JPS6241407B2 - - Google Patents

Info

Publication number
JPS6241407B2
JPS6241407B2 JP54157555A JP15755579A JPS6241407B2 JP S6241407 B2 JPS6241407 B2 JP S6241407B2 JP 54157555 A JP54157555 A JP 54157555A JP 15755579 A JP15755579 A JP 15755579A JP S6241407 B2 JPS6241407 B2 JP S6241407B2
Authority
JP
Japan
Prior art keywords
gas
transformer
winding
tank
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54157555A
Other languages
Japanese (ja)
Other versions
JPS5680108A (en
Inventor
Yasuaki Ishioka
Ikuichi Moryama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP15755579A priority Critical patent/JPS5680108A/en
Publication of JPS5680108A publication Critical patent/JPS5680108A/en
Publication of JPS6241407B2 publication Critical patent/JPS6241407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は乾式ガス入変圧器に係り、特に複合絶
縁層で絶縁される巻線構造とした六弗化硫黄ガス
入変圧器に関する。 電気機器、特にガス入変圧器では内部絶縁物の
熱分解あるいはガス洩れなどにより水分が所定の
量を超えると、絶縁物は加水分解を生じ、電気的
および機械的特性の急激な低下を招来する。した
がつて、この種機器内に使用する絶縁材料の選定
および材料の水分管理が電気機器の異常検出およ
び大事故防止等における重要な課題となる。 一般にガス入変圧器、特に六弗化硫黄ガス入変
圧器において、絶縁材料は絶縁紙または絶縁フイ
ルムを使用し、この何れかによりコイル導体を絶
縁した巻線構造がある。前者は吸湿性に富み、絶
縁耐力等電気的特性の低下および機械的特性への
影響が著しく、これら特性を維持するとなると大
形化されてしまう欠点があつた。これに比し後者
はこれら特性が優れていることから、近年使用頻
度が高くなつてきている。しかし、絶縁フイルム
による巻線絶縁構造の場合、コイルの絶縁層間が
密接状態となるため、変圧器内を対流する筈のガ
ス流が停滞してしまい、フイルム絶縁層の冷却が
不十分となるから、温度上昇を招いて絶縁劣化を
来たす危険性があつた。このことは巻線を構成す
る絶縁層の厚さに比例して顕著となる。 本発明はこれら欠点を除去し、コイル導体の絶
縁層は耐熱性、機械強度が優れ耐久性に富む巻線
構造となり、しかもガスの対流作用が改善され且
つ小形軽量にすることのできる六弗化硫黄ガス入
変圧器を提供することを目的とする。 以下、図面を参照して本発明の一実施例を説明
する。 第1図は六弗化硫黄ガス入変圧器の概略構成図
である。図において、変圧器タンク1は内部に固
定される鉄心2を設け、この鉄心2にコイル3が
巻回され、六弗化硫黄のガス体6が封入されてい
る。このタンク1の上部には絶縁構成される巻線
の端子をタンク外部に引出すことのできるブツシ
ング4が設けられ、また変圧器の内部絶縁物は冷
却装置5により冷却されるようになつている。第
2図は、第1図に示したコイル3に巻回され薄膜
材料となる合成樹脂フイルム7と合成紙8との複
合絶縁層を被覆して構成される変圧器巻線の一実
施例である。 ここに薄膜絶縁材料としては、合成樹脂フイル
ム7として例えば厚さ12〜50μmのポリエチレン
テレフタレートフイルム(以下、ポリエステルフ
イルムと称す)を、合成紙8として厚さ10〜75μ
mの合成紙で例えば市販されているアラミツド紙
を用いて複合絶縁層を構成することができる。 本発明による絶縁層の機械的強度を従来のもの
と比較するに、従来の絶縁フイルムにポリエステ
ルフイルムを用いた単独層による場合、上述した
複合絶縁層による場合について、それぞれ六弗化
硫黄ガスの密閉系で長期間高温状態におけるこれ
ら絶縁物の機械的特性変化を示せば次表のように
なる。
The present invention relates to a dry type gas-filled transformer, and more particularly to a sulfur hexafluoride gas-filled transformer having a winding structure insulated with a composite insulating layer. In electrical equipment, especially gas-filled transformers, if moisture exceeds a certain amount due to thermal decomposition of internal insulation or gas leakage, the insulation will undergo hydrolysis, resulting in a rapid decline in electrical and mechanical properties. . Therefore, selection of insulating materials used in this type of equipment and moisture management of the materials become important issues in detecting abnormalities in electrical equipment and preventing major accidents. In general, gas-filled transformers, particularly sulfur hexafluoride gas-filled transformers, have a winding structure in which insulating paper or insulating film is used