JPS624113B2 - - Google Patents

Info

Publication number
JPS624113B2
JPS624113B2 JP14096178A JP14096178A JPS624113B2 JP S624113 B2 JPS624113 B2 JP S624113B2 JP 14096178 A JP14096178 A JP 14096178A JP 14096178 A JP14096178 A JP 14096178A JP S624113 B2 JPS624113 B2 JP S624113B2
Authority
JP
Japan
Prior art keywords
foam
exhaust chamber
culture
gas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14096178A
Other languages
Japanese (ja)
Other versions
JPS5568284A (en
Inventor
Tetsuo Yamaguchi
Setsuo Saito
Yoji Otahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14096178A priority Critical patent/JPS5568284A/en
Publication of JPS5568284A publication Critical patent/JPS5568284A/en
Publication of JPS624113B2 publication Critical patent/JPS624113B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/36Means for collection or storage of gas; Gas holders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/20Degassing; Venting; Bubble traps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/02Means for regulation, monitoring, measurement or control, e.g. flow regulation of foam

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:The floor that separates the fermentation and gas-exhausting chambers is projected upward at the peripheral part to make a space for collecting the exhausting gas and holes for blowing out the gas into the exhausting chamber are bored near the top of the projection, thus breaking foam produced during the fermentation continuously and steadily. CONSTITUTION:Air is blown from the pipe connected to the bottom of fermentation chamber 1 continuously, atomized by distributers 9 and accumulates as foam on the liquid surface. The foam is pushed up in turn by bubbles coming up from the bottom to come into projecting space 4 and blown out of holes 5 into air-exhaustion chamber 2 and defoamed. The gas is expelled from pipe 7 and the liquid fraction is circulated through pipe 8. The remaining bubbles reach near holes 5 and are broken by the high-speed air-liquid mixture and further by revolving defoamer 6.

Description

【発明の詳細な説明】 本発明は好気性培養装置及び好気性培養方法に
係り、特に培養槽内に発生する泡沫を機械的に消
泡できる好気性培養装置及び好気性培養方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aerobic culture device and an aerobic culture method, and more particularly to an aerobic culture device and an aerobic culture method that can mechanically eliminate foam generated in a culture tank.

一般に培養液は発泡性が大であり、培養槽下部
よりガス(一般には空気)を吹き込むと液面上部
に泡沫が発生し、そのままでは槽内に泡沫が充満
して、ついには槽上部の排気口より溢流するなど
の弊害が生ずる。
In general, the culture solution has a high foaming property, and when gas (generally air) is blown into the bottom of the culture tank, foam is generated at the top of the liquid level. Harmful effects such as overflowing from the mouth may occur.

従来より、このような発生泡沫を消泡する必要
性が認められ、消泡剤を使用する方法あるいは機
械的な方法等、各種の提案がなされてきた。
Conventionally, the necessity of defoaming such generated foam has been recognized, and various proposals have been made, such as methods using defoaming agents or mechanical methods.

消泡剤を使用する方法は、微生物への生理的影
響や製品に混入した場合の安全性等に未解決の面
が多い。
The method of using antifoaming agents has many unresolved aspects, including their physiological effects on microorganisms and safety when mixed into products.

機械的な方法の一つとしては、オリフイスある
いはノズルから泡沫を吹き出して消泡する手段が
広く知られている。しかしながら本消泡手段で
は、完全消泡は成らず、一部泡沫の排気室内蓄積
が起こる。排気室は胴体内にあつて培養槽の上部
に位置し、オリフイスあるいはノズルを持つて培
養槽と開通し、気液分離の為に設けられる。従つ
て排気室内での泡沫蓄積は消泡機能を阻害する。
これはオリフイスあるいはノズルの開口部周囲が
泡沫に包まれてしまうと後から吹き出されるガス
が泡立て作用を成し、逆効果を成すためである。
As one of the mechanical methods, a widely known method is to blow out foam from an orifice or nozzle to eliminate the foam. However, with this defoaming means, complete defoaming is not achieved, and some foam accumulates in the exhaust chamber. The exhaust chamber is located in the body and above the culture tank, and has an orifice or nozzle that communicates with the culture tank and is provided for gas-liquid separation. Therefore, foam accumulation in the exhaust chamber inhibits the defoaming function.
This is because if the area around the opening of the orifice or nozzle is surrounded by foam, the gas blown out afterwards will act as a foaming agent, producing the opposite effect.

