coating machine such as a roll coater or fountain coater and dried to produce a pressure-sensitive adhesive tape. In this example 1, the axis 4 of the single-screw 5 is concentric between each screw 5.5, but for the purpose of controlling the reaction, the diameter is different in each part of the barrel. The transfer amount of the polymerized contents may be changed by 1. Further, in the above example, a single-screw extruder is used, but polymerization can also be carried out using a twin-screw one-port extruder in the same manner as described above. In the case of a two-axis screw, each axis can be rotated once in the same direction or in different directions. In these screw extruders, as mentioned earlier, the distance between the screw and the barrel is preferably set to about 0.5 to 2 mm, but the speed gradient, that is, [pi (π
)×rotation speed×screw outer diameter/gap between barrel and screw] is generally 1,0007 minutes or more. Furthermore, in addition to the above-mentioned screw extruder, the reactor used in the present invention is one that can continuously transfer the contents while renewing the surface and is equipped with a temperature control mechanism throughout the entire transfer process. You can use any of them if you have them. This surface renewal includes renewing the contact surface between the contents and the reactor wall, and by exchanging heat between the two, the temperature of the reactants is efficiently controlled and side reactions are suppressed. In the above method 1, it is very important in this invention method to rapidly advance the polymerization reaction in the half region of the barrel to increase the viscosity of the polymerized content. This is a requirement that enables stable transfer of materials and temperature control. That is, in the reactor used in this invention, such as the above-mentioned screw extruder, it is extremely easy to stably transport materials with a constant viscosity, but when the barrel has a large viscosity gradient in the longitudinal direction and the low viscosity region is long, For example, the screw in one of the screw extruders may become partially idle in the low viscosity region, causing accumulation or backflow of the contents, making stable transfer difficult. Therefore, it is important to maintain a state in which the viscosity gradient is small over as long a region as possible during the transfer process. As mentioned above, acrylic monomers tend to thicken due to the rapid progress of the monopolymerization reaction, and this has hitherto been a problem for bulk polymerization, but in the present invention, this property is used to the contrary. In other words, even if the viscosity of the polymerization raw material mainly composed of acrylic monomers is 10 poise or less, the viscosity can be increased to the extent necessary for stable transfer in just a few minutes by rapid polymerization in at least the first half of the transfer process. Furthermore, since the method of the present invention transfers the surface while renewing it, it is possible to control the temperature according to the subdivided areas during the transfer process, so that the rapid polymerization can be sufficiently controlled to prevent it from reaching a runaway reaction. The viscosity required for the above stable transfer depends on the type and size of the reactor,
Although it varies depending on the type of acrylic monomer, the transfer rate of the polymerized contents, the desired properties of the bulk polymer, etc., it is generally in the range of 100 to several 1,000 poise. Further, although the region in which rapid polymerization is performed is region a3 in the first half region a of the transfer process in the above example, it goes without saying that it may be an earlier region, such as region a2 in the above example. In addition, in the conventional well-formed solution polymerization method in which acrylic monomer is diluted with an organic solvent, it takes a long time of 1 to 10 hours to obtain the conversion rate that provides the above-mentioned required viscosity. The polymerization raw material used in this invention, which has an acrylic monomer as a main component and an unsaturated monomer having an acidic group as a copolymerization component, has an alkyl ester of acrylic acid or methacrylic acid or a derivative thereof as a main monomer, and if necessary, A monomer mixture containing various ethylenically unsaturated monomers such as styrene, vinyl acetate, and acrylonitrile that can be copolymerized with this monomer, and an unsaturated monomer having an acidic group together with these monomers, can be made into a polymer at room temperature. It is a liquid agent consisting of a material exhibiting adhesive properties, which is a mixture of such monomers with a radical polymerization catalyst and, if necessary, a molecular weight regulator, etc., and has a viscosity of 10 poise or less at room temperature. Examples of unsaturated monomers having an acidic group in the hexamer mixture include unsaturated carboxylic acids having a carboxyl group as an acidic group, such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, styrene sulfone, etc. Unsaturated sulfonic acids having a sulfonic group can be mentioned as acidic groups such as acids, acrylfroyloxypropanesulfonate, methallyls/\ sulfonate, acrylamide propanesulfonate, etc., and they may also have