JPS6241253A - Flame-retardant resin composition - Google Patents

Flame-retardant resin composition

Info

Publication number
JPS6241253A
JPS6241253A JP18098185A JP18098185A JPS6241253A JP S6241253 A JPS6241253 A JP S6241253A JP 18098185 A JP18098185 A JP 18098185A JP 18098185 A JP18098185 A JP 18098185A JP S6241253 A JPS6241253 A JP S6241253A
Authority
JP
Japan
Prior art keywords
resin
weight
flame
parts
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18098185A
Other languages
Japanese (ja)
Other versions
JPH0618980B2 (en
Inventor
Hideyuki Itagaki
板垣 秀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP18098185A priority Critical patent/JPH0618980B2/en
Publication of JPS6241253A publication Critical patent/JPS6241253A/en
Publication of JPH0618980B2 publication Critical patent/JPH0618980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a flame-retardant resin compsn. which has excellent impact resistance, thermal stability, etc., has such moldability that it can be put as a molding material to practical use, and is suitable for use in the production of electrical components, by mixing an ABS resin with a polyvinyl chloride resin having a specified composition. CONSTITUTION:70-90pts.wt. alkyl methacrylate (A) which gives a homopolymer having a second-order transition point of -10 deg.C or below (e.g., 2-ethylhexyl acrylate), and 30-1pt.wt. polyfunctional monomer (B) (e.g., ethylene glycol diacrylate or diallyl fumarate) are copolymerized. 99-70pts.wt. vinyl chloride is grafted onto 1-30pts.wt. copolymer to prepare a PVC resin. 30-80wt% PVC resin is mixed with 70-20wt% ABS resin to obtain the desired flame- retardant resin compsn.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、Ass系樹脂と塩化ビニル系樹脂からなり
、加工性、耐衝撃性、熱安定性に優れた難燃性樹脂組成
物に間する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a flame-retardant resin composition that is composed of an Ass resin and a vinyl chloride resin and has excellent processability, impact resistance, and thermal stability. do.

〔従来の技術〕[Conventional technology]

従来、電気機器部品、自動車部品、建材等の分野に利用
される熱可塑性樹脂には、耐衝撃性及q剛性に優れ、成
形加工性が極めて良好であるという特性を有するハイイ
ンパクトポリスチレン樹脂やアクリロニトリループクジ
エン−スチレン共重合体(以下ABS樹脂という)等の
ゴム含有耐衝撃性ポリスチレン系樹脂が多く用いられで
きた。
Conventionally, thermoplastic resins used in fields such as electrical equipment parts, automobile parts, and building materials include high-impact polystyrene resin and acrylonitrile, which have excellent impact resistance and q-rigidity, and extremely good moldability. Rubber-containing high-impact polystyrene resins such as polyethylene-styrene copolymers (hereinafter referred to as ABS resins) have been widely used.

しかし乍ら、近年この分野で使用される樹脂に対して、
ますます高度な難燃性が要求され、ある程度、可燃性で
ある前記ポリスチレン系樹脂に替わり更に高度な難燃性
樹脂の開発が望まれるようになり、今までにも種々の難
燃性樹脂組成物が提案されてきでいる。
However, regarding the resins used in this field in recent years,
Increasingly high degree of flame retardancy is required, and there is a desire to develop even more advanced flame retardant resin to replace the polystyrene resin which is flammable to some extent. Things are being proposed.

例えば、ハロゲン化エステル、芳香族ハロゲン含有化合
物や燐酸エステル、ハロゲン化燐酸エステル等のリン含
有化合物で代表される低分子量の111m化剤を配合し
た難燃性樹脂組成物がある。
For example, there are flame-retardant resin compositions containing a low molecular weight 111m agent represented by phosphorus-containing compounds such as halogenated esters, aromatic halogen-containing compounds, phosphoric esters, and halogenated phosphoric esters.

しかしながら、これらの難燃化剤は化学的に不安定な低
分子化合物である上に樹脂に高度の難燃性を付与する(
こは相当量添加しなければならない為に、樹脂の機械的
強度、なかんずく、衝撃強度の著しい低下を来たしたつ
、成形加工時に熱分解による着色を起こさせるなど成形
加工性を阻害したり、又、耐候性を著しく悪化させる等
、製品の商品価値を害う場合が多く、ざらには、難燃化
剤は概して高価な為に製品のコストが大幅に高くなる等
の欠点を有しており高度な難燃性を有し且つ実用に供し
得る樹脂は得られにくい。
However, these flame retardants are chemically unstable low-molecular compounds and also impart a high degree of flame retardancy to resins (
Since this must be added in a considerable amount, it causes a significant decrease in the mechanical strength, especially the impact strength, of the resin, and also impedes moldability, such as causing coloration due to thermal decomposition during molding. In addition, they often impair the commercial value of the product by significantly deteriorating weather resistance, and furthermore, flame retardants are generally expensive, so they have the disadvantage of significantly increasing the cost of the product. However, it is difficult to obtain resins that have a high degree of flame retardancy and can be put to practical use.