他の機械的な方法としては、泡沫槽上部にガス
または気液混相流体を高速で吹き付けて消泡する
手段が広く知られている。しかしながら本消泡手
段では、多量の吹き付け用流体を供給する必要が
あり、これに伴う消費動力は大である。しかも、
培養槽下部より吹き込まれるガスの空塔速度が大
であれば、消泡効果は期待に値しない。
As another mechanical method, it is widely known to blow gas or a gas-liquid multiphase fluid onto the upper part of the foam tank at high speed to eliminate foam. However, with this defoaming means, it is necessary to supply a large amount of spraying fluid, and the power consumption associated with this is large. Moreover,
If the superficial velocity of the gas blown from the bottom of the culture tank is high, the antifoaming effect will not be as expected.

更に他の機械的な方法としては、プロペラの如
き消泡翼を取付けた回転式消泡機により消泡する
手段も広く知られている。しかしながら本消泡手
段では、培養槽が大型になると多量の泡沫を含ん
だ排ガスを処理せねばならず、これに伴う消泡機
の大型化が必至となる。消泡機の大型化は製作
上、保守上に問題が有る。これは消泡翼の周囲を
通過するガス速度が速くなることにより、消泡効
果が低下する為である。
As another mechanical method, a means for defoaming using a rotary defoaming machine equipped with defoaming blades such as a propeller is also widely known. However, with this defoaming means, when the culture tank becomes large, it is necessary to treat exhaust gas containing a large amount of foam, and accordingly, the defoaming machine inevitably becomes larger. Increasing the size of the defoaming machine poses problems in manufacturing and maintenance. This is because the speed of the gas passing around the defoaming blade increases, thereby reducing the defoaming effect.

そこで、回転式消泡機を使用する場合にはでき
るだけガス速度を低く押えて処理することが望ま
れる。
Therefore, when using a rotary defoamer, it is desirable to keep the gas velocity as low as possible.

本発明者等は上記した従来技術の如き欠点の無
い機械的な方法を見出だしている。その一は、培
養槽内で発生した泡沫を排気管を介してオリフイ
スあるいはノズルから吹き出し、排気室内に滞留
している泡沫の上部に吹き付けるようにしたもの
であり(特開昭53―26384号公報)、他の一は、培
養槽内で発生した泡沫を槽上部より排気管を介し
てオリフイスあるいはノズルから吹き出し、泡沫
を破泡する排気室と、泡沫の吹き出し口の位置と
同程度以下の位置で消泡操作ができるように設け
た回転式消泡機とを用いるものである(特開昭53
―15488号公報)。
The inventors have discovered a mechanical method that does not have the drawbacks of the prior art described above. One method is to blow out the foam generated in the culture tank from an orifice or nozzle through an exhaust pipe, and spray it onto the top of the foam remaining in the exhaust chamber (Japanese Patent Laid-Open No. 53-26384). ), and the other is an exhaust chamber that blows out the foam generated in the culture tank from the top of the tank through an exhaust pipe and an orifice or nozzle to break the foam, and a position that is at the same level or lower than the position of the foam outlet. This method uses a rotary defoaming machine that is equipped to perform defoaming operations (Japanese Patent Application Laid-open No.
- Publication No. 15488).

