JPS6240873B2 - - Google Patents

Info

Publication number
JPS6240873B2
JPS6240873B2 JP57179449A JP17944982A JPS6240873B2 JP S6240873 B2 JPS6240873 B2 JP S6240873B2 JP 57179449 A JP57179449 A JP 57179449A JP 17944982 A JP17944982 A JP 17944982A JP S6240873 B2 JPS6240873 B2 JP S6240873B2
Authority
JP
Japan
Prior art keywords
solar cell
substrate
adhesive
cell array
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57179449A
Other languages
Japanese (ja)
Other versions
JPS5968977A (en
Inventor
Takao Fujita
Yoshinori Matsui
Koji Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP57179449A priority Critical patent/JPS5968977A/en
Publication of JPS5968977A publication Critical patent/JPS5968977A/en
Publication of JPS6240873B2 publication Critical patent/JPS6240873B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は太陽電池アレーの製造方法に関するも
のであり、特に複数個の太陽電池素子を基板に固
定する接着処理に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solar cell array, and particularly to an adhesive process for fixing a plurality of solar cell elements to a substrate.

太陽電池素子は通常半導体材料としてシリコン
が使われているが、半導体材料の特性等の点から
出力に限度があり、従つて電力用として利用する
場合所望の大出力を得るためには、複数個の太陽
電池素子を用いて、それ等の間を互いに直・並列
に電気的接続して各種機器の電源に供される。複
数個の太陽電池素子は一般に平坦な基板上に支持
されるが、両者の固定は第1図に示すように接着
剤3が塗布された基板1上に太陽電池素子2,2
……を一定のピツチで配置し、各太陽電池素子上
に錘りw,w,……を置いて接着剤3を加圧状態
で硬化させることにより固定していた。
Silicon is usually used as the semiconductor material for solar cell elements, but there is a limit to the output due to the characteristics of the semiconductor material. Therefore, when using it for electric power, it is necessary to use multiple solar cells to obtain the desired high output. These solar cell elements are electrically connected in series and parallel to each other to provide power to various devices. A plurality of solar cell elements are generally supported on a flat substrate, and as shown in FIG.
... were arranged at a constant pitch, weights w, w, ... were placed on each solar cell element, and the adhesive 3 was fixed by curing under pressure.

しかし上記従来の錘りwによる加圧硬化方法の
場合には、各太陽電池素子毎に錘りを載せる作業
をしなければならず、作業性が非常に悪いだけで
はなく、基板1が正しく水平に保持されていなけ
れば、錘りwとの作用で太陽電池素子の位置ずれ
が大きくなり、均一な平面をもつた太陽電池アレ
ーが得られないという欠点があつた。また振動や
衝撃にも弱いという欠点があつた。
However, in the case of the above-mentioned conventional pressure curing method using a weight w, it is necessary to place a weight on each solar cell element, which not only has very poor workability but also ensures that the substrate 1 is properly leveled. If the solar cell elements are not held in the same position, the positional deviation of the solar cell elements becomes large due to the action of the weight w, and there is a drawback that a solar cell array having a uniform plane cannot be obtained. It also had the disadvantage of being susceptible to vibrations and shocks.

本発明は上記従来の製造方法による欠点を除去
し、効率よくしかも均一に複数個の太陽電池素子
を固定し得る太陽電池アレーの製造方法を提供す
るものである。次に実施例を挙げて本発明を詳細
に説明する。
The present invention eliminates the drawbacks of the conventional manufacturing methods described above and provides a method for manufacturing a solar cell array that can efficiently and uniformly fix a plurality of solar cell elements. Next, the present invention will be explained in detail with reference to Examples.