other acidic groups. , one or more of these may be used. The usage of the unsaturated monomer having an acidic group is preferably 1 to 20% by weight based on the total monomers. For example, in the case of unsaturated carboxylic acids, 5 to 15% by weight is suitable, and in the case of unsaturated sulfonic acids, 3 to 10% by weight is suitable. If too little of this type of monomer is used, good results are not obtained in the hydrosilation. Furthermore, since this type of monomer generally increases the glass transition temperature of the polymer, if too much of this monomer is present, a good pressure-sensitive adhesive cannot be obtained. Examples of radical polymerization catalysts that are one of the polymerization raw materials include organic peroxides such as benzoyl peroxide, cumene hydroperoxide, di[-butyl peroxide, and lauroyl peroxide, and azo compounds such as azobisisobutyronitrile. etc. can be widely used. The amount of these catalysts is generally about 0.01 to 1 part by weight per 100ffi of monomer. Further, it is also possible to use a redox catalyst that can generate radicals at a lower temperature than the above catalysts. As molecular weight regulators, thioglycol, thioglycolic acid, butyl mercaptan,
Chain transfer agents such as lauryl mercaptan and decyl mercaptan are used. The radical polymerization catalyst and molecular weight regulator may not be mixed with the monomer from the beginning, but may be added and mixed after the monomer is added alone to the reactor. For example, they can be introduced at a desired location in region a of the barrel of the single screw extruder shown by providing a suitable feed port. 13 in the figure is a supply port provided at the thinner part of the axis 4 of the screw 5 on the front stage side of the region a3, and 14 is a supply port for low molecular volatilization which is a by-product of the polymerization reaction or generated by the introduction of arbitrary additives. It is an exhaust port for things. Such polymerization raw materials are polymerized to a predetermined conversion rate in the first and middle regions of the transfer process, and the polymerization conversion rate at this time is usually 93 to 99% by weight, and the average molecular weight of the polymer is 100,000%. As mentioned above, the preferred value is 200,000 to 800,000. If the average molecular weight is too low, the cohesive force of the resulting pressure-sensitive adhesive tape will be poor; if it is too high, problems such as problems with hydrosilation may occur. In the latter half of the transfer process, an alkaline aqueous solution is supplied to the bulk polymer, which is sticky at room temperature once a predetermined conversion rate has been reached. Ammonia that can be volatilized quickly and has particularly good water and moisture resistance properties is desirable. Examples of other alkalis include nitrogen-containing compounds such as propylamine, aniline, and alkanolamines, and caustic alkali metals such as sodium hydroxide and potassium hydroxide. The amount of alkali to be used is usually 0.1 to 1.5 times the amount of acidic groups contained in the bulk polymer molecules. By supplying such an alkaline aqueous solution, part or all of the acidic groups contained in the bulk polymer are neutralized, and due to the phase inversion phenomenon caused by the introduction of water, hydrosil, that is, polymer particles, have a particle size of 0.01 to 0.1μ. A uniformly and stably dispersed dispersion in water is produced within this range. This hydrosil has a low viscosity that allows it to be coated with a roll coater or fan coater, but if necessary, it can be diluted to the desired viscosity by adding water after being taken out from the outlet of the reactor. You can also do that. The total proportion of water that can be added into the reactor and taken out from the reactor is generally set so that the solid content concentration is 10 to 60% by weight. The viscosity of the hydrosil at this time is usually 30 to 1,000 voids at 25°C. In the above production method, the heating temperature in each part of the reactor is appropriately controlled depending on the type of monomer and polymerization catalyst used, the amount of polymerized contents transferred to each part, etc. The temperature of the polymerized content in the first half region and the middle region is 40 to 150°C, preferably 60 to 1
It is desirable to adjust the temperature within the range of 00°C, and in particular, the heating temperature in the area where the viscosity is increased by rapid polymerization should be set depending on the type of polymerization catalyst, the structure of the crucian carp, the structure of the carp reactor, and the transfer conditions. . In addition, in the latter half of the transfer process, the temperature of the contents is 20 to 100°C, preferably 40 to 8°C.
It is preferable to set it to 0°C1. In this invention, the hydrosil taken out from the reactor as described above is coated on a support and dried to obtain a pressure-sensitive adhesive tape. Various additives can be added in the latter half of the transfer process, that is, in the region where the alkaline aqueous solution is supplied, or in the intermediate region from Case 1. The aqueous alkali solution may be added at the same time from the supply port 12, or may be added by providing a separate supply port. Alternatively, a similar additive can be added after being removed from the hydrosyl-forming reactor. Examples of such additives include, for example, initial adhesion (