これらの手段は槽内に吹込まれたガスを利用し
て、槽内に発生した泡をオリフイスあるいはノズ
ルから排気室に吹出して一担ガスを分離した後、
排気室に滞留する泡沫の上部に吹付けるか、これ
に加えて回転式消泡機で消泡するものである。こ
のように、排気室への吹き出し口および回転式消
泡機を構成することによつて、排気室への泡沫吹
き出し口は常にガス分離槽内の泡沫上面より上部
に位置しておくことができ、泡沫を吹き出した際
に生じる破泡とガスの分離作用を最も効果的に行
うことができた。尚、回転式消泡機を設置した場
合、排気室で一担ガスを分離した後、消泡するこ
とになるので、培養槽内に吹き込まれた空気の全
量を処理する必要はない。よつて、消泡翼内を通
過するガス量は少なく、消泡効果を上げることが
可能である。
These methods use gas blown into the tank to blow out bubbles generated in the tank from an orifice or nozzle into an exhaust chamber to separate the primary gas.
The foam is either sprayed onto the top of the foam accumulated in the exhaust chamber, or in addition to this, the foam is defoamed using a rotary defoamer. By configuring the outlet to the exhaust chamber and the rotary defoamer in this manner, the outlet to the exhaust chamber can always be located above the top surface of the foam in the gas separation tank. , it was possible to most effectively perform the bubble breaking and gas separation effects that occur when foam is blown out. Note that when a rotary defoamer is installed, defoaming occurs after the primary gas is separated in the exhaust chamber, so it is not necessary to treat the entire amount of air blown into the culture tank. Therefore, the amount of gas passing through the defoaming blade is small, and it is possible to improve the defoaming effect.

本発明は本発明者等が先に提案した上記消泡技
術を、大容量の培養槽でも高性能を発揮するよう
に更に改善したものである。
The present invention further improves the defoaming technology previously proposed by the present inventors so that it can exhibit high performance even in large-capacity culture tanks.

本発明の目的は、培養過程で生ずる泡沫を連続
的にかつ確実に消泡する好気性培養装置及び好気
性培養方法を提供するにある。
An object of the present invention is to provide an aerobic culture device and an aerobic culture method that continuously and reliably eliminate foam generated during the culture process.

本発明の特徴とするところは、培養槽の上部に
排気室を設置し、培養槽内で発生した泡沫を排気
室に導くために複数の突出室(排気管)を設け、
その各突出室の上部先端付近に、排気室内に滞留
した泡沫上部に吹き付けられるようにオリフイ
ス、ノズルの如き泡沫の吹き出し口を設けたこと
にある。
The present invention is characterized in that an exhaust chamber is installed in the upper part of the culture tank, and a plurality of protruding chambers (exhaust pipes) are provided to guide foam generated in the culture tank to the exhaust chamber.
A foam outlet such as an orifice or a nozzle is provided near the top end of each of the ejection chambers so as to spray the foam onto the upper portion of the foam accumulated in the exhaust chamber.

以下、本発明の一実施例を図面に従つて説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

胴体100の内部は下部の培養槽1と上部の排
気室とに区分されている。培養槽1の本体下部に
は培養の為のガス供給管3が設けられており、そ
れよりやや上方には戻り管8(後述)が開口して
いる。培養槽1の頂部には複数の突出室4が垂直
に設けられている。培養槽1内は長手方向に多孔
板等の分散板9が5段設けられている。突出室4
の出口は排気室2内に開口しており、各突出室4
の上部先端付近には複数の吹き出し口5が設けら
れている。また排気室2内には滞留した泡沫を破
泡するために伝動装置を介して電動機で回転駆動
される消泡翼(プロペラ)を回転するいわゆる回
転式消泡機6が設けられている。排気室2の上部
には泡沫より分離されたガスを槽外に排出するた
めに排気管7が設けられており、排気室2の下部
には泡沫より分離した培養液を培養槽1内部に還
流するための戻り管8が設けられている。
The inside of the body 100 is divided into a lower culture tank 1 and an upper exhaust chamber. A gas supply pipe 3 for culturing is provided at the bottom of the main body of the culture tank 1, and a return pipe 8 (described later) opens slightly above it. A plurality of protruding chambers 4 are vertically provided at the top of the culture tank 1. Inside the culture tank 1, five dispersion plates 9 such as perforated plates are provided in the longitudinal direction. Projection chamber 4
The outlet of each protruding chamber 4 opens into the exhaust chamber 2.
A plurality of air outlets 5 are provided in the vicinity of the upper tip. Further, in the exhaust chamber 2, a so-called rotary defoamer 6 is provided which rotates a defoaming blade (propeller) which is rotationally driven by an electric motor via a transmission device in order to break the accumulated foam. An exhaust pipe 7 is provided in the upper part of the exhaust chamber 2 to discharge the gas separated from the foam to the outside of the tank, and in the lower part of the exhaust chamber 2, the culture liquid separated from the foam is returned to the inside of the culture tank 1. A return pipe 8 is provided for this purpose.