一方、難燃性と衝撃強度との高度なバランスが得られや
すいのに着目して最近、ポリ塩化ビニル系樹脂や塩素化
ポリエチレン等のハロゲン含有化合物を他の樹脂に混合
して得られる難燃性樹脂組成物が数多く提案されている
On the other hand, focusing on the fact that it is easy to obtain a high degree of balance between flame retardancy and impact strength, recently, flame retardant resins obtained by mixing halogen-containing compounds such as polyvinyl chloride resins and chlorinated polyethylene with other resins have been developed. Many types of resin compositions have been proposed.

例えば、ポリ塩化ビニル系樹脂とABS樹脂とからなる
難燃性樹脂組成物が公知である(特公昭48−528)
 。
For example, a flame-retardant resin composition consisting of a polyvinyl chloride resin and an ABS resin is known (Japanese Patent Publication No. 48-528).
.

該樹脂組成物はポリ塩化ビニル系樹脂の性質に由来して
、確かに衝撃強度や剛性の機械的強度が優れ、高度な難
燃性を有する樹脂は得られるが、ポリ塩化ビニル系樹脂
は化学的に不安定で熱分解を起こしやすい為に該樹脂組
成物は熱安定性が悪く、ざらにはポリ塩化ビニル系樹脂
の流動性の悪さとも相俟って成形加工性は著しく低下す
るという欠点を有しでいる。
Derived from the properties of polyvinyl chloride resin, this resin composition certainly has excellent mechanical strength such as impact strength and rigidity, and a resin with a high degree of flame retardancy can be obtained, but polyvinyl chloride resin is chemically The resin composition has poor thermal stability because it is physically unstable and prone to thermal decomposition, and combined with the poor fluidity of polyvinyl chloride resin, the molding processability is significantly reduced. I have.

一方、ポリ塩化ビニルの熱安定性を高めることにより成
形加工性を改善する為に、鉛系化合物、錫系化合物等の
熱安定剤を添加することは自明のことではあるが、成形
加工性として重要な流動性や物性への杉響及びコストの
面からその使用量には自ずと制限がある。
On the other hand, it is obvious that heat stabilizers such as lead-based compounds and tin-based compounds are added to improve molding processability by increasing the thermal stability of polyvinyl chloride. There is a natural limit to the amount used because of its impact on important fluidity and physical properties, and from the cost perspective.

又、イオン重合等によりポリマー中の不斉構造(枝分れ
、二重結合等)を有する分子の含有率を低減することに
よりポリ塩化ビニルの成形加工性を改善する方法も知ら
れているが、重合速度、収量の面から工業上問題がある
。さらにまた、樹脂の成形加工性を改善する方法として
樹脂の流動性を高め、成形加工温度を低く押さえること
により、樹脂の熱安定性を高める方法があるが、流動性
の向上に伴って衝撃強度が低下しやすく、充分な効果は
得られない。
It is also known to improve the moldability of polyvinyl chloride by reducing the content of molecules with asymmetric structures (branches, double bonds, etc.) in the polymer through ionic polymerization, etc. However, there are industrial problems in terms of polymerization rate and yield. Furthermore, as a method to improve the moldability of resin, there is a method to increase the thermal stability of the resin by increasing the fluidity of the resin and keeping the molding temperature low. tends to decrease, and sufficient effects cannot be obtained.

一方、塩素化ポリエチレンとABS樹脂とからなる難燃
性樹脂組成物(米国特許3494982号)も公知であ
る。この組成物はポリ塩化ビニル系樹脂組成物に比し熱
安定性はや)良好であるが、流動性が悪くなる為に成形
加工性が劣る欠点を有しでいる。
On the other hand, a flame-retardant resin composition (US Pat. No. 3,494,982) comprising chlorinated polyethylene and ABS resin is also known. Although this composition has better thermal stability than polyvinyl chloride resin compositions, it has the disadvantage of poor moldability due to poor flowability.