In order to further improve tack), we use liquid tackifying resins such as phenolic resins, petroleum resins, styrene resins, xylene resins, and terpene resins used in general pressure-sensitive adhesives, and polyether polyols. There are hydrophilic plasticizers such as The amount of these additives should be up to 50 parts by weight per 100 parts by weight of the polymer component in the hydrosil. If the amount is too large, properties such as cohesive strength and heat resistance may be impaired, and the stability of the hydrosil may be reduced. It is not desirable because it has a negative effect. Moreover, the average molecular weight which is liquid at room temperature is s, oo. ~200,000 low molecular weight polymers can also be added to improve initial adhesion. As such a low molecular weight polymer, an acrylic low molecular weight polymer having a similar composition to the acrylic monomer used in the present invention is preferable from the viewpoint of compatibility. The amount of these polymers added varies depending on the composition, but it is best to add up to 200 parts by weight per 100 parts by weight of the hydrosil polymer component; too much will impair properties such as cohesive strength and heat resistance. It also inhibits the stability of hydrosyl. Furthermore, in order to improve the cohesive force, an appropriate crosslinking agent such as a polyvalent metal salt such as calcium chloride or aluminum acetate, a water-soluble glycidyl compound, or a water-soluble melamine may be added. The amount added is usually up to 2 parts by weight, preferably within the range of 0.005 to 1 part by weight, per 100 parts by weight of the hydrosil polymer component. Pressure-sensitive adhesive tapes that can be produced according to this invention include:
Selecting the pressure-sensitive adhesive composition and support from general packaging tapes to double-sided adhesive tapes and electrical insulation tapes 1.
Various tapes can be obtained from this. As detailed above, the present invention has discovered a method for bulk polymerization of acrylic monomers that solves the problems caused by conventional suspension polymerization, emulsion bed polymerization, or solution polymerization, while also adding alkali polymerization to the bulk polymerization obtained by this method. The aqueous solution is hydrosilated to enable uniform thin layer coating on the support, and by making these manufacturing steps continuous, it is ideal from the standpoint of quality stability and manufacturing efficiency. It is possible to provide a method for manufacturing a pressure-sensitive adhesive tape, which is extremely meaningful industrially. Next, examples of this invention will be described. In addition, the adhesive strength in the examples is JIS7. -1528, the 180 degree peeling strength (91720am) was measured, and the holding power (cohesive force) was measured at 25X on the Bakelite plate.
The time taken for the Bakelite plate to fall was measured by laminating the sheets to a thickness of 25 mm and applying a load of I kg at 40°C. Example 1 As a reactor, an extruder having a single internal screw type stirrer was used. In addition, the screw diameter is 40 mm, the barrel length is 1,250 mm, and zones A, B, C, D, and E]
The temperature can be adjusted independently for each zone, and there are supply ports in zones A and D, and the temperature is A:B:C:I):E=
100°C: ] 00'C: 100°C: 30°C: 30°C
I set one. The gap between the barrel and the screw thread is 1mm.
The velocity gradient between the screw mountain and the barrel is 6.280/
It was a minute. Using the above reactor, butyl acrylate:acrylic acid:azobisisobutyronitrile-90:10:0.15
A polymerization raw material of 0.8 centivoise consisting of (ili amount ratio) was quantitatively fed from the supply port of the A zone at a speed of 50 y/min. Furthermore, a 5% by weight ammonia aqueous solution and a 1% epoxy crosslinking agent aqueous solution were quantitatively fed from the supply port of the D zone at a speed of 100 y/min and 5 y/min, respectively. The resulting water-dispersed pressure-sensitive adhesive (hydrosil)
The polymer conversion rate is 98.5%, and the solid content is 30%.
, the average molecular weight of the polymer particles was 400,000. this,
After drying with a roll coater, the glue thickness was 50μ (coated with 25μ polyester film and heated at 130°C).
and dried for 5 minutes. The resulting tape has an adhesive strength of 820 y
/ 201 nm, and the holding force was more than i, ooo minutes. In addition, the melt viscosity at 200'C1 of the bulk polymer obtained without supplying the ammonia aqueous solution and the crosslinking agent aqueous solution from the supply port of the D zone in the above method 1 is 10.0
00 poise, it could not be applied in a uniform thin layer onto a polyester film by extrusion coating. Example 2 The reactor was the same as in Example 1, with A, B, C, D
, the temperature of E zone is 100℃, 120'C, 1, respectively.
The temperature was set at 20°C, 80°C and 140°C. Other conditions are the same as in Example 1. The polymerization raw materials are phtyl acrylate: 2-ethylhexyl acrylate: acrylic acid: azobisisobutyronitrile -45:45:10:O,1