本実施例の作用は次のようである。培養槽1の
下部に設けられたガス供給管3からは空気が連続
的に吹き込まれる。この空気は培養槽1内に仕込
まれた培養液中を上昇する。上昇する空気は分散
板9によつて細分化される。気泡の細分化は気液
接触を効果的にならしめる。こうして細かくなつ
た気泡は分散、合体等を繰り返しつつ順次上方へ
移動する。培養槽1内に仕込まれた液の上面に到
達した気泡は直ちには破泡せず、泡沫となつて液
面上部に堆積する。堆積泡沫は順次下方から発生
してくる泡沫に押し上げられて、突出室4内に入
る。更に泡沫は突出室4内を上昇して吹き出し口
5に至り、排気室2内へ吹き出される。ここで吹
き出される際に泡沫は急激な圧力変化を受けて破
泡される。破泡されて分離されたガスは排気室の
上部に設けられた排気管7より槽外部に排出さ
れ、また破泡されて分離された液分の多いものは
排気室2の底部に設けられた戻り管8から培養槽
1内液とのヘツド差による推進力で、培養槽1下
部へ還流される。ところで、吹き出し口5から吹
き出す際の圧力変化によつて破泡されなかつた泡
沫は排気室2内に滞留する。排気室2内に滞留し
た泡沫は次第に堆積し、排気室2内の突出室4の
上部付近に設けられた吹き出し口5付近に到達す
る。このとき、吹き出し口5より吹き出される高
速の気液混相流体がその滞留した泡沫上面に衝突
することになる。ここで、この高速の気液混相流
体が排気室2内に滞留している泡沫層内を吹抜け
ることにより、消泡作用が得られる。また、排気
室2内には回転式消泡機6が設けられており、排
気室2内に滞留し、回転式消泡機6の消泡翼に到
達した泡沫は、回転する消泡翼の衝撃によつて破
泡される。このように、排気室2内に滞留した泡
沫は吹き出し口5からの高速の気液混相流体の吹
抜けおよび回転式消泡機6の消泡翼の衝撃などの
作用を受けて破泡され、分離されたガスは排気管
7より胴体100外へ排出され、また分離された
見かけ密度の大きくなつた液は、滞留する泡の中
を下部へ移動し、戻り管8を通して培養槽1の下
部へ還流される。以上のように、培養槽1の下部
のガス供給管3より連続的に吹き込まれた空気に
よつて発生する泡沫は、排気室2で連続的に破泡
され、ガスと液とに分離されて、ガスは排気管7
より排出され、液は戻り管8を通して培養槽1内
に還流されて連続的な消泡作用が達成される。
The operation of this embodiment is as follows. Air is continuously blown into the culture tank 1 from a gas supply pipe 3 provided at the bottom thereof. This air rises in the culture solution charged in the culture tank 1. The rising air is subdivided by a dispersion plate 9. The fragmentation of the bubbles makes the gas-liquid contact more effective. The air bubbles that have become finer in this way move upward while repeating dispersion, coalescence, etc. The bubbles that reach the upper surface of the liquid charged in the culture tank 1 do not burst immediately, but become foam and accumulate on the upper surface of the liquid. The accumulated foam is pushed up by foam generated from below and enters the ejection chamber 4. The foam further rises within the ejection chamber 4, reaches the outlet 5, and is blown out into the exhaust chamber 2. When the foam is blown out, it undergoes a rapid pressure change and is broken. The gas that has been broken and separated is discharged to the outside of the tank from an exhaust pipe 7 provided at the top of the exhaust chamber, and the gas that has been separated and has a large liquid content is provided at the bottom of the exhaust chamber 2. The liquid is returned to the lower part of the culture tank 1 from the return pipe 8 by the driving force due to the head difference between the liquid and the liquid in the culture tank 1. By the way, the foam that is not broken due to the pressure change when being blown out from the outlet 5 remains in the exhaust chamber 2. The foam remaining in the exhaust chamber 2 gradually accumulates and reaches the vicinity of the outlet 5 provided near the upper part of the protrusion chamber 4 in the exhaust chamber 2. At this time, the high-speed gas-liquid multiphase fluid blown out from the outlet 5 collides with the upper surface of the stagnant foam. Here, this high-speed gas-liquid multiphase fluid blows through the foam layer retained in the exhaust chamber 2, thereby obtaining a defoaming effect. In addition, a rotary defoaming machine 6 is provided in the exhaust chamber 2, and the foam that stays in the exhaust chamber 2 and reaches the defoaming blades of the rotary defoaming machine 6 is removed from the rotating defoaming blades. The bubbles are broken by the impact. In this way, the foam accumulated in the exhaust chamber 2 is broken by the effects of the high-speed gas-liquid multiphase fluid from the outlet 5 and the impact of the defoaming blade of the rotary defoamer 6, and is separated. The separated gas is discharged to the outside of the body 100 through the exhaust pipe 7, and the separated liquid with increased apparent density moves to the lower part through the accumulated bubbles and is returned to the lower part of the culture tank 1 through the return pipe 8. be done. As described above, the bubbles generated by the air continuously blown from the gas supply pipe 3 at the bottom of the culture tank 1 are continuously broken in the exhaust chamber 2 and separated into gas and liquid. , the gas is in the exhaust pipe 7
The liquid is then drained back into the culture tank 1 through the return pipe 8 to achieve a continuous defoaming effect.

