JPS6240819B2 - - Google Patents

Info

Publication number
JPS6240819B2
JPS6240819B2 JP56010133A JP1013381A JPS6240819B2 JP S6240819 B2 JPS6240819 B2 JP S6240819B2 JP 56010133 A JP56010133 A JP 56010133A JP 1013381 A JP1013381 A JP 1013381A JP S6240819 B2 JPS6240819 B2 JP S6240819B2
Authority
JP
Japan
Prior art keywords
brazing
battery
isolation member
metal
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56010133A
Other languages
Japanese (ja)
Other versions
JPS57124849A (en
Inventor
Kenichi Shinoda
Tomoya Murata
Yasuhiro Ishiguro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP56010133A priority Critical patent/JPS57124849A/en
Publication of JPS57124849A publication Critical patent/JPS57124849A/en
Publication of JPS6240819B2 publication Critical patent/JPS6240819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、密閉式アルカリ電池、特にそのシ
ール部にセラミツクスを用いたいわゆるハーメチ
ツクシールタイプのものに関する。 一般に、ガラスやセラミツクス等のシール材に
よつて封止された密閉式アルカリ電池は、例えば
ゴムや樹脂等の有機シール材によつてシールされ
たものに比べると、そのシール部におけるシール
効果が高く、かつ安定で変質し難いといつた種々
の利点を有する。 第1図は、そのハーメチツクシールによつて封
止された従来の小型密閉式アルカリ電池1のシー
ル部を拡大して示したものである。同図に示した
例では、陽極端子を兼ねる金属製電池ケース2と
このケース2の内外を貫通する金属製陰極集電リ
ード3との間の環状隙間部分にセラミツクスから
なる環状絶縁隔離部材4を配し、この隔離部材4
と集電リード3との間およびケース2との間を、
それぞれろう付け層4bによつて接合し、電池1
内部を密封している。このように、セラミツクス
を用いたシール構造は、それ以前のガラスだけを
用いたものに比べると、ガラス特有のクラツクが
生じ難く、一層良好なシール効果が期待され、こ
れにより耐漏液性能の向上も期待される。 ところで、このセラミツクスからなる絶縁隔離
部材4をシール材として使用するためには、その
セラミツクスと金属部分の接合材料として、ろう
材を使用しなければならない。第1図において
は、金属部分と接合をなすべきセラミツクスの部
分の表面に、先ずメタライズ層4aを設け、さら
にそのメタライズ層4aの表面をニツケル等のメ
ツキ層4cで覆い、そのメツキ層4cと金属部分
との間を上記ろう付け層4bによつて接合してあ
る。ここで、上記ろう付け層4bに用いられてい
る接合部材は通常少なくとも銀または銅を含むろ
う材いわゆる銀ろうや、黄銅ろうであり、それら
のろう材が一般にろう付け温度が低く(620〜900
℃)、また接合後にセラミツクスに歪みを残さ
ず、しかもその工程経費が低コストになるという
理由による。 しかしながら、その銀または銅を含むろう材
は、これを上記接合材料として用いて密閉式アル
カリ電池を組み立てた場合に、陽極側のろう材が
アルカリ電解液に接触すると、そのろう材に含ま
れる銀または銅が酸化溶解して陰極側へ移行し、
それが析出することにより、陽極側と陰極側との
間の絶縁状態が不良となり、これにより自己放電
が生じてしまうようになる。 また、その銀または銅の酸化溶解によつて、セ
ラミツクスと金属部分との界面に沿つた部分が浸
蝕され、これによりアルカリ電池で最も嫌われる
漏液が発生してしまうようになる。 以上の問題点は、ろう材の露出面をピツチ等の
瀝青物質で被覆してしまうことにより若干改善さ
れる。しかしながら、このような対策を施したと
しても長期ストツクでは以上の如き傾向が表わ
れ、本質的な改善とはならなかつた。 この発明は、以上のような問題を鑑みてなされ
たもので、その目的とするところは、シール部に
セラミツクスを用いた密閉式アルカリ電池におい
て、上記絶縁隔離部材としてのセラミツクスの特
徴を何ら損ねることなく、自己放電による電圧不
良の発生およびアルカリ電解液の漏液を確実に防
止できるようにすることにある。 以下、この発明の実施例を図面を参照にして説
明する。なお、本発明の要部構造については第1
図と全く同様であるので、第1図を援用し、符号
も同一とする。 まず第2図はこの発明を適用した密閉アルカリ
電池の全体の構成を説明するもので、この発明に
係る電池1は偏平型の金属製電池ケース2内に陽
極7a、セパレータ7bおよび陰極7cからなる
発電要素7が装填されている。 この発電要素7は電解液として強アルカリ水溶
液を使用している。 上記電池ケース2にはそのケース2の中央部内
外を貫通する金属製集電リード3が、シール部9
によつて電気的に絶縁隔離された状態で保持され
ている。また電池ケース2は陽極端子を兼ね、さ
らに上記集電リード3は陰極端子を兼ねるように
なつている。 上記シール部9、すなわちケース2と集電リー
ド3との環状隙間部分には上述のセラミツクスか
らなる環状絶縁隔離部材4が配設されている。 この隔離部材4の表面には同第1図と同様であ
つて、これに拡大して示すように、メタライズ層
4aが形成され、されにそのメタライズ層4aの
表面にニツケルメツキ層4cが形成されている。
これらの層4a,4cは、隔離部材4と金属部分
の界面に沿つた面だけ部分的に形成されている。
すなわち、上記電池ケース2の環状ボス部2aの
内周面と、上記集電リード3のリード部3aの外
周面とのそれぞれの界面に沿う部分だけに選択的
に形成されている。 なお、上記ニツケルメツキ層4cは必ずしも必
要とせず、後述するろう付け層4bを直接メタラ
イズ層4aに接合することもできる。また、メツ
キ層4cを設ける場合には、ろう付け層4bとの
ぬれ性を考慮するとニツケルメツキが好ましい。 そして上記メツキ層4cと金属部との間には、
ニツケルを主成分とし、かつ少なくとも銀、銅を
含まないろう材からなるろう付け層4b(形状的
には従来と全く同一なので同一符号とする)が介
在され、このろう付け層4bを接合層として上記
絶縁隔離部材4を上記集電リード3および上記電
池ケース2にそれぞれ密に接合せしめることによ
り上記環状隙間部分を気密、液密に閉塞してい
る。 上記ろう付け層4bを構成するろう材は上述の
如くニツケルを主成分とし、かつ少なくとも銀、
銅を含まないろう材であるが、例えばニツケルろ
う、あるいはJISに規格化されているBAU−4や
BAU−4Vなどのように金−ニツケルを主成分と
する金ろう等があり、これらろう材は粉末あるい
は線材として提供される。 またこれらろう材は一般に銀、銅を含むろう材
に比してろう付け温度が高いが、これらにおける
問題点は、例えば高周波ろう付け方法、あるいは
抵抗ろう付け方法などで短時間にろう付け作業を
完了することによつて、上記隔離部材4を構成す
るセラミツクスの歪み発生や、割れをともなうこ
となくかつ抵コストで行うことができる。 なお、上述するろう材のうち、金−ニツケルを
主成分とする金ろうの場合にはある程度の酸化溶
解が認められ長期ストツクでは自己放電が生ずる
こともある。またこのことは金の成分が銀や銅に
見られる溶解作用程ではないにしても、多少溶解
することが原因とされている。 したがつて上記の点や金を使用することにより
コスト高になることを鑑み、望ましくはニツケル
ろうが好適である。 そして、上記のように構成されたろう付け層4
bを介在したシール部9は上記ろう材がニツケル
を含むことにより上記隔離部材4の外周に形成さ
れるメツキ層4cとのぬれ性が極めて良好で、確
実なシール効果を得ることができるとともに、銀
または銅が含まれないことにより、ろう付け層4
bがアルカリ電解液により浸蝕される恐れも極め
て少ないものとなる。 ここで、ニツレルメツキ層4cを設けない場合
には、メタライズ層4aとろう材とのぬれ性が劣
ることにより、密着が不完全になる可能性がある
が、この場合、ろう付けの作業条件を適宜選択す
ることにより、実用上問題がない程度にすること
ができるので、ニツケルメツキ層4cは必ずしも
設けなくてもよい。 したがつて、両端子間の絶縁不良及びこれに伴
う自己放電や、ろう付け層4cに沿つて生ずるア
ルカリ電解液の漏液も防止されるようになる。 また、陽極側ではろう材にアルカリ電解液が接
触すると局部電池が形成され、電気化学的反応で
ろう材が酸化溶解する可能性があるが、陰極側で
は、同様に局部電池が形成されても、陰極活物質
(Zn等)が通常、電気化学的にろう材よりも卑な
金属であるために、陽極側におけるような酸化溶
解は起こりにくいため、第1図に示す隔離部材4
とケース2間のみ上記ニツケルを主成分とするろ
う材を用い、隔離部材4と集電リード3間は従来
の銀または銅を主成分とするろう材を用いること
ができる。 しかしながら、本発明者らの実験によると、陰
極側においても現象的にろう材の溶解が認めら
れ、理由は明確ではないが化学的に酸化溶解した
ものと考えられるので、陰極側にもニツケルを主
成分とするろう材を用いることが望ましい。 これらの選択は、更に上記高温におけるセラミ
ツクスの歪みや、陽極と陰極とで別個のろう材を
用いる場合の製作上の点なども考慮して陰極側の
ろう材はニツケルを主成分とするものが、銀また
は銅を主成分とするものかのいずれかを選択でき
る。 さてここで、以上の実施例で述べたこの発明に
よる密閉式アルカリ電池(酸化銀電池であつて、
ニツケルろう、金ろうBAU−4を用いたもの)
と、従来品(銀ろう、及びこれにピツチを塗布し
たもの、黄銅ろうを用いたもの)の五点につい
て、それぞれを100個ずつ用意して、温度60℃の
環境下に保存した場合の電圧不良の発生個数を調
べたところ、表1に示すような結果が得られた。