. Furthermore, a 25% by weight ammonia aqueous solution and a 1% epoxy crosslinking agent aqueous solution were quantitatively fed from the supply port of this D/- at a speed of 30 y/min and 7 y/min, respectively. Pressure adhesive (hydrosil)
The solid content is 30% by weight, and the polymer conversion rate is 98.7% by weight.
The average molecular resistance of the polymer particles was 350,000. This was made into a tape in the same way as in Example 1, and adhesive cuff 20
At gI/20 nm, the retention force was 1.000 minutes or more. Example 3 A twin-screw extruder having two internal screw shafts was used as the reactor. Barrel (total length 1.500 mm) is A
, B, C, D, E, and F are divided into 6 zones, each with a temperature of 100°C, 100°C, 100°C, 150°
C150°C180°C (This setting was made. Zones A, D and E each have a supply port, the screw diameter is 50 mm, and the gap between the barrel and the screw thread is I.
mm, the velocity gradient between the screw thread and the barrel is 9,
It was 980/min. The polymerization raw material was the same as in Example 1, and was supplied at a constant rate of 00 p/min from the supply port of the A zone. 1) Liquid xylene resin was supplied stationary at 20 y/min from the supply port of the zone, and 1.0 weight% thorium hydroxide aqueous solution and 1 wt% epoxy crosslinking agent aqueous solution were respectively supplied from the supply port of the E zone. The constant was supplied at a speed of 201'/min, 10y/min. The resulting water-dispersed pressure-sensitive adhesive (hydrosil)
The solid content was 30 tons 1 m%, the polymer conversion rate was 99%, and the average molecular weight of the polymer particles was 500,000. When this was made into a tape in the same manner as in Example 1, the adhesive strength was 9.
80 y/20 am, hold cuff 50 minutes. Comparative Example Compared to Example 1, butyl acrylate: acrylic acid: azobisisobutyronitrile = 100:10 was prepared in a Mitsuro Furaraco equipped with a barrel stirrer, nitrogen exchanger, and cooling pipe.
:0.15 (heavy elbow ratio) to (to) It is a sectional view of the single screw extruder shown. Add 500 y of polymerization raw material mixed with 40% market weight of toluene in 1 trowel, and after purging with nitrogen, polymerize for 6 hours while controlling the temperature at 60 to 65°C, and further mature at 80°C for 4 hours. Ta. A 1% Ichikawa epoxy crosslinking agent solution dissolved in methyl ethyl ketone was blended with the solution polymerized product thus obtained, and the same solution as in Example 1 was formed into a tape using a reverse coater. The obtained tape has an adhesive strength of 840f;'/20r
nm, and the holding power was 1,000 minutes. As is clear from the above Examples and Comparative Examples, the characteristics of the tape obtained from this invention are almost the same as those of organic solvent-based tapes, and since no organic solvent is used as a medium, it is environmentally friendly and cost effective. It is clear that it has superior water resistance and moisture resistance compared to those obtained by suspension polymerization or emulsion polymerization. This can be done easily.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明法(こ用いる反応器の1例として41 特許出願人  日東電気工業株式会社 The drawing shows the method of this invention (41 as an example of the reactor used). Patent applicant: Nitto Electric Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)内容物を表面更新しつつ連続的に移送可能でかつ
上記移送過程の全域に亘る温度制御機構を備えた反応器
を使用し、この反応器内へアクリル系モノマーを主体と
しかつ酸性基を有する不飽和モノマーを共重合成分とし
た常温での粘度が10ポイズ以下の塊状重合用原料を連
続供給し、上記移送過程の全域に亘って所定の温度に加
熱制御しつつ、移送過程の前半領域内で急速重合1こよ
り増粘させると共に以降の重合進行によって所定の転化
率となし、さらに移送過程の後半領域内で上記所定の転
化率とされた常温で粘着性を有する塊状重合物にアルカ
リ水溶液を連続供給して塊状重合物分子内の酸性基を中
和するとともにこの重合物が水中1こ安定1こ分散され
たヒドロシルとなし、これを反応器から連続的に取り出
す一方、支持体上に塗布し乾燥することを特徴とする感
圧性接着テープの製造方法。
(1) Use a reactor that can continuously transfer the contents while renewing the surface and is equipped with a temperature control mechanism over the entire transfer process, and transfer the material containing mainly acrylic monomers and acidic groups into the reactor. A raw material for bulk polymerization having a viscosity of 10 poise or less at room temperature and containing an unsaturated monomer having a The viscosity is increased by rapid polymerization in the region, and a predetermined conversion rate is achieved by the subsequent polymerization progress.Furthermore, in the second half of the transfer process, the bulk polymer, which is sticky at room temperature and has the above-mentioned predetermined conversion rate, is treated with an alkali. An aqueous solution is continuously supplied to neutralize the acidic groups in the molecules of the bulk polymer, and the polymer is turned into hydrosil, which is stably dispersed in water. 1. A method for producing a pressure-sensitive adhesive tape, which comprises applying the tape to a surface and drying it.
(2)反応器力月軸もしくは2軸のスクリュー押出機で
ある特許請求の範囲第(1)項記載の感圧性接着テープ
の製造方法。
(2) The method for producing a pressure-sensitive adhesive tape according to claim (1), wherein the reactor is a power-screw extruder or a twin-screw extruder.
JP15332581A 1981-09-28 1981-09-28 Production of pressure-sensitive adhesive tape Pending JPS5853975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15332581A JPS5853975A (en) 1981-09-28 1981-09-28 Production of pressure-sensitive adhesive tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15332581A JPS5853975A (en) 1981-09-28 1981-09-28 Production of pressure-sensitive adhesive tape