次に、各構成要素についてさらに詳細に説明す
る。まず、排気室2は培養槽1への設置を容易に
するために、培養槽1から離して横に設置するよ
りも、培養槽1の直上部に設けた方がよい。排気
室2の容量および位置は培養槽1の大きさおよび
通気量などを考慮して決定される。培養槽1から
排気室2へ泡沫を導びく突出室4は培養槽1から
直接垂直に設け、さらに第2図に示すように、排
気室2内に滞留する泡沫面の高さの不均一をなく
すために、複数の突出室4を排気2内の断面内に
均等になるよう配置した方がよい。この突出室4
の高さ、つまり排気室2の底部から泡沫の吹き出
し口5までの距離は排気室2内の滞留液量などを
考慮して決定される。突出室4の出口に設けたオ
リフイスあるいはノズルなどの吹き出し口5は排
気室2の底部にあると、滞留した泡沫によつてす
ぐに覆われてしまい、吹き出すことによる破泡作
用がなくなるので、各突出室4の上部先端付近に
設けた方がよい。また、吹き出し口5の吹き出し
方向は排気室2内に滞留した泡沫層上面に吹き付
けられるようにするため、水平乃至やや斜下に向
ける。尚、第2図は突出室4の円周に対して直角
に吹き出す場合を示しているが、第3図のように
突出室4の円周に対して接線方向に吹き出しても
よい。吹き出し口5の数は培養槽1内に吹き込ま
れる通気量を考慮し、吹き出し速度および圧力損
失等に基づいて決定し、排気室2内に滞留する泡
沫上面全体に吹き付けられるように配置する。ま
た、吹き出し口5の開孔部を可変可能にすれば、
培養槽1内に吹き込まれる通気量に応じて最適な
吹き出し速度に調節することができるので、通気
量変動に伴う消泡能力低下や圧力損失上昇に対応
することが可能となる。回転式消泡機6は、発泡
性が強く、排気室2内への泡沫の吹き出しのみに
よつて消泡されない場合に特に有効であるが、効
果達成の為には、吹き出し口5の位置と同程度以
下において消泡操作ができるように設置すべきで
ある。第1図では戻り管8が胴体100の外部に
露出しているが、比較的消泡し易い泡沫であれ
ば、第4図の如く培養槽1内部に垂下させること
も可能である。尚、戻り管8の数は培養槽1の大
きさおよび循環液量等に応じて決定される。
Next, each component will be explained in more detail. First, in order to facilitate the installation of the exhaust chamber 2 into the culture tank 1, it is better to provide it directly above the culture tank 1 rather than to place it apart from the culture tank 1 and to the side. The capacity and position of the exhaust chamber 2 are determined in consideration of the size of the culture tank 1, the amount of ventilation, etc. The protrusion chamber 4 that guides the foam from the culture tank 1 to the exhaust chamber 2 is installed directly vertically from the culture tank 1, and as shown in FIG. In order to avoid this problem, it is better to arrange the plurality of protruding chambers 4 evenly within the cross section of the exhaust gas 2. This protrusion chamber 4
The height, that is, the distance from the bottom of the exhaust chamber 2 to the foam outlet 5, is determined in consideration of the amount of liquid remaining in the exhaust chamber 2, etc. If the outlet 5, such as an orifice or nozzle, provided at the outlet of the ejection chamber 4 is located at the bottom of the exhaust chamber 2, it will be quickly covered with accumulated foam, and the bubble-breaking effect of blowing out will be lost. It is better to provide it near the upper tip of the protruding chamber 4. Further, the blowing direction of the blowing outlet 5 is oriented horizontally or slightly diagonally downward in order to blow onto the upper surface of the foam layer accumulated in the exhaust chamber 2. Although FIG. 2 shows the case where the air is blown out perpendicularly to the circumference of the ejection chamber 4, the air may be blown out in a tangential direction to the circumference of the ejection chamber 4 as shown in FIG. The number of blow-off ports 5 is determined based on the blow-off speed, pressure loss, etc., taking into account the amount of air blown into the culture tank 1, and is arranged so that the foam can be sprayed over the entire upper surface of the foam remaining in the exhaust chamber 2. Moreover, if the opening of the air outlet 5 is made variable,
Since the blowing speed can be adjusted to the optimum speed according to the amount of aeration blown into the culture tank 1, it is possible to cope with a decrease in defoaming ability and an increase in pressure loss due to changes in the amount of aeration. The rotary defoamer 6 is particularly effective when the foaming property is strong and the foam cannot be defoamed only by blowing the foam into the exhaust chamber 2. However, in order to achieve the effect, the position of the blowout port 5 and the It should be installed so that defoaming operation can be performed at the same level or lower. In FIG. 1, the return pipe 8 is exposed to the outside of the body 100, but if the foam is relatively easily defoamed, it can be allowed to hang inside the culture tank 1 as shown in FIG. The number of return pipes 8 is determined depending on the size of the culture tank 1, the amount of circulating fluid, etc.