The present invention relates to a sealed alkaline battery, and particularly to a so-called hermetic seal type battery that uses ceramics for its seal portion. In general, sealed alkaline batteries sealed with a sealing material such as glass or ceramics have a higher sealing effect at the sealed portion than those sealed with an organic sealing material such as rubber or resin. It has various advantages such as being stable and difficult to change. FIG. 1 is an enlarged view of a sealed portion of a conventional small-sized sealed alkaline battery 1 sealed by the hermetic seal. In the example shown in the figure, an annular insulating isolation member 4 made of ceramics is installed in an annular gap between a metal battery case 2 that also serves as an anode terminal and a metal cathode current collector lead 3 that penetrates the inside and outside of the case 2. This isolation member 4
and the current collector lead 3 and between the case 2,
Each is joined by a brazing layer 4b, and the battery 1
The inside is sealed. In this way, seal structures using ceramics are less susceptible to the cracks characteristic of glass than those that used only glass, and are expected to have better sealing effects, which can also improve leakage resistance. Be expected. By the way, in order to use the insulating isolation member 4 made of ceramic as a sealing material, a brazing material must be used as a bonding material between the ceramic and the metal portion. In FIG. 1, a metallized layer 4a is first provided on the surface of a ceramic part to be bonded to a metal part, and then the surface of the metallized layer 4a is covered with a plating layer 4c of nickel or the like, and the plating layer 4c and the metal The brazing layer 4b is used to connect the parts to each other by the brazing layer 4b. Here, the bonding member used for the brazing layer 4b is usually a brazing material containing at least silver or copper, so-called silver solder, or brass brazing material, and these brazing materials generally have a low brazing temperature (620 to 900
℃), and because it leaves no distortion in the ceramics after bonding, and the process cost is low. However, when the brazing material containing silver or copper is used as the above-mentioned bonding material to assemble a sealed alkaline battery, when the brazing material on the anode side comes into contact with the alkaline electrolyte, the silver or copper contained in the brazing material Or copper oxidizes and dissolves and migrates to the cathode side,
Due to its precipitation, the insulation state between the anode side and the cathode side becomes poor, resulting in self-discharge. In addition, the oxidative dissolution of silver or copper corrodes the area along the interface between the ceramic and the metal part, resulting in leakage, which is the most disliked problem in alkaline batteries. The above problems can be alleviated to some extent by coating the exposed surface of the brazing material with a bituminous material such as pitch. However, even if such measures were taken, the above-mentioned tendency appeared in the long-term stock, and no substantial improvement was achieved. This invention was made in view of the above-mentioned problems, and its purpose is to provide a sealed alkaline battery using ceramics for the sealing part, without impairing the characteristics of ceramics as an insulating isolation member. The purpose is to reliably prevent the occurrence of voltage failures due to self-discharge and leakage of alkaline electrolyte. Embodiments of the present invention will be described below with reference to the drawings. The main structure of the present invention is described in Part 1.
Since it is exactly the same as the figure, FIG. 1 will be referred to and the same reference numerals will be used. First, FIG. 2 explains the overall structure of a sealed alkaline battery to which the present invention is applied. The battery 1 according to the present invention consists of an anode 7a, a separator 7b, and a cathode 7c in a flat metal battery case 2. A power generation element 7 is loaded. This power generation element 7 uses a strong alkaline aqueous solution as an electrolyte. The battery case 2 has a metal current collector lead 3 that penetrates the inside and outside of the central part of the case 2 and has a sealing part 9.
It is maintained in an electrically insulated and isolated state by. The battery case 2 also serves as an anode terminal, and the current collector lead 3 also serves as a cathode terminal. In the seal portion 9, that is, the annular gap between the case 2 and the current collecting lead 3, an annular insulating isolation member 4 made of the above-mentioned ceramics is disposed. As shown in FIG. 1 and enlarged, a metallized layer 4a is formed on the surface of the isolation member 4, and a nickel plating layer 4c is formed on the surface of the metallized layer 4a. There is.
These layers 4a, 4c are partially formed only on the surface along the interface between the isolation member 4 and the metal portion.
