JPS6241420B2 - - Google Patents

Info

Publication number
JPS6241420B2
JPS6241420B2 JP55099685A JP9968580A JPS6241420B2 JP S6241420 B2 JPS6241420 B2 JP S6241420B2 JP 55099685 A JP55099685 A JP 55099685A JP 9968580 A JP9968580 A JP 9968580A JP S6241420 B2 JPS6241420 B2 JP S6241420B2
Authority
JP
Japan
Prior art keywords
capacitor
electrode
transistor
grounding
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55099685A
Other languages
Japanese (ja)
Other versions
JPS5724570A (en
Inventor
Masahiro Hayakawa
Shizuka Jodai
Yutaka Hirano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9968580A priority Critical patent/JPS5724570A/en
Publication of JPS5724570A publication Critical patent/JPS5724570A/en
Publication of JPS6241420B2 publication Critical patent/JPS6241420B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Description

【発明の詳細な説明】 本発明は、自己バイアス方式で動作し超高周波
用として好適な半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device that operates in a self-biased manner and is suitable for ultra-high frequency applications.

GaAs FETを用いたマイクロ波用半導体装置
では、該トランジスタのドレインに正電圧を加
え、そして例えばソースは接地し、ゲートには負
電圧を加えて使用するが、この方式では2電源を
必要とするから、ソースを抵抗とキヤパシタの並
列回路を介して接地すると所謂自己バイアス方式
となり、ゲートに負電圧を与えることは不要とな
り、単一電源で動作可能となる。ところで高周波
になるとリード線のインダクタンスが無視できな
いから上記キヤパシタを有効に動作させるには該
キヤパシタをトランジスタに可及的に接近させて
配置する必要があり、この目的でトランジスタと
キヤパシタ電極とを基板上で密接並置することが
考えられている。しかしこの並置する方式ではゲ
ート電極配線がキヤパシタ電極上を跨ぐことにな
り、ワイヤ長が長くなるのでインダクタンスが大
になり、一方、超高周波用のトランジスタの入力
インピーダンスは極めて小さいのでこのまゝでは
整合が取りにくい。そこで入力回路にもそのイン
ダクタンスに応じて適当な値のキヤパシタを挿入
する。
In a microwave semiconductor device using a GaAs FET, a positive voltage is applied to the drain of the transistor, the source is grounded, and a negative voltage is applied to the gate, but this method requires two power supplies. Therefore, if the source is grounded through a parallel circuit of a resistor and a capacitor, a so-called self-bias method is achieved, which eliminates the need to apply a negative voltage to the gate and allows operation with a single power supply. By the way, at high frequencies, the inductance of the lead wire cannot be ignored, so in order for the capacitor to operate effectively, it is necessary to place the capacitor as close as possible to the transistor.For this purpose, the transistor and the capacitor electrode are placed on the substrate. It is considered to be closely juxtaposed. However, in this juxtaposition method, the gate electrode wiring straddles the capacitor electrode, which increases the wire length and increases the inductance.On the other hand, the input impedance of ultra-high frequency transistors is extremely small, so matching is impossible as it is. is difficult to remove. Therefore, a capacitor of an appropriate value is inserted into the input circuit according to its inductance.

かゝる半導体装置の等価回路を第1図に、また
具体例を第2図に示す。
An equivalent circuit of such a semiconductor device is shown in FIG. 1, and a specific example is shown in FIG.