本実施例によれば、泡沫が培養過程で順次発生
し、泡沫が泡沫によつて押し上げられ吹き出し口
5から吹き出されることに伴う消泡効果を利用し
たものであるから、培養過程で生ずる泡沫を連続
的にかつ確実に消泡することが可能である。ま
た、培養槽1が大容量になり、培養槽1内への吹
き込み通気量が多量になつても、各個の吹き出し
口5は泡沫を吹き出した際に生じる液とガスとの
分離作用を効果的に行なうことができる。そして
吹き出し口5により、大型の排気室2でも、そこ
に滞留した泡沫上部全域にわたつて均等に吹き付
けることが可能であるので、排気室2内での消泡
面の片寄りを解消できる。更に回転式消泡機6を
設けているので、排気室2で一担ガスを分離した
後消泡することになり、培養槽1内に吹き込まれ
た空気の全量を処理する必要がなくなる。これに
より、消泡翼内を通過する空気量は少なく、消泡
効果を上げることができる。
According to this embodiment, foam is generated sequentially during the culture process, and the foam is pushed up by the foam and is blown out from the outlet 5, thereby making use of the defoaming effect. It is possible to defoamer continuously and reliably. In addition, even if the culture tank 1 has a large capacity and the amount of air blown into the culture tank 1 increases, each air outlet 5 can effectively separate the liquid and gas that occur when foam is blown out. can be done. Since the air outlet 5 makes it possible to evenly spray the foam accumulated in the upper part of the exhaust chamber 2 evenly over the entire upper part thereof, it is possible to eliminate the unevenness of the defoaming surface within the exhaust chamber 2. Furthermore, since the rotary defoaming machine 6 is provided, defoaming is performed after the single carrier gas is separated in the exhaust chamber 2, and there is no need to treat the entire amount of air blown into the culture tank 1. As a result, the amount of air passing through the defoaming blade is small, and the defoaming effect can be improved.

