JPS6240813B2 - - Google Patents

Info

Publication number
JPS6240813B2
JPS6240813B2 JP55145707A JP14570780A JPS6240813B2 JP S6240813 B2 JPS6240813 B2 JP S6240813B2 JP 55145707 A JP55145707 A JP 55145707A JP 14570780 A JP14570780 A JP 14570780A JP S6240813 B2 JPS6240813 B2 JP S6240813B2
Authority
JP
Japan
Prior art keywords
molded body
ceramic molded
groove
chamfering
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55145707A
Other languages
Japanese (ja)
Other versions
JPS5769622A (en
Inventor
Mitsuhiro Nagata
Koji Ishige
Tadashi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP14570780A priority Critical patent/JPS5769622A/en
Publication of JPS5769622A publication Critical patent/JPS5769622A/en
Publication of JPS6240813B2 publication Critical patent/JPS6240813B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Microwave Tubes (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、例えば電極支持絶縁体等に用いるセ
ラミツク焼結成形体に関する。 一般に、マグネトロンには、電極支持絶縁体と
して図面に示すような断面形状の、アルミナ、窒
化ケイ素のようなセラミツク成形体が使用されて
いる。 すなわち、第1図に示すように、電極支持絶縁
体は、円筒キヤツプ状のセラミツク成形体1から
成り、その上面には、電極2とマグネトロン本体
の金属環3との電気的絶縁に充分な沿面距離を保
つために、凹溝4が刻設されている。 而して、上記電極2をセラミツク成形体1に気
密に固着するためには、予め貫通孔5の周縁にモ
リブデンペーストを塗布してメタライズ処理し、
その上にニツケル等のメツキ層6を形成してろう
付け7する方法が採られている。 しかしながら、ここでメツキ法として大量生産
に適したバレルメツキの方法を用いた場合、セラ
ミツク成形体の縁端部が欠けやすく、製品の歩留
が悪いという難点があつた。 本発明はこのような難点を解消するためになさ
れたもので、外部からの衝撃に強く、バレルメツ
キ等の際に欠けにくいセラミツク成形体の形状を
提供するものである。 以下、図面について本発明を説明する。 本発明においては、セラミツク成形体の縁端部
を、第2図に示すように、面取りした形状にする
が、面取りの割合が大きいとバレルメツキ等の
際、内側(すなわち、凹溝の内壁側)から欠けや
すく、(矢印a)反対に面取りが小さい場合は、
外側から欠けやすい(矢印bで示す。)ので、そ
の最適な係数或いは曲率は、縁部と凹溝との距離
と溝の深さによつて一義的に決定される。 すなわち、凹溝から縁端までの距離をT、凹溝
の深さをDとした場合、最も望ましい面取りの係
数C(傾斜角45゜の平面状に面取りするものとす
る。) 或いは曲率R(曲面状に面取りする場合。)
は、下記の式 C=f(T、D)=0.1T/D R=f(T、D)=0.1T/D によつて決められる。 なお、面取り係数Cは第2図に示すような平面
状に面取りを行つた際の面取り部の長さである。 ここで、面取り部分の形状は平面状、曲面状い
ずれの場合も、欠けにくいという本発明の効果は
得られるが、製造の作業性の点からは、平面状に
面取りするのがより好ましい。 次に実施例について記載する。 実施例 実施例 1 アルミナ製成形体の縁端部を、以下のようにし
て決定された係数Cの45゜平面状に面取りした形
状とした。 T=2mm D=1mm C=f(2、1)=0.2mm この場合、係数Cは平面状に面取りした際の面
取り部の長さであり、係数Cが0.2mmの場合上面
の縁端部から0.2mmの個所から面取りを行つた。 得られた焼結成形体を電極支持絶縁体として、
常法により、モリブデンペースト塗布、メタライ
ズ、バレルメツキ、ろう付け等の工程を行なつて
マグネトロンを製造した。 最終的に得られた製品の不良率を、従来通り、
面取りしないセラミツク成形体を用いた場合の不
良率と比較した。 その結果、不良率が10%から2%程度と激減
し、歩留が飛躍的に向上したことがわかつた。 実施例 2 セラミツク成形体の面取り寸法を変化させた場
合の強度について示す。セラミツク成形体は縁端
と凹溝との距離T=2mmおよび凹溝の深さD=1
mmのセラミツク成形体を用いた。面取り方法は、
本願発明のC=0.2mm(試料2)および比較とし
てC=0.1(試料1)と0.4mm(試料3)のものに
ついても試験した。さらに試料4として凹溝がな
いものを用いてC=0.4mm面取りした場合につい
ても併せて試験した。その結果を下記に示す。試
験方法はテトラー試験により、上記試験を各々10
個1組とし試験機に投入200回転させた場合のキ
レツとカケが発生した試料の個数を調べた。ま
た、落下試験により同様に試料を各々10個1組と
し、40cmの高さから落下させた場合のキレツ(カ
ケ)が発生した試料の個数を調べた。
The present invention relates to a ceramic sintered body used, for example, as an electrode supporting insulator. Generally, a ceramic molded body made of alumina or silicon nitride, having a cross-sectional shape as shown in the drawings, is used as an electrode supporting insulator in a magnetron. That is, as shown in FIG. 1, the electrode supporting insulator consists of a cylindrical cap-shaped ceramic molded body 1, and the upper surface thereof has a sufficient creeping surface for electrically insulating the electrode 2 and the metal ring 3 of the magnetron body. A groove 4 is cut in order to maintain the distance. In order to airtightly fix the electrode 2 to the ceramic molded body 1, molybdenum paste is applied to the periphery of the through hole 5 in advance and metallized.
A method is adopted in which a plating layer 6 of nickel or the like is formed thereon and then brazed 7. However, when the barrel plating method, which is suitable for mass production, is used as the plating method, there is a problem that the edges of the ceramic molded body are easily chipped and the yield of the product is poor. The present invention has been made to solve these difficulties, and provides a shape of a ceramic molded body that is resistant to external impacts and is resistant to chipping during barrel plating. The invention will now be explained with reference to the drawings. In the present invention, the edges of the ceramic molded body are chamfered as shown in FIG. (arrow a) If the chamfer is small,
Since it is easy to chip from the outside (indicated by arrow b), its optimum coefficient or curvature is uniquely determined by the distance between the edge and the groove and the depth of the groove. In other words, if the distance from the groove to the edge is T, and the depth of the groove is D, then the most desirable chamfering coefficient C (chamfering is performed in a plane with an inclination angle of 45°) or the curvature R ( When chamfering into a curved surface.)
is determined by the following formula: C=f(T, D)=0.1T/D R=f(T, D)=0.1T/D. Note that the chamfering coefficient C is the length of the chamfered portion when chamfering is performed in a planar shape as shown in FIG. Here, although the effect of the present invention of being less likely to chip can be obtained regardless of whether the shape of the chamfered portion is planar or curved, from the viewpoint of manufacturing workability, it is more preferable to chamfer into a planar shape. Next, examples will be described. Examples Example 1 The edge of an alumina molded body was chamfered into a 45° planar shape with a coefficient C determined as follows. T = 2mm D = 1mm C = f (2, 1) = 0.2mm In this case, the coefficient C is the length of the chamfered part when chamfering a plane, and if the coefficient C is 0.2mm, the edge of the top surface Chamfering was performed starting from a point 0.2 mm from the surface. The obtained sintered compact is used as an electrode supporting insulator.
A magnetron was manufactured by performing steps such as molybdenum paste application, metallization, barrel plating, and brazing using conventional methods. The defective rate of the final product is calculated as before.
A comparison was made with the defective rate when a ceramic molded body without chamfering was used. As a result, it was found that the defective rate was drastically reduced from 10% to about 2%, and the yield was dramatically improved. Example 2 The strength when the chamfer dimensions of a ceramic molded body are changed will be shown. For the ceramic molded body, the distance between the edge and the groove is T = 2 mm, and the depth of the groove is D = 1.
A ceramic molded body of mm was used. The chamfering method is
Tests were also conducted on C=0.2 mm (sample 2) of the present invention and as comparisons, C=0.1 (sample 1) and 0.4 mm (sample 3). In addition, a sample 4 without grooves was also tested with a chamfer of C=0.4 mm. The results are shown below. The test method is Tetler test, 10 times each of the above tests.
The number of samples in which cracks and chips occurred when a set of samples was put into a testing machine and rotated 200 times was investigated. In addition, a set of 10 samples each was used in a drop test, and the number of samples that cracked when dropped from a height of 40 cm was determined.