第2図において、基板1は予め複数個の太陽電
池2,2……をアレー状に搭載し得るに充分な広
面積をもたせて裁断された絶縁材料或いは金属材
料からなる板体で、例えば人工衛星等の宇宙用機
器の電源装置を構成する場合の放熱性及び機械的
強度等を考慮して、ハニカム構造に作製されてい
る。該基板1の表面にはハニカムの孔をならして
平滑にするため薄い絶縁シート1aが積層され
る。該絶縁シート1aの表面は必要に応じて接着
剤のための前処理が施こされた後、一定ピツチで
接着剤3が塗布される。該接着剤3は相当時間例
えば24時間程度加圧することによつて硬化し、よ
り強固な接着力を示す例えば2液性シリコン
RTVが用いられる。
In FIG. 2, a substrate 1 is a plate made of an insulating material or a metal material that has been cut in advance to have a large enough area to mount a plurality of solar cells 2, 2... in an array. It is manufactured in a honeycomb structure in consideration of heat dissipation and mechanical strength when configuring a power supply device for space equipment such as a satellite. A thin insulating sheet 1a is laminated on the surface of the substrate 1 in order to smooth out the holes of the honeycomb. The surface of the insulating sheet 1a is pretreated for adhesive, if necessary, and then adhesive 3 is applied at a constant pitch. The adhesive 3 hardens by applying pressure for a considerable period of time, for example, about 24 hours, and exhibits stronger adhesive force, such as two-component silicone.
RTV is used.

接着剤3が塗布された基板1上に太陽電池素子
2,2……がライン状、マトリツクス状等に配置
され仮止めされる。太陽電池素子2,2……が仮
止めされた基板1は、基板1の太陽電池素子搭載
面が対向する壁面が開口5された容器4内に納め
られる。該容器4の開口5は、容器4内に基板1
が設置された後透明な可撓性シート6で被われ
る。該可撓性シート6は容器4内を気密に封止し
得る樹脂膜等が用いられる。容器4の室内は管7
を介して真空ポンプに連結され、上記可撓性シー
ト6で被つた後、真空ポンプを作動させて容器4
の室内の空気が吸引される。シート6上には常に
大気圧が作用しているため、真空ポンプの吸引に
よりシート6の可撓性によつて各太陽電池素子2
の表面に押圧力が付勢される。その結果接着剤3
は基板1と太陽電池素子2間の間隙に拡がり、加
圧された状態で硬化して太陽電池素子2を基板1
に強固に固定する。該接着剤硬化工程において、
容器4内の真空度を制御することによつて接着剤
3の厚さと広がりを制御することができる。
Solar cell elements 2, 2, . . . are arranged in a line shape, matrix shape, etc. on a substrate 1 coated with an adhesive 3 and temporarily fixed. The substrate 1 on which the solar cell elements 2, 2, . The opening 5 of the container 4 allows the substrate 1 to be placed inside the container 4.
After being installed, it is covered with a transparent flexible sheet 6. As the flexible sheet 6, a resin film or the like that can airtightly seal the inside of the container 4 is used. The interior of container 4 is pipe 7.
After being covered with the flexible sheet 6, the vacuum pump is operated to remove the container 4.
The air inside the room is sucked out. Since atmospheric pressure is always acting on the sheet 6, each solar cell element 2 is
A pressing force is applied to the surface of the As a result glue 3
spreads into the gap between the substrate 1 and the solar cell element 2, hardens under pressure, and attaches the solar cell element 2 to the substrate 1.
Fix it firmly. In the adhesive curing step,
By controlling the degree of vacuum within the container 4, the thickness and spread of the adhesive 3 can be controlled.

各太陽電池素子2,2……間の相互の電気的接
続はコネクタ8を用いて行われるが、該コネクタ
8の接続は接着剤3の硬化後或いは接着剤硬化前
のいずれの工程でも行うことができる。
Mutual electrical connection between the solar cell elements 2, 2... is performed using the connector 8, but the connection of the connector 8 may be performed in any step after or before the adhesive 3 hardens. Can be done.

上記真空加圧方法によれば、大気圧を利用して
いるため複数個の太陽電池素子の全てに均一に且
つ一斉に加圧することができる。また容器4の室
内に納まる基板形状であれば太陽電池モジユール
は種々の形状のものに対応することができる。
According to the vacuum pressurization method described above, since atmospheric pressure is used, all of the plurality of solar cell elements can be pressurized uniformly and simultaneously. Further, the solar cell module can be made into various shapes as long as the substrate has a shape that can fit inside the chamber of the container 4.