尚、第5図のように、泡沫の吹き出し口5と回
転式消泡機6との間に邪魔板10の如き衝突面を
形成すれば、破泡効果の向上と同時に、回転式消
泡機6の消泡面への影響を少なくする事ができ
る。また、排気管7に飛沫防止板を設ければ、排
気室2からの飛沫を完全に防止できる。以上、回
分培養の範囲で設明したが、本発明は連続培養に
も適用可能であることは勿論である。
As shown in FIG. 5, if a collision surface such as a baffle plate 10 is formed between the foam outlet 5 and the rotary defoamer 6, the foam-breaking effect can be improved and the rotary defoamer can be improved. The influence on the defoaming surface of No. 6 can be reduced. Further, if a splash prevention plate is provided on the exhaust pipe 7, splashes from the exhaust chamber 2 can be completely prevented. Although the invention has been described above in the scope of batch culture, it goes without saying that the present invention is also applicable to continuous culture.

本発明によれば、培養過程で生ずる泡沫を連続
的にかつ確実に消泡できるという効果がある。
According to the present invention, there is an effect that foam generated during the culture process can be defoamed continuously and reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す好気性培養装
置の断面図、第2図は第1図のA―A方向の矢視
図、第3図は第2図の泡沫吹き出しの変形例を示
した説明図、第4図は本発明の他の実施例を示す
好気性培養装置の断面図、第5図は更に別の実施
例を示した説明図である。 100……胴体、1……培養槽、2……排気
室、3……ガス供給管、4……突出室、5……吹
き出し口、6……回転式消泡機、7……排気管。
Fig. 1 is a sectional view of an aerobic culture device showing an embodiment of the present invention, Fig. 2 is a view taken along the arrow A-A in Fig. 1, and Fig. 3 is a modification of the foam blowout shown in Fig. 2. FIG. 4 is a sectional view of an aerobic culture apparatus showing another embodiment of the present invention, and FIG. 5 is an explanatory drawing showing still another embodiment. 100...Body, 1...Culture tank, 2...Exhaust chamber, 3...Gas supply pipe, 4...Protrusion chamber, 5...Blowout port, 6...Rotary defoamer, 7...Exhaust pipe .

Claims (1)

【特許請求の範囲】 1 胴体内に培養槽と該槽の上方に位置する排気
室とを有し、前記培養槽にはガス供給管が開口
し、前記排気室には排気管が開口する好気性培養
装置において、前記培養槽の上部は部分的に前記
排気室に突出して該培養槽内で発生した泡沫を導
く複数の突出室を形成しており、該突出室には該
突出室内部から前記排気室に向けて前記泡沫を吹
き出す吹き出し口が設けられていることを特徴と
する好気性培養装置。 2 特許請求の範囲第1項記載において、前記排
気室内で、前記吹き出し口と同程度以下の高さに
消泡機構を設けたことを特徴とする好気性培養装
置。 3 特許請求の範囲第2項記載において、前記消
泡機構がプロペラの如き回転式消泡機であること
を特徴とする好気性培養装置。 4 胴体内に設けられた培養槽にガスを供給して
これを好気性雰囲気と成し、培養過程で発生する
泡沫を同じく胴体内で前記培養槽とは別に設けら
れた排気室に導き、前記泡沫を消沫した後ガスを
排気する好気性培養方法において、前記培養槽の
上部に開口し該上部から前記排気室に突出した複
数の突出室に前記泡沫を導き、該泡沫を前記突出
室に設けられた吹き出し口にて該突出室内部から
前記排気室に向けて吹き出すことにより、前記排
気室内に滞留する前記泡沫を消泡することを特徴
とする好気性培養方法。 5 特許請求の範囲第4項記載において、前記吹
き出し口による消泡に加え、該吹き出し口と同程
度以下の高さに設けられた消泡機構によつても消
泡することを特徴とする好気性培養方法。 6 特許請求の範囲第5項記載において、前記消
泡機構としてプロペラの如き回転式消泡機を用い
ることにより前機泡沫を消泡することを特徴とす
る好気性培養方法。
[Scope of Claims] 1 Preferably, it has a culture tank and an exhaust chamber located above the tank in the body, a gas supply pipe opens into the culture tank, and an exhaust pipe opens into the exhaust chamber. In the aerobic culture device, the upper part of the culture tank partially projects into the exhaust chamber to form a plurality of projecting chambers that guide bubbles generated in the culture tank, and the projecting chambers have a plurality of projecting chambers that are formed from inside the projecting chambers. An aerobic culture apparatus characterized in that an air outlet for blowing out the foam toward the exhaust chamber is provided. 2. The aerobic culture apparatus according to claim 1, characterized in that a defoaming mechanism is provided in the exhaust chamber at a height comparable to or lower than the air outlet. 3. The aerobic culture apparatus according to claim 2, wherein the defoaming mechanism is a rotary defoamer such as a propeller. 4. Gas is supplied to the culture tank provided in the body to create an aerobic atmosphere, and the foam generated during the culture process is guided to an exhaust chamber provided separately from the culture tank in the body. In an aerobic culture method in which gas is exhausted after foam is extinguished, the foam is introduced into a plurality of ejection chambers that are opened at the upper part of the culture tank and protrude from the upper part into the evacuation chamber, and the foam is introduced into the ejection chamber. An aerobic culture method characterized in that the foam remaining in the exhaust chamber is defoamed by blowing from the inside of the ejection chamber toward the exhaust chamber using a provided blower outlet. 5. The preferred embodiment according to claim 4, characterized in that, in addition to defoaming by the outlet, defoaming is also carried out by a defoaming mechanism provided at a height comparable to or lower than the outlet. Temperament culture method. 6. The aerobic culture method according to claim 5, characterized in that the foam from the previous machine is defoamed by using a rotary defoamer such as a propeller as the defoaming mechanism.
JP14096178A 1978-11-17 1978-11-17 Equipment and method of aerobic fermentation Granted JPS5568284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14096178A JPS5568284A (en) 1978-11-17 1978-11-17 Equipment and method of aerobic fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14096178A JPS5568284A (en) 1978-11-17 1978-11-17 Equipment and method of aerobic fermentation