as the insulating material, and the coil conductor is insulated with either of these materials. The former is highly hygroscopic and has a significant effect on electrical properties such as dielectric strength and mechanical properties, and has the disadvantage that maintaining these properties requires an increase in size. In contrast, the latter has been used more frequently in recent years because of its superior properties. However, in the case of a winding insulation structure using an insulating film, the insulating layers of the coil are in close contact with each other, so the gas flow that should be convecting inside the transformer becomes stagnant, and the film insulating layer is not cooled enough. There was a risk that the temperature would rise and the insulation would deteriorate. This becomes more noticeable in proportion to the thickness of the insulating layer constituting the winding. The present invention eliminates these drawbacks, and the insulating layer of the coil conductor has a highly durable wound structure with excellent heat resistance and mechanical strength.Moreover, it has a hexafluoride structure that improves gas convection and can be made smaller and lighter. The purpose is to provide a sulfur gas filled transformer. Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a sulfur hexafluoride gas filled transformer. In the figure, a transformer tank 1 is provided with an iron core 2 fixed therein, a coil 3 is wound around the iron core 2, and a gas body 6 of sulfur hexafluoride is enclosed. A bushing 4 is provided at the top of the tank 1 to allow the terminals of the insulated windings to be drawn out of the tank, and the internal insulation of the transformer is cooled by a cooling device 5. FIG. 2 shows an example of a transformer winding constructed by winding the coil 3 shown in FIG. 1 and covering it with a composite insulating layer of synthetic resin film 7 and synthetic paper 8, which are thin film materials. be. Here, as the thin film insulating material, for example, the synthetic resin film 7 is a polyethylene terephthalate film (hereinafter referred to as polyester film) having a thickness of 12 to 50 μm, and the synthetic paper 8 is a polyethylene terephthalate film (hereinafter referred to as a polyester film) having a thickness of 10 to 75 μm.
The composite insulating layer can be constructed using commercially available aramid paper, such as synthetic paper of m. Comparing the mechanical strength of the insulating layer according to the present invention with that of the conventional one, it was found that the case of a single layer using polyester film as the conventional insulating film and the case of the above-mentioned composite insulating layer were sealed against sulfur hexafluoride gas. The following table shows changes in the mechanical properties of these insulators under long-term high-temperature conditions.