That is, they are selectively formed only in portions along the respective interfaces between the inner circumferential surface of the annular boss portion 2a of the battery case 2 and the outer circumferential surface of the lead portion 3a of the current collecting lead 3. Note that the nickel plating layer 4c is not necessarily required, and a brazing layer 4b, which will be described later, can be directly bonded to the metallized layer 4a. Further, when providing the plating layer 4c, nickel plating is preferable in consideration of wettability with the brazing layer 4b. And between the plating layer 4c and the metal part,
A brazing layer 4b (the same reference numeral is used because the shape is exactly the same as the conventional one) made of a brazing material mainly composed of nickel and not containing at least silver and copper is interposed, and this brazing layer 4b is used as a bonding layer. By closely joining the insulating isolation member 4 to the current collector lead 3 and the battery case 2, the annular gap is closed air-tightly and liquid-tightly. As mentioned above, the brazing material constituting the brazing layer 4b is mainly composed of nickel, and contains at least silver,
It is a brazing filler metal that does not contain copper, such as nickel wax or BAU-4 standardized by JIS.
There are gold soldering materials such as BAU-4V whose main components are gold and nickel, and these soldering materials are provided as powder or wire rods. In addition, these brazing materials generally have a higher brazing temperature than brazing materials containing silver or copper, but the problem with these is that they cannot be brazed in a short time using, for example, high-frequency brazing or resistance brazing. By completing this process, the process can be carried out at low cost without causing distortion or cracking of the ceramics constituting the isolation member 4. It should be noted that among the above-mentioned brazing materials, in the case of a gold solder mainly composed of gold-nickel, a certain degree of oxidative dissolution is observed, and self-discharge may occur in a long-term stock. This is also said to be due to the fact that the gold component dissolves to some extent, although not as much as the dissolution effect seen in silver and copper. Therefore, in view of the above points and the increased cost of using gold, nickel wax is preferably used. Then, the brazing layer 4 configured as described above
Since the brazing filler metal contains nickel, the seal portion 9 with the b-interposed part has extremely good wettability with the plating layer 4c formed on the outer periphery of the isolation member 4, and a reliable sealing effect can be obtained. By not containing silver or copper, the brazing layer 4
There is also very little risk that b will be corroded by the alkaline electrolyte. Here, if the Nitrel plating layer 4c is not provided, the adhesion may be incomplete due to poor wettability between the metallized layer 4a and the brazing material, but in this case, the working conditions for brazing may be adjusted appropriately. The nickel plating layer 4c does not necessarily have to be provided because it can be made to such an extent that there is no problem in practical use. Therefore, poor insulation between both terminals, self-discharge caused by this, and leakage of alkaline electrolyte along the brazing layer 4c are also prevented. In addition, on the anode side, when the alkaline electrolyte comes into contact with the brazing filler metal, a local battery may be formed, and the brazing filler metal may oxidize and dissolve due to an electrochemical reaction, but on the cathode side, a local battery may also be formed. Since the cathode active material (such as Zn) is usually a metal that is electrochemically more base than the brazing filler metal, oxidative dissolution like that on the anode side is difficult to occur, so the isolation member 4 shown in FIG.
The brazing material mainly composed of nickel can be used only between the isolation member 4 and the case 2, and the conventional brazing material mainly composed of silver or copper can be used between the isolation member 4 and the current collecting lead 3. However, according to the experiments conducted by the present inventors, melting of the brazing filler metal was also observed on the cathode side, and although the reason is not clear, it is thought that it was chemically oxidized and dissolved, so nickel was also used on the cathode side. It is desirable to use a brazing filler metal as the main component. These selections were made in consideration of the distortion of the ceramics at high temperatures mentioned above, as well as manufacturing considerations when using separate brazing materials for the anode and cathode. , silver or copper as the main component. Now, here, the sealed alkaline battery (silver oxide battery) according to the present invention described in the above embodiments,
(using nickel wax, gold wax BAU-4)
and the voltage when 100 of each of the five conventional products (silver solder, one coated with pitch, and one using brass solder) were prepared and stored at a temperature of 60°C. When the number of defective products was investigated, the results shown in Table 1 were obtained.