上述の如く、従来の難燃性樹脂組成物には商品価値とし
て重要な成形加工性、耐115m性、耐候性を同時に満
足し、成形材料として実用に耐え得るものは見い出され
ていない。
As mentioned above, no conventional flame-retardant resin composition has been found that simultaneously satisfies moldability, 115 m resistance, and weather resistance, which are important commercial values, and can be put to practical use as a molding material.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、従来の組成物では困難とされていた成
形材料として実用に供し得る成形加工性゛を有し、ざら
には耐衝撃性に優れた難燃性樹脂組成物を提供すること
にある。
An object of the present invention is to provide a flame-retardant resin composition that has moldability that can be practically used as a molding material, which has been difficult to achieve with conventional compositions, and also has excellent impact resistance. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は上記目的を達成するため鋭意研究した結果、
ABS樹脂と特定の塩化ビニル樹脂を組合することによ
り、加工性、耐衝撃性、熱安定性に優れたw1燃性樹脂
組成物が得られることを見出し本発明に到達した。
As a result of intensive research to achieve the above object, the present inventor found that
The inventors have discovered that a w1 flammable resin composition with excellent processability, impact resistance, and thermal stability can be obtained by combining an ABS resin with a specific vinyl chloride resin, and have thus arrived at the present invention.

即ち、本発明の樹脂組成物は、 A)ABS樹脂20〜70重量%と 8)ホモポリマーとした時に、その二次転位点が一10
℃以下であるアルキルアクリレートおよび/又はアルキ
ルメタクリレート70〜99重量部と多官能性モノマー
1〜30重量部との共重合体1〜30重量部に塩化ビニ
ル70〜99重量部をグラフト共重合古せて得られたP
VC系樹脂30〜80重量%からなる難燃性樹脂組成物
である。
That is, the resin composition of the present invention has a secondary dislocation point of 110% when A) 20 to 70% by weight of ABS resin and 8) a homopolymer.
Graft copolymerization of 70 to 99 parts by weight of vinyl chloride to 1 to 30 parts by weight of a copolymer of 70 to 99 parts by weight of alkyl acrylate and/or alkyl methacrylate and 1 to 30 parts by weight of a polyfunctional monomer at a temperature of 70 to 99 parts by weight. P obtained by
It is a flame-retardant resin composition consisting of 30 to 80% by weight of a VC resin.

以下に詳細に説明する。This will be explained in detail below.

本発明の難燃性樹脂組成物のABS樹脂の含量は、20
〜69重量%であるが、殊に30〜65重量%が好まし
い、20重量%未満では加工性が劣り、69重量%をこ
えると難燃性の保持が困難である。
The content of ABS resin in the flame retardant resin composition of the present invention is 20
The content is preferably 69% by weight, but 30 to 65% by weight is particularly preferred. If it is less than 20% by weight, processability will be poor, and if it exceeds 69% by weight, it will be difficult to maintain flame retardancy.

ABS樹脂の重合原料であるポリブタジェン系ゴムは、
ポリブクジエン又は50重量%以上のブタジェン及びこ
れと共重合し得る50重量%以下のモノオレフィン単量
体例えばスチレン等の芳香族ビニル化合物、メチルアク
リレート、エチルアクリレート、ブチルアクリレート等
のアルキルアクリレート:メチルメタアクリレート、エ
チルメタアクリレート、プチルメクアクリレート等のア
ルキルメタアクリレート:アクリロニトリル等のシアン
化ビニル化合物等との共重合体である。
Polybutadiene rubber, which is the polymerization raw material for ABS resin, is
Polybutadiene or 50% by weight or more of butadiene and 50% by weight or less of a monoolefin monomer copolymerizable with it, such as aromatic vinyl compounds such as styrene, alkyl acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate: methyl methacrylate , alkyl methacrylate such as ethyl methacrylate and butyl mequaacrylate; a copolymer with vinyl cyanide compounds such as acrylonitrile.

ABS樹脂グラフト重合において用いるシアン化ビニル
化合物としではアクリロニトリル、メタクリレート類ル
など、又、芳香族ビニル化合物としては、スチレン、α
−メチル・スチレン、クロロスチレンなどが代表的であ
り、使用割合は上記ブタジェン系ゴム10〜50重量部
に対し、シアン化ビニル化合物10〜50重量部、芳香
族ビニル化合物10〜50重量部が好ましい。
Examples of vinyl cyanide compounds used in ABS resin graft polymerization include acrylonitrile and methacrylates, and examples of aromatic vinyl compounds include styrene, α
- Methyl styrene, chlorostyrene, etc. are typical, and the ratio of use thereof is preferably 10 to 50 parts by weight of the vinyl cyanide compound and 10 to 50 parts by weight of the aromatic vinyl compound to 10 to 50 parts by weight of the above-mentioned butadiene rubber. .