本実施例では1チツプ4セル構造のGaAs
FETを用い、2つのセルを1つのFETとしてそ
のゲート入力部に2段のローパスフイルタを設け
て入力整合を行なう。L1とC1,L2およびL4
C2,L3およびL5とC3がそのローパスフイルタで
あり、インダクタンスL1〜L5はリード線l1〜l5
よるもの、キヤパシタC1,C2,C3は電極18,
32a,32bとその下の絶縁膜および更にその
下の接地導体基板12によるものである。E字形
の電極22はFET10a,10bのソースを交
流的に接地するキヤパシタC4の電極であり、こ
のキヤパシタC4は該電極22とその下の絶縁膜
と更にその下の接地導体基板12で構成される。
このような電極32a,32b、および22を持
つコンデンサチツプC4は基板12上でトランジ
スタチツプ20に並設され、図示の如くリード線
l1〜l8で結線される。26,28,30はドレイ
ン用、ゲート用、ソース用各パツケージリード、
14は該リード絶縁用のセラミツク板である。
In this example, a GaAs chip with a four-cell structure on one chip is used.
Using FETs, two cells are combined into one FET, and a two-stage low-pass filter is provided at the gate input section for input matching. L 1 and C 1 , L 2 and L 4
C 2 , L 3 and L 5 and C 3 are its low-pass filters, inductances L 1 to L 5 are due to lead wires l 1 to l 5 , capacitors C 1 , C 2 , C 3 are electrodes 18,
32a, 32b, the insulating film thereunder, and the ground conductor substrate 12 further below. The E-shaped electrode 22 is the electrode of a capacitor C4 that AC-grounds the sources of the FETs 10a and 10b, and this capacitor C4 is composed of the electrode 22, an insulating film below it, and a grounding conductor substrate 12 below it. be done.
A capacitor chip C4 having such electrodes 32a, 32b, and 22 is arranged parallel to the transistor chip 20 on the substrate 12, and the lead wires are connected as shown.
Connected by l 1 to l 8 . 26, 28, and 30 are package leads for the drain, gate, and source,
14 is a ceramic plate for insulating the leads.

この型のトランジスタはキヤパシタ電極をソー
ス接地用、入力整合用共にトランジスタチツプ2
0に可及的に接近させて配置でき、トランジスタ
との接続線l4,l5,l8もキヤパシタ電極上を越え
る必要はないが、接地インダクタンスが充分下ら
ず、予期した利得が得られないという問題があ
る。これは接地用キヤパシタC4の電極22を通
る信号電流のパス長が大であることに起因する。
即ちソース用パツケージリード30から接地用キ
ヤパシタC4の電極22の両端および両側のリー
ド線l8を通つてトランジスタのソース電極へ至る
パスは短いが、キヤパシタ電極の中央部分および
中央のリード線l8を通つてトランジスタのソース
電極は至るパスはP1,P2,P3,P4を通ることにな
るので長い。具体例を挙げるとキヤパシタ電極2
2は1mm×2mm程度の大きさを持つので該パス長
は3mm程度ある。この種の回路では信号電流の波
長をλとしてパス長がλ/4以下では容量性であ
るがλ/4で短絡状態となり、λ/4を越えると
誘導性になる。信号周波数が6GHzとすると真空
中の波長は50mm、従つてλ/4は12.5mmであり、
誘電率がεの媒質中は1/√に下るからキヤパ
シタの誘導体のεを140とするとλ/4はほヾ1
mmである。従つてキヤパシタ電極の中央部分は誘
導性になり、容量として動作しない。
In this type of transistor, the capacitor electrode is connected to the transistor chip 2 for both source grounding and input matching.
0 as close as possible, and the connection lines l 4 , l 5 , and l 8 to the transistors do not need to go over the capacitor electrode, but the ground inductance does not drop sufficiently and the expected gain cannot be obtained. The problem is that there is no. This is due to the fact that the path length of the signal current passing through the electrode 22 of the grounding capacitor C4 is large.
That is, the path from the source package lead 30 to the source electrode of the transistor through both ends of the electrode 22 of the grounding capacitor C4 and the lead wires on both sides is short, but the path from the center part of the capacitor electrode and the lead wires on both sides is short. The path to the source electrode of the transistor is long because it passes through P 1 , P 2 , P 3 , and P 4 . To give a specific example, capacitor electrode 2
2 has a size of about 1 mm x 2 mm, so the path length is about 3 mm. In this type of circuit, where the wavelength of the signal current is λ, the circuit is capacitive when the path length is less than λ/4, becomes short-circuited at λ/4, and becomes inductive when it exceeds λ/4. If the signal frequency is 6GHz, the wavelength in vacuum is 50mm, so λ/4 is 12.5mm,
In a medium with dielectric constant ε, the dielectric constant decreases to 1/√, so if ε of the capacitor dielectric is 140, λ/4 is approximately 1
mm. Therefore, the central portion of the capacitor electrode becomes inductive and does not operate as a capacitor.