【表】 なお、電圧不良の基準は、端子間電圧1.5Vを
基準とし、それに満たないものを不良とした。 表1から明らかなようにこの発明による電池で
は電圧不良の発生数が従来のものに比して少な
く、特にニツケルろうを用いたものでは極端に低
減している。そしてこのことはろう材として用い
ているニツケルがアルカリ電解液中にはほとんど
酸化溶解されないことを示している。 なお、従来品にピツチを塗布したものは初期段
階では良好であるが、日数が経るにつれて、急激
に不良品が増し、本質的な解決となつていないこ
とが明確に表わされている。 また、この発明による電池及び従来の電池(表
1と同じもの5点)をそれぞれ、50個づつ用意し
て、温度60℃、湿度90%の環境下で保存し、その
間のアルカリ電解液の漏液発生個数を調べたとこ
ろ表2に示す結果が得られた。
[Table] The standard for voltage defects is a terminal voltage of 1.5V, and anything less than that is considered defective. As is clear from Table 1, the number of voltage failures that occur in batteries according to the present invention is lower than that of conventional batteries, and the number of voltage failures is extremely low, especially in batteries using nickel solder. This shows that the nickel used as the brazing material is hardly oxidized and dissolved in the alkaline electrolyte. It should be noted that conventional products coated with pitch are good at the initial stage, but as days pass, the number of defective products rapidly increases, clearly indicating that there is no fundamental solution. In addition, 50 batteries each of batteries according to the present invention and conventional batteries (5 items same as those in Table 1) were prepared and stored in an environment with a temperature of 60°C and a humidity of 90%, during which time leakage of alkaline electrolyte occurred. When the number of liquids generated was investigated, the results shown in Table 2 were obtained.