又、グラフト重合においてシアン化ビニル化合物、芳香
族ビニル化合物の他にこれらと共重合可能なビニル単量
体を少量用いることができる。
Further, in addition to the vinyl cyanide compound and the aromatic vinyl compound, a small amount of vinyl monomer copolymerizable with these can be used in the graft polymerization.

上記した重合は、いずれも、従来より公知の方法、例え
ば懸濁重合及び乳化重合により容易に行い得るが、特に
乳化重合が好ましい。
All of the above polymerizations can be easily carried out by conventionally known methods, such as suspension polymerization and emulsion polymerization, but emulsion polymerization is particularly preferred.

本発明の難燃性樹脂組成物のPvC系樹脂の含量は、3
0〜80重量%であるが、殊に40〜70重量%が好ま
しい。
The content of PvC resin in the flame retardant resin composition of the present invention is 3
0 to 80% by weight, particularly preferably 40 to 70% by weight.

PvC系樹脂の含量が80重I%をこえると樹脂組成物
の衝撃強さ及び成形加工性が低下するので望ましくない
、一方、その含量が30重量%未満では本発明の目的と
する高度な難燃性は得られない。
If the content of the PvC resin exceeds 80% by weight, it is undesirable because the impact strength and molding processability of the resin composition will decrease.On the other hand, if the content is less than 30% by weight, it will be difficult to achieve the objective of the present invention. No flammability is obtained.

本発明においてPvC系樹脂に用いられるグラフト重合
原料はアルキルアクリレートおよび/又はアルキルメタ
クリレートと多官能性モノマーとの共重合体(以下アク
リル系共重合体と称する)および塩化ビニルである。
The graft polymerization raw materials used for the PvC resin in the present invention are a copolymer of alkyl acrylate and/or alkyl methacrylate and a polyfunctional monomer (hereinafter referred to as acrylic copolymer) and vinyl chloride.

アルキルアクリレートおよびアルキルメタクリレートと
しては、ホモポリマーとしたときに、その二次転移点が
一10℃以下のもので、例えば、エチルアクリレート、
n−プロピルアクリレート、イソ−ブチルアクリレート
、n−ブチルアクリレート、n−へキシルアクリレート
、2−エチルへキシルアクリレート、n−オクチルアク
リレート、n−デシルアクリレート、およびn−オクチ
ルメタクリレート、n−デシルメタクリレート、n−ド
デシルメタクリレート、ラウリルメタクリレート等があ
げられ耐衝WX性に寄与する。
Alkyl acrylates and alkyl methacrylates are those whose secondary transition point is 110°C or less when made into a homopolymer, such as ethyl acrylate,
n-propyl acrylate, iso-butyl acrylate, n-butyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, n-decyl acrylate, and n-octyl methacrylate, n-decyl methacrylate, n - Dodecyl methacrylate, lauryl methacrylate, etc., which contribute to WX impact resistance.

アルキルアクリレートおよび/又はアルキルメタクリレ
ートはソフトセグメントとして働き、その使用量は他の
共重合原料である多官能性モノマーの使用量との合計量
100重量部当り99〜70重量部が好適であり、99
重量部をこえると強度の向上が望めず、70重量部未満
では、耐衝撃性が低下するので好ましくない。
Alkyl acrylate and/or alkyl methacrylate acts as a soft segment, and the amount used is preferably 99 to 70 parts by weight per 100 parts by weight of the total amount of polyfunctional monomer used as other copolymerization raw materials.
If it exceeds 70 parts by weight, no improvement in strength can be expected, and if it is less than 70 parts by weight, impact resistance will decrease, which is not preferable.

多官能性モノマーとは、アルキルアクリレートおよび/
又はアルキルメタクリレートに架橋等を生じせしめるモ
ノマー類であって、例えばエチレングリコールジアクリ
レート、ジエチレングリコールジアクリレート、トリエ
チレングリコールジアクリレート、エチレングリコール
ジメタクリレート、ジエチレングリコールジメタクリレ
ート、トリエチレングリコールジメタクリレート、1.
3−ブチレングリコールジメタクリレート、1.3−ブ
チレングリコールジメタクリレート、1.4−ブチレン
グリコールジメタクリレート等モノもしくはポリアルキ
レングリコールのアクリレートもしくはメタクリレート
類、ジアリルフタレート、ジアリルマレート、ジアリル
フマレート、ジアリルサクシネート等のジもしくはトリ
アリル化合物類およびジどニルベンゼン等があげられる
Polyfunctional monomers include alkyl acrylates and/or
or monomers that cause crosslinking or the like to alkyl methacrylate, such as ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 1.
Acrylates or methacrylates of mono- or polyalkylene glycols such as 3-butylene glycol dimethacrylate, 1.3-butylene glycol dimethacrylate, 1.4-butylene glycol dimethacrylate, diallyl phthalate, diallyl maleate, diallyl fumarate, diallyl succinate Examples include di- or triallyl compounds such as and didonylbenzene.