そこで第3図に示すように接地用キヤパシタ
C4の電極22を第2図とは逆に配置することを
考えた。このようにすると信号電流のパス長は短
かくなり、接地インダクタンスは低減して利得は
2dB程上昇した。しかし6GHz附近で利得に鋭いデ
イツプ(−5dB程度)が生じる。
Therefore, as shown in Figure 3, a grounding capacitor is
We considered arranging the C 4 electrode 22 in the opposite direction to that shown in FIG. This shortens the signal current path length, reduces ground inductance, and reduces gain.
It increased by about 2dB. However, a sharp dip (about -5 dB) occurs in the gain near 6 GHz.

それ故本発明は接地用キヤパシタC4の電極2
2の形状を更に改良して上記デイツプをなくそう
とするものであり、その特徴は電界効果トランジ
スタが構成された半導体チツプおよび該トランジ
スタのソース接地用および入力インピーダンス整
合用の各キヤパシタの電極を基板上に並設した半
導体装置において、該ソース接地用キヤパシタの
電極に開口部を設け、該開口部内に入力インピー
ダンス整合用のキヤパシタの電極を配設したこと
にある。
Therefore, the present invention provides the electrode 2 of the grounding capacitor C 4
This is an attempt to eliminate the dip by further improving the shape of 2, and its feature is that the semiconductor chip on which the field effect transistor is constructed and the electrodes of the capacitors for source grounding and input impedance matching of the transistor are connected to the substrate. In the semiconductor devices arranged in parallel above, an opening is provided in the electrode of the source grounding capacitor, and the electrode of the input impedance matching capacitor is disposed within the opening.

上述のように第3図のキヤパシタ電極では接地
インダクタンスが低減して総体的に利得は2dB程
上昇するが利得一周波数特性に鋭いデイツプが生
じる。このデイツプの中心周波数はE形の接地用
キヤパシタC4の電極22の脚長Lつまりa,b
間の長さにより変り、Lを大にすると周波数は下
る。この原因は次のように考えられる。接地用コ
ンデンサチツプC4の誘電膜に比誘電率εr=
140、厚さ0.15mmのものを用い、L=1.25mmとす
ると、この長さLは6GHzのλ/4に相当する。
そしてb点が開放端であるからa点は短絡端とな
る。一方、入力整合用キヤパシタC2,C3と高周
波接地用キヤパシタC4とは近くに配置されてい
るから、この2つのコンデンサ間の結合が無視で
きない。この結合で高周波入力は接地用キヤパシ
タC4にバイパスされてしまい、トランジスタに
到達しないので利得が低下する。更にλ/4前後
で接地用キヤパシタC4が実効的に容量性から誘
導性に変るため、ゲインリツプル等が生じやす
い。
As mentioned above, in the capacitor electrode of FIG. 3, the ground inductance is reduced and the overall gain increases by about 2 dB, but a sharp dip occurs in the gain-frequency characteristic. The center frequency of this dip is the leg length L of the electrode 22 of the E-shaped grounding capacitor C4 , that is, a, b
It changes depending on the length of the interval, and as L becomes larger, the frequency decreases. The reason for this is thought to be as follows. The dielectric film of the grounding capacitor chip C4 has a relative dielectric constant εr=
140 with a thickness of 0.15 mm and L=1.25 mm, this length L corresponds to λ/4 of 6 GHz.
Since point b is an open end, point a is a shorted end. On the other hand, since the input matching capacitors C 2 and C 3 and the high frequency grounding capacitor C 4 are arranged close to each other, the coupling between these two capacitors cannot be ignored. Due to this coupling, the high frequency input is bypassed to the grounding capacitor C4 and does not reach the transistor, reducing the gain. Furthermore, since the grounding capacitor C4 effectively changes from capacitive to inductive at around λ/4, gain ripple etc. are likely to occur.

そこで本発明では接地用キヤパシタC4の電極
22を第4図に示すように環状型にし、その開口
部22a,22b内に整合用キヤパシタの電極3
2a,32bを設けた。このようにした所、第3
図の場合のような利得のリツプルは現われず、ま
た利得の低下もなかつた。これは第3図のキヤパ
シタ電極のように開放端を持たないことに依ると
考えられる。
Therefore, in the present invention, the electrode 22 of the grounding capacitor C4 is made into an annular shape as shown in FIG.
2a and 32b were provided. Where I did this, the third
There was no gain ripple as in the case shown in the figure, and there was no decrease in gain. This is thought to be due to the fact that it does not have an open end like the capacitor electrode in FIG. 3.