【表】 したがつて、この表はアラミツド紙、すなわち
合成紙を併用するか否かによる絶縁物の引張り強
さ残率と、伸び残率との耐熱性を示している。ま
たこのときのポリエステルフイルムの厚さは25μ
mである。 表から明らかなように、同一温度では期間の長
短に応じた機械的強度は両者ともほぼ同値とな
る。次に条件温度を上昇させた場合、複合絶縁層
においては上層となる合成紙8によりコイル導体
の温度上昇を抑制することができる。したがつて
実際の絶縁物対機械強度は140℃×90日の単独層
と120℃×90日の複合絶縁層とを考察すればよい
ことになる。結果は表の示すように、複合絶縁層
は単独層に比し高い機械的強度を維持しているこ
とが判かる。さらに詳細な測定によれば、特にガ
スの流通し難い絶縁層間においては両者の上記機
械的強度の差は顕著である。 このような両者の特性の差は巻線に対するイン
パルス破壊電圧あるいは交流破壊電圧の測定にお
いても同様の結果を示し、電気的特性の面でも複
合絶縁層は良好な絶縁物となる。この電気的特性
を作業性の観点からみれば、複合絶縁層は合成紙
の外被により、しわ、傷などからポリエステルフ
イルム層を保護し、電気的特性の低下を防ぐこと
ができる。 また、上述した複合絶縁層の他の実施例におい
て、ポリエステルフイルムの外被には、クレープ
化した合成紙あるいはポリエステル不織布または
耐熱性絶縁紙とクレープ化したその絶縁紙との積
層構造によるものを用いて複合絶縁層を構成し、
同様の測定および特性検討を行つた場合でも、上
述の合成紙併用時を十分満足することのできる結
果が得られる。 以上のように本発明は、六弗化硫黄ガス入変圧
器の絶縁材料に薄膜材料となる合成樹脂フイルム
と合成紙とを選択し、これらの複合絶縁層により
コイル導体を絶縁する構造としたので、耐熱性に
富み、機械的特性および電気的特性の優れた変圧
器巻線となつて小形軽量化され、しかも絶縁層間
のガス対流作用が改善されるから絶縁物の冷却作
用を十分に行うことができる。
[Table] Therefore, this table shows the heat resistance of the tensile strength retention rate and elongation retention rate of the insulator depending on whether or not aramid paper, that is, synthetic paper is used together. Also, the thickness of the polyester film at this time is 25μ
It is m. As is clear from the table, at the same temperature, the mechanical strength of both samples is approximately the same depending on the length of the period. Next, when the condition temperature is increased, the rise in temperature of the coil conductor can be suppressed by the synthetic paper 8 serving as the upper layer in the composite insulating layer. Therefore, the actual mechanical strength of an insulator can be determined by considering a single layer at 140°C for 90 days and a composite insulating layer at 120°C for 90 days. As shown in the table, the results show that the composite insulating layer maintains higher mechanical strength than a single layer. According to more detailed measurements, the difference in mechanical strength between the two is remarkable, especially between the insulating layers where gas does not easily flow. This difference in properties between the two shows similar results when measuring the impulse breakdown voltage or AC breakdown voltage of the windings, and the composite insulating layer is a good insulator in terms of electrical properties as well. From the viewpoint of workability, the composite insulating layer protects the polyester film layer from wrinkles, scratches, etc. with the synthetic paper outer cover, and prevents deterioration of the electrical characteristics. In other embodiments of the above-mentioned composite insulating layer, the outer sheath of the polyester film is made of creped synthetic paper, polyester nonwoven fabric, or a laminate structure of heat-resistant insulating paper and creped insulating paper. constitute a composite insulating layer,
Even when similar measurements and characteristics studies are performed, results are obtained that fully satisfy the above-mentioned combination of synthetic paper. As described above, the present invention has a structure in which a synthetic resin film and synthetic paper, which are thin film materials, are selected as the insulating materials of a sulfur hexafluoride gas-filled transformer, and the coil conductor is insulated by these composite insulating layers. The transformer winding is highly heat resistant and has excellent mechanical and electrical properties, making it smaller and lighter.Furthermore, the gas convection between the insulation layers is improved, so the insulation is sufficiently cooled. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るガス入変圧器の概略構成
図、第2図は本発明における変圧器巻線の一実施
例を示す断面図である。 1……変圧器タンク、2……鉄心、3……コイ
ル、4……ブツシング、5……冷却装置、6……
六弗化硫黄のガス体、7……合成樹脂フイルム
層、8……合成紙層。
FIG. 1 is a schematic configuration diagram of a gas-filled transformer according to the present invention, and FIG. 2 is a sectional view showing an embodiment of the transformer winding according to the present invention. 1... Transformer tank, 2... Iron core, 3... Coil, 4... Bushing, 5... Cooling device, 6...
Gas body of sulfur hexafluoride, 7...Synthetic resin film layer, 8...Synthetic paper layer.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁ガスを封入する変圧器タンクと、このタ
ンク内に固定される鉄心と、この鉄心に巻回され
合成樹脂フイルムと合成紙とのそれぞれ薄膜材料
による複合絶縁層によつてガスの流通可能にコイ
ル導体を絶縁した巻線と、この巻線の端子を前記
タンク外部に引出すことのできるブツシングと、
熱せられた前記絶縁ガス等を冷却する冷却装置と
を備えたことを特徴する六弗化硫黄ガス入変圧
器。
1 Gas can flow through a transformer tank filled with insulating gas, an iron core fixed in this tank, and a composite insulation layer made of thin film materials of synthetic resin film and synthetic paper wound around this iron core. a winding with an insulated coil conductor; a bushing that allows a terminal of the winding to be drawn out to the outside of the tank;
A sulfur hexafluoride gas filled transformer comprising a cooling device for cooling the heated insulating gas and the like.
JP15755579A 1979-12-05 1979-12-05 Sulfur hexafluoride gas-filled transformer Granted JPS5680108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15755579A JPS5680108A (en) 1979-12-05 1979-12-05 Sulfur hexafluoride gas-filled transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15755579A JPS5680108A (en) 1979-12-05 1979-12-05 Sulfur hexafluoride gas-filled transformer