【表】 表2から明らかなようにこの発明による電池は
耐漏液性能においても、従来のものに比して大幅
に改善されている。 なお、上記表1、表2に示した本発明品は、い
ずれも陽極側と陰極側の両方に本発明に係るろう
材を用いたものである。 この場合、本発明のろう材を陽極側のみ用い、
陰極側に従来の銀または銅を主成分とするろう材
を使用すると、陰極側においても現象的にろう材
の溶解が認められるが、陽極側程顕著ではなく、
実用上問題ない。 従つて、陰極側のろう材はニツケルを主成分と
するものか、銀または銅を主成分とするものかの
いずれかを選択、採用できる。 以上の如くこの発明に係る密閉式アルカリ電池
は、そのシール部にセラミツクスを用いたものに
おいて、シール材としてのセラミツクスの特性を
何ら損ねるものでないばかりか電圧の不良発生が
少なく、また耐漏液性能が大幅に改善されるとい
う結果を得られた。
[Table] As is clear from Table 2, the battery according to the present invention has significantly improved leakage resistance performance compared to the conventional battery. The products of the present invention shown in Tables 1 and 2 above both use the brazing filler metal according to the present invention on both the anode side and the cathode side. In this case, the brazing material of the present invention is used only on the anode side,
When a conventional brazing material mainly composed of silver or copper is used on the cathode side, dissolution of the brazing material is observed on the cathode side as well, but it is not as noticeable as on the anode side.
There is no practical problem. Therefore, the brazing filler material on the cathode side can be selected from one containing nickel as a main component, or one containing silver or copper as a main component. As described above, the sealed alkaline battery according to the present invention, which uses ceramics for its sealing part, not only does not impair the properties of ceramics as a sealing material, but also has less voltage defects and has excellent leakage resistance. The results showed a significant improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は密閉式アルカリ電池の要部構造を示す
拡大断面図、第2図は同アルカリ電池の全体的構
造を示す断面図である。 1……密閉式アルカリ電池、2……金属製電池
ケース、3……金属製集電リード、4……環状絶
縁隔離部材、4a……メタライズ層、4b……ろ
う付け層、7……発電要素。
FIG. 1 is an enlarged sectional view showing the main structure of a sealed alkaline battery, and FIG. 2 is a sectional view showing the overall structure of the alkaline battery. DESCRIPTION OF SYMBOLS 1...Sealed alkaline battery, 2...Metal battery case, 3...Metal current collection lead, 4...Annular insulating isolation member, 4a...Metallized layer, 4b...Brazing layer, 7...Power generation element.