第3図は本発明による他の実施例を示す図で、
基板1は前記第2図の実施例と同様に作製されて
いる。一方太陽電池素子2,2……は、接着面を
上に向けて保持台9上に位置合せして置かれてい
る。各太陽電池素子2,2……の上に向けられた
接着面には接着剤3,3……が塗布される。接着
剤3が塗布された太陽電池素子群上に上記基板1
が対向させて配置され、基板1の背面から太陽電
池素子2面に向けて押圧力が加えられ、接着剤3
を加圧状態で硬化させる。上記基板背面からの押
圧力は簡単には基板背面の複数個所に設けられた
ビス10を締めることによつて行われる。
FIG. 3 is a diagram showing another embodiment according to the present invention,
The substrate 1 is manufactured in the same manner as the embodiment shown in FIG. 2 above. On the other hand, the solar cell elements 2, 2, . . . are aligned and placed on the holding table 9 with their adhesive surfaces facing upward. Adhesives 3, 3, . . . are applied to the adhesive surface facing onto each solar cell element 2, 2, . The substrate 1 is placed on the solar cell element group coated with the adhesive 3.
are placed facing each other, and a pressing force is applied from the back surface of the substrate 1 toward the solar cell element 2 surface, and the adhesive 3
is cured under pressure. The pressing force from the back surface of the substrate is simply applied by tightening screws 10 provided at a plurality of locations on the back surface of the board.

本実施例によれば、複数個の太陽電池素子群に
一斉に押圧力を作用させ得るだけではなく、各太
陽電池素子を予め保持台上に位置決めすることが
でき、相互の位置関係が精確になる。
According to this embodiment, not only can a pressing force be applied to a plurality of groups of solar cell elements at once, but also each solar cell element can be positioned in advance on the holding table, and the mutual positional relationship can be precisely determined. Become.

第4図は更に本発明による他の実施例で、第2
図に示した実施例と同様に基板1上に接着剤3が
塗布された後各接着剤領域に太陽電池素子2が配
置され、仮止めされる。次に太陽電池素子2面か
ら接着剤3に加圧するため、本実施例では各太陽
電池素子位置に対応させてバネ11,11……が
取付けられた押圧板12を用いて、該押圧板12
を対向させることによつてバネ11の弾性力で太
陽電池素子2を加圧し、接着剤3を硬化させる。
FIG. 4 shows yet another embodiment of the present invention;
Similar to the embodiment shown in the figure, after adhesive 3 is applied onto substrate 1, solar cell elements 2 are placed in each adhesive area and temporarily fixed. Next, in order to pressurize the adhesive 3 from the solar cell element 2 surface, in this embodiment, a pressing plate 12 is used, to which springs 11, 11, . . .
By facing the solar cell element 2 with the elastic force of the spring 11, the adhesive 3 is cured.

以上本発明によれば、太陽電池素子形状に対応
して凹凸を生じている太陽電池アレー表面に、能
率よく均一に押圧力を作用させることができ、硬
化のために比較的長い時間を要する接着剤を用い
て基板に素子を固定する場合にも、精度よく接着
固定させることができ、太陽電池アレーの製造を
簡単にし、また装置製造工程に要する労力を省く
ことができる。
As described above, according to the present invention, it is possible to efficiently and uniformly apply a pressing force to the surface of the solar cell array, which has irregularities corresponding to the shape of the solar cell elements, and the adhesive takes a relatively long time to cure. Even when an element is fixed to a substrate using an adhesive, it is possible to adhesively fix the element with high precision, simplifying the production of the solar cell array, and reducing the labor required for the device production process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法を説明するための断面図、第
2図は本発明による実施例を説明するための断面
図、第3図及び第4図は本発明による他の実施例
を説明するための断面図である。 1:基板、2:太陽電池素子、3:接着剤、
4:容器、6:可撓性シート、7:管、9:保持
台、10:ビス、11:バネ。
FIG. 1 is a sectional view for explaining a conventional method, FIG. 2 is a sectional view for explaining an embodiment according to the present invention, and FIGS. 3 and 4 are for explaining other embodiments according to the present invention. FIG. 1: Substrate, 2: Solar cell element, 3: Adhesive,
4: Container, 6: Flexible sheet, 7: Pipe, 9: Holding stand, 10: Screw, 11: Spring.