【表】 上記結果により明らかなように本願の式により
求められた面取り寸法により面取りされた試料2
は、他の面取り寸法のものと比較し良好な強度を
示している。また、凹溝を有さない試料4は面取
り寸法が0.4mmで不良がないのに対し、凹溝を有
して同様の面取り寸法である試料3は不良が多
い。このことより、凹溝を有さないセラミツク成
形体の面取り状態を、そのまま凹溝を有するセラ
ミツク成形体に用いてもその強度は異なるため、
同様の面取り寸法は適用できない。
[Table] As is clear from the above results, sample 2 was chamfered with the chamfer dimensions determined by the formula of the present application.
shows good strength compared to those with other chamfer dimensions. Further, Sample 4, which does not have a groove, has a chamfer size of 0.4 mm and has no defects, whereas Sample 3, which has a groove and has a similar chamfer size, has many defects. From this, even if the chamfered state of a ceramic molded body without grooves is used as is for a ceramic molded body with grooves, the strength will be different.
Similar chamfer dimensions are not applicable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の電極支持絶縁体の断面図、第
2図は本発明のセラミツク成形体の拡大説明図で
ある。 1……セラミツク成形体、2……電極、3……
金属環、4……凹溝、6……メツキ層、7……ろ
う付け。
FIG. 1 is a sectional view of a conventional electrode supporting insulator, and FIG. 2 is an enlarged explanatory view of a ceramic molded body of the present invention. 1... Ceramic molded body, 2... Electrode, 3...
Metal ring, 4... groove, 6... plating layer, 7... brazing.