Publications (2)

Publication Number Publication Date
JPS5568284A JPS5568284A (en) 1980-05-22
JPS624113B2 true JPS624113B2 (en) 1987-01-28

Family

ID=15280834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14096178A Granted JPS5568284A (en) 1978-11-17 1978-11-17 Equipment and method of aerobic fermentation

Country Status (1)

Country Link
JP (1) JPS5568284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547910U (en) * 1991-11-27 1993-06-25 コパル電子株式会社 Light input / output window of rotating polygon mirror type optical deflector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2698531B1 (en) * 1992-11-13 1995-02-24 Bernard Caniaux Bubble concentrator container.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547910U (en) * 1991-11-27 1993-06-25 コパル電子株式会社 Light input / output window of rotating polygon mirror type optical deflector

Also Published As

Publication number Publication date
JPS5568284A (en) 1980-05-22

Similar Documents

Publication Publication Date Title
JP3493030B2 (en) Apparatus for processing substrates in a fluid container
KR890001973B1 (en) Device for removing ink from waste paper
US4152409A (en) Method for carrying out air oxidation and for adding fine bubbles to a liquid
KR960701724A (en) PROCESS AND APPARATUS FOR THE WAVE SOLDERING OF CIRCUIT BOARDS
KR20110043755A (en) Air-dissolved water production device
NL2025747B1 (en) Spray atomizing device and floatation device with same
JPH08323130A (en) Waste gas desulfurizing method
US6234621B1 (en) Foamless ramps for controlling the flow of ink to eliminate foam in an ink tank
JPS624113B2 (en)
JP3621159B2 (en) Exhaust gas treatment method and apparatus
US5846479A (en) Apparatus for de-gassing molten metal
KR102451402B1 (en) Dust removal equipment
JP2007510069A (en) Spray coating apparatus and spray coating method
CA2030420A1 (en) Froth flotation apparatus and method
JP3297641B2 (en) Garbage processing apparatus and kitchen garbage processing method
GB2089233A (en) Spray booth apparatus
KR960000462B1 (en) Method for manufacturing carbonated water
JP3667823B2 (en) Exhaust gas treatment method and apparatus
JPH09866A (en) Process and device for treatment of exhaust gas
JPH049569B2 (en)
KR810001377B1 (en) Method of cleaning dust-containing gases
SU767192A1 (en) Apparatus for culturing microorganisms
JP3610437B2 (en) Exhaust gas treatment method and apparatus
JP2003028471A (en) Anion generator
JP3565943B2 (en) Wet desulfurization equipment