多官能性モノマーの使用量は1〜30重量部が好適であ
り、1重量部未満では強度の向上が望めず、又30重量
部をこえると耐衝撃性が低下するので好ましくない。
The amount of the polyfunctional monomer used is preferably from 1 to 30 parts by weight; if it is less than 1 part by weight, no improvement in strength can be expected, and if it exceeds 30 parts by weight, the impact resistance will decrease, which is not preferred.

本発明に使用するアルキルアクリレートおよび/又はア
ルキルメタクリレートと、モノマー類との共重合体は乳
化重合、懸濁重合、溶液重合又は塊状重合等の重合方法
により一般公知の乳化剤、分散剤、触媒等を使用して得
られるが特に乳化重合を採用することが好ましい。
The copolymer of alkyl acrylate and/or alkyl methacrylate used in the present invention and monomers is prepared by polymerization methods such as emulsion polymerization, suspension polymerization, solution polymerization, or bulk polymerization using commonly known emulsifiers, dispersants, catalysts, etc. However, it is particularly preferable to employ emulsion polymerization.

本発明のPvC系樹脂を得るためのグラフト共重合の幹
ポリマーとして使用するアクリル系共重合体の使用量は
グラフト共重合の他の原料である塩化ビニルの使用量と
の合計100重量部当り1〜30重量部が適当である。
The amount of the acrylic copolymer used as the backbone polymer in the graft copolymerization to obtain the PvC resin of the present invention is 1 part per 100 parts by weight of the total amount of vinyl chloride used as another raw material for the graft copolymerization. ~30 parts by weight is suitable.

アクリル系共重合体の使用量が1重量部未満では耐衝!
Si性が充分でなく、又30重量部をこえると、耐衝撃
性は向上するが、強度が低下するので好ましくない。
If the amount of acrylic copolymer used is less than 1 part by weight, it will be impact resistant!
If the Si property is not sufficient and the amount exceeds 30 parts by weight, the impact resistance will improve, but the strength will decrease, which is not preferable.

本発明のグラフト共重合方法としては水性懸濁重合法、
水性乳化重合法、溶液重合法、無溶液重合法等、があげ
られるが水性懸濁重合法が好ましい6水性懸濁重合法を
行う場合、幹ポリマーのアクリル系共重合体と塩化ビニ
ルモノマーの合計と水との重量割合は1:1〜1:5好
ましくは1:1〜1:3である。一般的な懸濁重合法に
よってグラフト共重合PVC系樹脂を得る方法は、例え
ばえばジャケット付重合反応機内に、純水、ヒドロキシ
プロとルメチルセルローズのような懸濁安定剤、ラジカ
ル重合開始剤、必要に応じて重合度低下剤を入れ、これ
にアクリル系共重合体を入れて懸濁し、次いで缶内の空
気を排除し、次いで塩化ビニルを必要に応じその他のビ
ニル化合物と共に装入する。その後缶内をジャケットに
より加熱し、アクリル系共重合体を塩化ビニル類に溶解
し、グラフト共重合を開始させる。グラフト共重合は発
熱反応であり、必要に応じてジャケットより内部温度の
制御を行う。反応終了後、未反応の塩化ビニル類を缶外
に除去し、スラリー状のグラフト共重合PVC系樹脂を
得る。スラリーは常法にしたがい脱水乾燥されグラフト
共重合PvC系樹脂が得られる。又重合反応機への装入
方法は限定されるものではなく、純水、懸濁安定剤、ア
クリル系共重合体そして塩化ビニル等の装入原料のうち
アクリル系共重合体を塩化ビニルに溶解しで装入すると
いう方法も採用される。
The graft copolymerization method of the present invention includes an aqueous suspension polymerization method,
Examples include aqueous emulsion polymerization, solution polymerization, and solutionless polymerization, but aqueous suspension polymerization is preferred. 6. When carrying out aqueous suspension polymerization, the sum of the acrylic copolymer as the backbone polymer and the vinyl chloride monomer and water in a weight ratio of 1:1 to 1:5, preferably 1:1 to 1:3. A method for obtaining a graft copolymerized PVC resin by a general suspension polymerization method is, for example, in a jacketed polymerization reactor, pure water, a suspension stabilizer such as hydroxypromethylcellulose, a radical polymerization initiator, If necessary, a polymerization degree reducing agent is added, and the acrylic copolymer is added thereto and suspended, the air inside the can is then removed, and then vinyl chloride is charged together with other vinyl compounds as required. Thereafter, the inside of the can is heated by a jacket, the acrylic copolymer is dissolved in vinyl chloride, and graft copolymerization is started. Graft copolymerization is an exothermic reaction, and the internal temperature is controlled by a jacket as necessary. After the reaction is completed, unreacted vinyl chloride is removed from the can to obtain a slurry of graft copolymerized PVC resin. The slurry is dehydrated and dried according to a conventional method to obtain a graft copolymerized PvC resin. The charging method to the polymerization reactor is not limited, and among the charged raw materials such as pure water, suspension stabilizer, acrylic copolymer, and vinyl chloride, the acrylic copolymer may be dissolved in vinyl chloride. Another method is to charge the material with water.