Claims (1)

【特許請求の範囲】 1 基板上に複数個の太陽電池素子を固定配置し
てなる太陽電池アレーの製造方法において、所望
の位置関係で配列された複数個の太陽電池素子に
対して、該太陽電池素子を支持する基板面との間
の少なくともいずれか一方の面に接着剤を塗布
し、複数個の太陽電池素子が形成する平面と基板
との対向面に一斉に同時に押圧力を作用させ、上
記接着剤を加圧硬化させてなることを特徴とする
太陽電池アレーの製造方法。 2 前記対向面間の押圧力は、真空吸引によつて
付勢されることを特徴とする請求の範囲第1項記
載の太陽電池アレーの製造方法。 3 前記対向面間の押圧力は、基板背面から付勢
してなることを特徴とする請求の範囲第1項記載
の太陽電池アレーの製造方法。 4 前記対向面間の押圧力は、太陽電池素子面の
バネからの弾性力によつて付勢されることを特徴
とする請求の範囲第1項記載の太陽電池アレーの
製造方法。
[Scope of Claims] 1. In a method for manufacturing a solar cell array in which a plurality of solar cell elements are fixedly arranged on a substrate, a method for manufacturing a solar cell array in which a plurality of solar cell elements arranged in a desired positional relationship is Applying an adhesive to at least one surface between the surface of the substrate that supports the battery element, and simultaneously applying a pressing force to the plane formed by the plurality of solar cell elements and the opposing surface of the substrate, A method for producing a solar cell array, comprising curing the above adhesive under pressure. 2. The method of manufacturing a solar cell array according to claim 1, wherein the pressing force between the opposing surfaces is applied by vacuum suction. 3. The method of manufacturing a solar cell array according to claim 1, wherein the pressing force between the opposing surfaces is applied from the back side of the substrate. 4. The method of manufacturing a solar cell array according to claim 1, wherein the pressing force between the opposing surfaces is applied by elastic force from a spring on the solar cell element surface.
JP57179449A 1982-10-13 1982-10-13 Manufacture of solar battery array Granted JPS5968977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57179449A JPS5968977A (en) 1982-10-13 1982-10-13 Manufacture of solar battery array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57179449A JPS5968977A (en) 1982-10-13 1982-10-13 Manufacture of solar battery array

Publications (2)

Publication Number Publication Date
JPS5968977A JPS5968977A (en) 1984-04-19
JPS6240873B2 true JPS6240873B2 (en) 1987-08-31

Family

ID=16066047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57179449A Granted JPS5968977A (en) 1982-10-13 1982-10-13 Manufacture of solar battery array

Country Status (1)

Country Link
JP (1) JPS5968977A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296863U (en) * 1985-12-10 1987-06-20
JPH065782B2 (en) * 1986-06-19 1994-01-19 帝人株式会社 Solar cell module
JP2643166B2 (en) * 1987-08-20 1997-08-20 富士ゼロックス株式会社 Post-processing device
JP4723109B2 (en) * 2001-04-03 2011-07-13 本田技研工業株式会社 Solar cell module manufacturing method and solar cell module manufacturing jig

Also Published As

Publication number Publication date
JPS5968977A (en) 1984-04-19

Similar Documents

Publication Publication Date Title
US3565719A (en) Solar panel fabrication
US5273475A (en) Method for manufacturing liquid crystal display panel
US5448450A (en) Lead-on-chip integrated circuit apparatus
US20080089024A1 (en) Multi-Chip Module (MCM) of a Computer System
CN114454489A (en) Laminating equipment
US3762040A (en) Method of forming circuit crossovers
JPS6240873B2 (en)
JP3121389B2 (en) Manufacturing method of diaphragm type pressure transducer
JP2002118276A (en) Solar battery module and its manufacturing method
US20070069358A1 (en) Gel package structural enhancement of compression system board connections
KR20040014309A (en) A producing method of the liquid crystal display panel
US20070072450A1 (en) Gel package structural enhancement of compression system board connections
US5221399A (en) Joining of printed wiring board to aluminum stiffener using adhesive film, electrically insulative mesh structure that cures at room temperature
GB2048509A (en) Bonding optical element to support
US7930820B2 (en) Method for structural enhancement of compression system board connections
CN110491960A (en) A kind of method of attaching of solar battery array and its solar battery array is made
CN112848352A (en) Positioning fixture and assembling method of LED display module
JP2001144312A (en) Method and device for manufacturing thin-film solar cell module
CN110212046A (en) No pressure for solar battery to be attached to panel sticks technique
CN221294267U (en) Glass film pasting device and mobile phone back shell production system
JP2577859B2 (en) Method of manufacturing ultrasonic transducer device
JP3934177B2 (en) Flexible solar paddle
CN116995135B (en) Photovoltaic module backboard packaging method based on solar photovoltaic power generation
US20080124527A1 (en) Envelopment of Components Arranged on a Substrate
JPS5917600B2 (en) Bimorph device manufacturing method