Publications (2)

Publication Number Publication Date
JPS5680108A JPS5680108A (en) 1981-07-01
JPS6241407B2 true JPS6241407B2 (en) 1987-09-02

Family

ID=15652236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15755579A Granted JPS5680108A (en) 1979-12-05 1979-12-05 Sulfur hexafluoride gas-filled transformer

Country Status (1)

Country Link
JP (1) JPS5680108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230024202A (en) 2021-08-11 2023-02-20 우시오덴키 가부시키가이샤 Containing and discharging apparatus, light source device, and containing and discharging method
KR20230063890A (en) 2020-10-12 2023-05-09 우시오덴키 가부시키가이샤 Protection method for extreme ultraviolet light source device and base plate member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021200A (en) * 2011-07-13 2013-01-31 Hitachi Industrial Equipment Systems Co Ltd Stationary apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931706A (en) * 1972-08-07 1974-03-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931706A (en) * 1972-08-07 1974-03-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230063890A (en) 2020-10-12 2023-05-09 우시오덴키 가부시키가이샤 Protection method for extreme ultraviolet light source device and base plate member
KR20230024202A (en) 2021-08-11 2023-02-20 우시오덴키 가부시키가이샤 Containing and discharging apparatus, light source device, and containing and discharging method

Also Published As

Publication number Publication date
JPS5680108A (en) 1981-07-01

Similar Documents

Publication Publication Date Title
US2454625A (en) Insulated electrical conductor and method of fabricating the same
JP4142203B2 (en) High voltage insulated stator winding
US3259684A (en) Shielded resin insulated electric cable
EP1297540B1 (en) Electrical apparatus with synthetic fiber and binder reinforced cellulose insulation paper
US2534119A (en) High-potential coil
US4095205A (en) Transformer with improved insulator
JPS6241407B2 (en)
US2297605A (en) Transformer
US4853490A (en) Laminated paper-plastic insulating tape and cable including such tape
US4276102A (en) Method for compacting transposed cable strands
US3585552A (en) Electrical apparatus
JPS6260801B2 (en)
KR970008550B1 (en) Direct current oil-filled cable
JP2860009B2 (en) Stationary induction device
JP6017948B2 (en) coil
JPH033937Y2 (en)
JPS61124002A (en) Plastic tape insulated dislocation wire
US1161989A (en) Insulating fabric.
JPS643132Y2 (en)
JPH0945551A (en) Gas insulated stationary induction apparatus
JPH1092232A (en) Oil-impregnated paper solid dc submarine cable
US2038377A (en) Electrical cable
US1686098A (en) Insulated flexible conductor and method of producing same
JPS637010B2 (en)
Blodgett et al. Parameters Affecting the Increase in Dielectric Loss, Caused by Carbon Black Paper Screens, for Oil Paper Dielectrics