グラフト共重合にあたっては、耐衝撃性耐候性曲げ弾性
率を低下させない範囲で、他の単量体を共存させてもよ
い。
In graft copolymerization, other monomers may be present in the coexistence within a range that does not reduce the impact resistance, weather resistance, and flexural modulus.

本発明の樹脂組成物には場合により他の難燃化剤、紫外
線吸収剤、酸化防止剤、着色剤、滑剤及び熱安定剤の各
種添加剤を配合することができる。
The resin composition of the present invention may optionally contain various additives such as other flame retardants, ultraviolet absorbers, antioxidants, colorants, lubricants, and heat stabilizers.

本発明の樹脂組成物はミキシングロール、コニーダー、
バンバリーミキサ−2押出機等の混練機により容易に溶
融混合される。
The resin composition of the present invention can be used in mixing rolls, co-kneaders,
It can be easily melt-mixed using a kneader such as a Banbury Mixer 2 extruder.

かくして得られた本発明の樹脂組成物は高度の難燃性が
要求される電気部品、自動車部品、建材、事務機部品等
の分野に広く、利用することができる。
The thus obtained resin composition of the present invention can be widely used in fields such as electrical parts, automobile parts, building materials, office machine parts, etc., which require a high degree of flame retardancy.

以下に実施例及び参考例によって本発明の詳細な説明す
る。
The present invention will be explained in detail below using Examples and Reference Examples.

尚、本発明における各物性値は次の方法により測定した
In addition, each physical property value in this invention was measured by the following method.

(1)成形加工性(流動性)の測定 押出ベレット19をとり内径1 mm、長さ10mmの
ダイスを使用し、圧力150に9/cm’、温度200
℃の条件で、高化式フローテスターを用いて流量速度を
測定した。
(1) Measurement of moldability (fluidity) Take an extrusion pellet 19 and use a die with an inner diameter of 1 mm and a length of 10 mm, and use a pressure of 150 to 9/cm' and a temperature of 200.
The flow rate was measured using a Koka type flow tester under the conditions of ℃.

(2)成形加工性(熱安定性)の測定 (2)−10R熱安定性試験(静的熱安定性)JISに
一6723法に準じ、分解を開始するまでの時間(分)
を測定した。但し、温度は200℃とした。
(2) Measurement of moldability (thermal stability) (2) -10R thermal stability test (static thermal stability) Time until decomposition starts (minutes) according to JIS-6723 method
was measured. However, the temperature was 200°C.

(2)−2動的熱安定性 押出ベレット329ヲ内容積30ccのローターミキサ
ー、温度190℃のバ・ンチ式プラストグラフに仕込み
、回転数50r、p、叱、荷重10.0k(+の条件で
混練し、トルクが下降して定常状態に入った後、再び上
昇し始めるまでの時間(分)7i!測定した。
(2)-2 Dynamic Thermal Stability Extrusion pellet 329 was loaded into a rotor mixer with an internal volume of 30 cc and a Bunch-type plastograph at a temperature of 190°C, and the rotation speed was 50 r, p, and load was 10.0 k (+ conditions). The time (minutes) after the torque decreased and entered a steady state until it started to increase again was measured (7i!).