Claims (1)

【特許請求の範囲】[Claims] 1 一方極の端子を兼ねる金属製電池ケースの内
外を貫通する他方極の金属製集電リードと上記電
池ケース側との間の環状隙間部分との間にセラミ
ツクスからなる環状絶縁隔離部材を配し、この隔
離部材によつて上記電池ケース内の発電要素を密
封入するとともに、陽極側と陰極側を互いに絶縁
隔離するようにした密閉式アルカリ電池におい
て、上記絶縁隔離部材を構成するセラミツクスの
上記電池ケース及び集電リードを構成する金属部
分との界面に沿つてメタライズ層を形成するとと
もに、このメタライズ層を介して上記セラミツク
スと上記金属部分とを接合する材料として、少な
くとも上記陽極側の上記電池ケースまたは上記集
電リードのいずれか一方側にニツケルを主成分と
し、かつ少なくとも銀、銅を含まないろう材を用
いたことを特徴とする密閉式アルカリ電池。
1. An annular insulating isolation member made of ceramics is arranged between the annular gap between the metal current collector lead of the other electrode, which penetrates the inside and outside of the metal battery case that also serves as the terminal of one electrode, and the battery case side. , in a sealed alkaline battery in which the power generating element in the battery case is hermetically sealed by the isolation member and the anode side and the cathode side are insulated and isolated from each other, the battery is made of ceramics constituting the insulation isolation member; A metallized layer is formed along the interface with the metal part constituting the case and the current collector lead, and a material for bonding the ceramic and the metal part via this metallized layer is used in the battery case at least on the anode side. Alternatively, a sealed alkaline battery characterized in that a brazing material mainly composed of nickel and containing at least no silver or copper is used on either side of the current collecting lead.
JP56010133A 1981-01-28 1981-01-28 Sealed alkaline battery Granted JPS57124849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56010133A JPS57124849A (en) 1981-01-28 1981-01-28 Sealed alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56010133A JPS57124849A (en) 1981-01-28 1981-01-28 Sealed alkaline battery

Publications (2)

Publication Number Publication Date
JPS57124849A JPS57124849A (en) 1982-08-03
JPS6240819B2 true JPS6240819B2 (en) 1987-08-31

Family

ID=11741784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56010133A Granted JPS57124849A (en) 1981-01-28 1981-01-28 Sealed alkaline battery

Country Status (1)

Country Link
JP (1) JPS57124849A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273555A (en) * 1985-09-27 1987-04-04 Eagle Ind Co Ltd Sealing of electrolyte cell

Also Published As

Publication number Publication date
JPS57124849A (en) 1982-08-03

Similar Documents

Publication Publication Date Title
US6268079B1 (en) Nonaqueous-electrolyte battery
JP4811246B2 (en) Capacitor
US4567121A (en) Insulating seal for electrochemical cells
KR20050065430A (en) Electrochemical cell
JP2002134360A (en) Solid electrolytic capacitor and its manufacturing method
US3531693A (en) Electrolytic capacitor with ruthenium metal cathode surface
US4849806A (en) Shunting element
US3534230A (en) Electrolytic capacitor having two seals with one having reaction inhibiting surface
US3522489A (en) Glass to aluminum seal and hermetically sealed aluminum electrolytic capacitor
JPH04246813A (en) Solid electrolytic capacitor containing fuse
US6652604B1 (en) Aluminum electrolytic capacitor and its manufacturing method
JPS6240819B2 (en)
US3423642A (en) Electrolytic cells with at least three electrodes
CN214956229U (en) High-power precise chip resistor
JPS6148219B2 (en)
JPH0499308A (en) Solid electrolytic capacitor
JPH0845795A (en) Electric double layered capacitor
JPH0519292B2 (en)
JPS6148218B2 (en)
JPS6146942B2 (en)
JP3878854B2 (en) Terminal for storage battery
KR19980044207A (en) Method for manufacturing an electrical drawing terminal of a solid electrolyte fuel cell
JPS6026451Y2 (en) sealed alkaline battery
JPS62569B2 (en)
JP2641746B2 (en) Molded chip tantalum solid electrolytic capacitor