以上説明したように本発明によれば接地用キヤ
パシタ電極を環状にするという簡単な手段によ
り、自己バイアス、入力整合回路付きFETを、
デイツプなく高利得で高周波まで動作させること
ができ、甚だ有効である。
As explained above, according to the present invention, a self-biasing FET with an input matching circuit can be constructed by simply making the grounding capacitor electrode into an annular shape.
It can operate up to high frequencies with high gain without dips, and is extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が対象とする半導体装置の等価
回路図、第2図はその具体例を示す概略平面図、
第3図は改良例を示す部分平面図、第4図は本発
明の実施例を示す部分平面図である。 図面で、20は半導体チツプ、C2,C4は入力
整合用キヤパシタ、32a,32bはその電極、
C4は接地用キヤパシタ、22はその電極、22
a,22bはその開口部、12は基板である。
FIG. 1 is an equivalent circuit diagram of a semiconductor device targeted by the present invention, and FIG. 2 is a schematic plan view showing a specific example thereof.
FIG. 3 is a partial plan view showing an improved example, and FIG. 4 is a partial plan view showing an embodiment of the present invention. In the drawing, 20 is a semiconductor chip, C 2 and C 4 are input matching capacitors, 32 a and 32 b are their electrodes,
C 4 is a grounding capacitor, 22 is its electrode, 22
a and 22b are the openings thereof, and 12 is the substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 電界効果トランジスタが構成された半導体チ
ツプおよび該トランジスタのソース接地用および
入力インピーダンス整合用の各キヤパシタの電極
を基板上に並設した半導体装置において、該ソー
ス接地用キヤパシタの電極に開口部を設け、該開
口部内に入力インピーダンス整合用のキヤパシタ
の電極を配設したことを特徴とする半導体装置。
1. In a semiconductor device in which a semiconductor chip in which a field effect transistor is configured and electrodes of capacitors for source grounding and input impedance matching of the transistor are arranged side by side on a substrate, an opening is provided in the electrode of the source grounding capacitor. . A semiconductor device, characterized in that a capacitor electrode for input impedance matching is disposed within the opening.
JP9968580A 1980-07-21 1980-07-21 Semiconductor device Granted JPS5724570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9968580A JPS5724570A (en) 1980-07-21 1980-07-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9968580A JPS5724570A (en) 1980-07-21 1980-07-21 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5724570A JPS5724570A (en) 1982-02-09
JPS6241420B2 true JPS6241420B2 (en) 1987-09-02

Family

ID=14253887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9968580A Granted JPS5724570A (en) 1980-07-21 1980-07-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5724570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153823U (en) * 1988-04-18 1989-10-23
JP2007267026A (en) * 2006-03-28 2007-10-11 Fujitsu Ltd High output amplifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153823U (en) * 1988-04-18 1989-10-23
JP2007267026A (en) * 2006-03-28 2007-10-11 Fujitsu Ltd High output amplifier

Also Published As

Publication number Publication date
JPS5724570A (en) 1982-02-09

Similar Documents

Publication Publication Date Title
US4843440A (en) Microwave field effect transistor
US5760650A (en) Coplanar waveguide amplifier
US4200880A (en) Microwave transistor with distributed output shunt tuning
JP2005521312A (en) Power amplifier device
US4193083A (en) Package for push-pull semiconductor devices
US4393392A (en) Hybrid transistor
US4390851A (en) Monolithic microwave amplifier having active impedance matching
US5233313A (en) High power field effect transistor amplifier
EP0015709B1 (en) Constructional arrangement for semiconductor devices
US4647867A (en) High-frequency, high-gain, push-pull amplifier circuit
KR100228754B1 (en) High-frequency amplifier inegrated circuit device
CA1200017A (en) Microwave field effect transistor
JP3004882B2 (en) Spiral inductor, microwave amplifier circuit and microwave amplifier
JP4094904B2 (en) Semiconductor device
JPS6241420B2 (en)
JP3005416B2 (en) Microwave and millimeter wave monolithic integrated circuits
JPS6114183Y2 (en)
JPS63279608A (en) Integrated amplifier circuit
JPS60200547A (en) Semiconductor device
JPS6035843B2 (en) capacitor
JPH03218102A (en) Interdigital filter
JPH01279612A (en) High frequency amplification circuit
JPH04287507A (en) Field effect transistor amplifier
US11855601B2 (en) High-frequency semiconductor device
JP2594558B2 (en) Field-effect transistor