(3)衝撃強さの測定 ASTM−256法に準じ、40Z射出成形機にて射出
成形温度180°、200°、200℃、成形サイクル
1分の条件にで成形して得られたアイゾツト衝撃試験片
を用いてアイゾツト衝撃強さを測定した。但し、ノツチ
はノッ千入り金型を用いた。
(3) Measurement of impact strength Izot impact test obtained by molding with a 40Z injection molding machine at injection molding temperatures of 180°, 200°, and 200°C and a molding cycle of 1 minute according to ASTM-256 method. Izot impact strength was measured using the piece. However, a mold with a notch was used.

(4)難燃性 UL−94法 サンプル厚1/8インチ試験片使用。(4) Flame retardant UL-94 method: Sample thickness 1/8 inch test piece used.

〔実施例〕〔Example〕

実施例1〜10.参考例1〜11 (1)ABS樹脂の製造 篤1表に示した原料使用量にもとづき60℃で乳化重合
を行って重合体(A)−1〜10ヲ得た。使用したポリ
ブタジェンラテックス固型分の組成は以下の通り。
Examples 1-10. Reference Examples 1 to 11 (1) Production of ABS Resin Polymers (A)-1 to 10 were obtained by emulsion polymerization at 60° C. based on the amounts of raw materials shown in Table 1. The composition of the solid polybutadiene latex used is as follows.

PB−1−・・・・・ブタジェン分100%(重量%、
以下同じ) PB−2・・・・・・ブタジェン分60%、スチレン分
40%PB−3・・・・・・ブタジェン分60%、アク
リロニトリル分40% PB−4・・・・・・ブタジェン分40%、スチレン分
40%、アクリロニトリル分20% 第1表中の各原料使用量は重量部である(第2表以下も
同じ)。
PB-1-・・・Butadiene content 100% (wt%,
Same hereafter) PB-2...Butadiene content 60%, styrene content 40%PB-3...Butadiene content 60%, acrylonitrile content 40% PB-4...Butadiene content 40%, styrene content: 40%, acrylonitrile content: 20% The amounts of each raw material used in Table 1 are parts by weight (the same applies to Tables 2 and below).

(2)PVC系樹脂の製造 第2表に示した原料使用量にもとづき63℃で水狂懸濁
重合を行い、重合体CB)−1〜12を得た。
(2) Production of PVC resin Based on the amounts of raw materials used shown in Table 2, water-induced suspension polymerization was carried out at 63°C to obtain polymers CB)-1 to CB)-1.

アクリル系樹脂ホモポリマーの二次転移点の温度は以下
の通り。
The temperature of the secondary transition point of acrylic resin homopolymer is as follows.

ポリ−n−ブチルアクリレート   −−−−−−−5
6℃ポリ−2−エチルへキシルアクリレート・・・・−
−−20℃ メチルアクリレート       ・・・・−o’cメ
チルメタクリレート      −−−−−−45℃(
3)本発明の樹脂組成物の製造 上記(1)で得られたABS樹脂と、上記(2)で得ら
れたPvC系樹脂とを第3表および第4表に示した割合
で、ざらに安定剤としてジブチル錫メルカプタイド2.
5重量部を5βのスーパーミキサー(用田製作所製)で
90℃、10分間の条件で混合した後に40mmφの押
出機にて200℃で溶融混練してベレ・ント化した。
Poly-n-butyl acrylate ---------5
6℃ poly-2-ethylhexyl acrylate...-
---20℃ Methyl acrylate ---o'c methyl methacrylate ------45℃ (
3) Production of the resin composition of the present invention The ABS resin obtained in the above (1) and the PvC resin obtained in the above (2) were roughly mixed in the proportions shown in Tables 3 and 4. Dibutyltin mercaptide as stabilizer2.
5 parts by weight were mixed in a 5β super mixer (manufactured by Yoda Seisakusho) at 90°C for 10 minutes, and then melt-kneaded at 200°C in a 40 mmφ extruder to form a bead.

次に4オンスの射出成形機を用いて物性測定用の試験片
を作製した。この場合、成形温度はシリンダ一温度で1
80.200.200℃とした。かくして得たペレット
及び試験片を用いて、前記した各種物性試験を行った。
Next, test pieces for measuring physical properties were prepared using a 4-ounce injection molding machine. In this case, the molding temperature is 1 at the cylinder temperature.
The temperature was 80.200.200°C. Using the pellets and test pieces thus obtained, the various physical property tests described above were conducted.

その評価結果を参考例と共に第3.4表に示した。The evaluation results are shown in Table 3.4 along with reference examples.

第3.4表から明らかなように、本発明の組成   ′
物は加工性、物性強度、難燃性のいずれの点でも優れて
いる。
As is clear from Table 3.4, the composition of the present invention '
The material is excellent in terms of processability, physical strength, and flame retardancy.