Publications (1)

Publication Number Publication Date
JPS5853975A true JPS5853975A (en) 1983-03-30

Family

ID=15560022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15332581A Pending JPS5853975A (en) 1981-09-28 1981-09-28 Production of pressure-sensitive adhesive tape

Country Status (1)

Country Link
JP (1) JPS5853975A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179676A (en) * 1983-03-31 1984-10-12 Nitto Electric Ind Co Ltd Preparation of pressure-sensitive adhesive tape
JPS59184273A (en) * 1983-04-02 1984-10-19 Nitto Electric Ind Co Ltd Production of pressure-sensitive adhesive tape
US4695608A (en) * 1984-03-29 1987-09-22 Minnesota Mining And Manufacturing Company Continuous process for making polymers having pendant azlactone or macromolecular moieties
US5487780A (en) * 1993-02-19 1996-01-30 Minnesota Mining & Manufacturing Company Apparatus for applying coating materials to overlapped individual sheets

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034071A (en) * 1973-07-27 1975-04-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034071A (en) * 1973-07-27 1975-04-02

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179676A (en) * 1983-03-31 1984-10-12 Nitto Electric Ind Co Ltd Preparation of pressure-sensitive adhesive tape
JPS59184273A (en) * 1983-04-02 1984-10-19 Nitto Electric Ind Co Ltd Production of pressure-sensitive adhesive tape
US4695608A (en) * 1984-03-29 1987-09-22 Minnesota Mining And Manufacturing Company Continuous process for making polymers having pendant azlactone or macromolecular moieties
US5487780A (en) * 1993-02-19 1996-01-30 Minnesota Mining & Manufacturing Company Apparatus for applying coating materials to overlapped individual sheets

Similar Documents

Publication Publication Date Title
US20070055032A1 (en) Solvent-free production method for producing acrylate pressure-sensitive adhesive substances
US5194550A (en) Acrylate-based adhesive polymer
JP2007204747A (en) Composition comprising copolymer and polymer organic compound having hydrophobic cavity
JP4509279B2 (en) Method for producing acrylic pressure-sensitive adhesive
JP4803916B2 (en) Acrylic pressure-sensitive adhesive and method for producing the same
JPH0339521B2 (en)
JPS5853975A (en) Production of pressure-sensitive adhesive tape
JPH04226504A (en) Polymer of olefinically unsaturated monomer, solution of this polymer, and pressure-sensitive adhesive
CN1042230C (en) Vinyl acetate modified suspension polymer beads, adhesives made therefrom, and method of making
JPS6241523B2 (en)
EP0296577B1 (en) Acrylate-based pressure sensitive adhesive composition
JPS6150516B2 (en)
JPS5853974A (en) Production of pressure-sensitive adhesive tape
JP2748013B2 (en) Method for producing powdery acrylic resin
JPH0255448B2 (en)
JPS5853973A (en) Production of pressure-sensitive adhesive tape
JP3611653B2 (en) Acrylic pressure-sensitive adhesive, its adhesive sheet, and production method thereof
JPS5853969A (en) Pressure-sensitive adhesive composition
JP3748274B2 (en) Water-based re-peelable pressure sensitive adhesive
EP0296576A1 (en) An improved adhesive polymer
JPS58168610A (en) Production of pressure-sensitive adhesive
JP2002069394A (en) Water-dispersion type adhesive sheets and method for producing the same
JPS5853970A (en) Pressure-sensitive adhesive composition
JPH0339522B2 (en)
JPS58127752A (en) Production of aqueous polymer dispersion