〔発明の効果〕〔Effect of the invention〕

以上詳細に述べたように本発明は加工牲、耐衝撃性、熱
安定性に優れた難燃性樹脂組成物を提供し、難燃性樹脂
の品質向上、利用の拡大に資するところはきわめで大き
い。
As described in detail above, the present invention provides a flame-retardant resin composition with excellent processability, impact resistance, and thermal stability, and greatly contributes to improving the quality and expanding the use of flame-retardant resins. big.

Claims (1)

【特許請求の範囲】 A)ABS樹脂20〜70重量%と B)ホモポリマーとした時に、その二次転位点が−10
℃以下であるアルキルアクリレートおよび/又はアルキ
ルメタクリレート70〜99重量部と多官能性モノマー
1〜30重量部との共重合体1〜30重量部に塩化ビニ
ル70〜99重量部をグラフト共重合させて得られたP
VC系樹脂30〜80重量%からなる難燃性樹脂組成物
[Claims] A) 20 to 70% by weight of ABS resin and B) when made into a homopolymer, the secondary dislocation point is -10
70 to 99 parts by weight of vinyl chloride is graft-copolymerized to 1 to 30 parts by weight of a copolymer of 70 to 99 parts by weight of alkyl acrylate and/or alkyl methacrylate and 1 to 30 parts by weight of a polyfunctional monomer. Obtained P
A flame-retardant resin composition comprising 30 to 80% by weight of a VC resin.
JP18098185A 1985-08-20 1985-08-20 Flame-retardant resin composition Expired - Lifetime JPH0618980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18098185A JPH0618980B2 (en) 1985-08-20 1985-08-20 Flame-retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18098185A JPH0618980B2 (en) 1985-08-20 1985-08-20 Flame-retardant resin composition

Publications (2)

Publication Number Publication Date
JPS6241253A true JPS6241253A (en) 1987-02-23
JPH0618980B2 JPH0618980B2 (en) 1994-03-16

Family

ID=16092657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18098185A Expired - Lifetime JPH0618980B2 (en) 1985-08-20 1985-08-20 Flame-retardant resin composition

Country Status (1)

Country Link
JP (1) JPH0618980B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911873A (en) * 1986-12-15 1990-03-27 Toyoda Gosei Co., Ltd. Terminal-treated extrusion and the method of terminal treatment therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911873A (en) * 1986-12-15 1990-03-27 Toyoda Gosei Co., Ltd. Terminal-treated extrusion and the method of terminal treatment therefor

Also Published As

Publication number Publication date
JPH0618980B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
US3655824A (en) Rubbery acrylic resin composition containing a resinous 4 4'-dioxy diarylalkane polycarbonate
US4393172A (en) High-notched-impact core-shell polymers having improved weather resistance
US3251904A (en) High impact resistant polymeric products derived from alkyl acrylate-alkyl methacrylate copolymers blended with polyvinyl chloride and the like
US3655826A (en) Acrylic elastomer impact modifier
US4111876A (en) Impact modifiers for polyvinyl chloride
WO2006057827A1 (en) Clear impact modified, heat resistant polyvinyl halide compositions
US5990239A (en) Weatherable ASA composition
US4268636A (en) Vinyl chloride resin composition with processing aid
US5382625A (en) Thermoplastic moulding compositions with high notched impact strength
CA1063285A (en) Vinyl chloride resin composition
JPS61163950A (en) Thermoplastic resin composition
US4168285A (en) Blend of a vinyl chloride polymer and an impact modifier
JPS6241253A (en) Flame-retardant resin composition
US5360865A (en) Grafted impact modifiers of C6 -C10 alkylrylate rubber for polycarbonate
JPS6395249A (en) Flame-retardant resin composition
JPS6241254A (en) Flame-retardant resin composition
JPS6241255A (en) Flame-retardant resin composition
JPH037704B2 (en)
JPS60120734A (en) Transparent, heat- and impact-resistant resin composition
US3859383A (en) Graft-polymer comprising acrylic rubber and unsaturated compound grafted thereto and blends thereof with pvc
KR100374303B1 (en) Vinyl chloride resin composition having improved impact resistance and tensile strength
KR100506858B1 (en) Flame Retardant Thermoplastic Resin Composition having Good Weatherproof Property
KR0168671B1 (en) Modified nonflammable resin composition
JPS6241252A (en) Flame-retardant resin composition
JPH0725971B2 (en) Methyl methacrylate-α-methylstyrene copolymer resin composition