Claims (1)

【特許請求の範囲】 1 上面の縁端部近傍に刻設された凹溝を有する
マグネトロン用の電極支持絶縁体用セラミツク成
形体において、上記縁端と凹溝との距離Tおよび
凹溝の深さDによつて下記式 C=f(T、D)=0.1T/D R=f(T、D)=0.1T/D により決定される曲率Rの曲面上、或いは係数C
の平面状に、縁端部を面取りして成るマグネトロ
ン用の電極支持絶縁体用セラミツク成形体。
[Scope of Claims] 1. In a ceramic molded body for an electrode support insulator for a magnetron having a groove carved near the edge of the upper surface, the distance T between the edge and the groove and the depth of the groove are On the curved surface of curvature R determined by the following formula C = f (T, D) = 0.1T / D R = f (T, D) = 0.1T / D or coefficient C
A ceramic molded body for an electrode support insulator for a magnetron, which has a flat shape with chamfered edges.
JP14570780A 1980-10-20 1980-10-20 Ceramic molding unit Granted JPS5769622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14570780A JPS5769622A (en) 1980-10-20 1980-10-20 Ceramic molding unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14570780A JPS5769622A (en) 1980-10-20 1980-10-20 Ceramic molding unit

Publications (2)

Publication Number Publication Date
JPS5769622A JPS5769622A (en) 1982-04-28
JPS6240813B2 true JPS6240813B2 (en) 1987-08-31

Family

ID=15391253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14570780A Granted JPS5769622A (en) 1980-10-20 1980-10-20 Ceramic molding unit

Country Status (1)

Country Link
JP (1) JPS5769622A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110577053B (en) * 2019-08-30 2021-06-11 合肥亿米特科技股份有限公司 Insulating support rolling mechanism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317265A (en) * 1976-08-02 1978-02-17 Hitachi Ltd Tight adhesion method between metallic part and insulating material
JPS55108140A (en) * 1979-02-09 1980-08-19 Matsushita Electronics Corp Stem in electron tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317265A (en) * 1976-08-02 1978-02-17 Hitachi Ltd Tight adhesion method between metallic part and insulating material
JPS55108140A (en) * 1979-02-09 1980-08-19 Matsushita Electronics Corp Stem in electron tube

Also Published As

Publication number Publication date
JPS5769622A (en) 1982-04-28

Similar Documents

Publication Publication Date Title
JPS5816552A (en) Package for semiconductor element
CN105910751A (en) Parallel-plate dry-type capacitive pressure sensor
KR19990006850A (en) Electronic component and manufacturing method thereof
JP2001007053A (en) Dicing blade and manufacture of electronic component
JPS6240813B2 (en)
US4205364A (en) Microcapacitors having beveled edges and corners
US7633738B2 (en) Electrostatic chuck and manufacturing method thereof
KR100190980B1 (en) Sintered body for board manufacture, board, and manufacture thereof
JP2003163259A (en) Ceramic part having inside electrode and manufacturing method thereof
JP4511311B2 (en) Multi-circuit board and electronic device
JPH05129461A (en) Stem for semiconductor device
JPH06169015A (en) Semiconductor device
US4420869A (en) Method of manufacturing a thyrister housing
KR20190049519A (en) Electrode embedded memeber
JPS61149316A (en) Method of cutting pressure sensor wafer
JPH0558646B2 (en)
JPH1022160A (en) Ceramics electronic component for wire bonding
JPH10264130A (en) Ceramic base with break groove and electronic component manufactured from the ceramic base
JP2617178B2 (en) Clock dial
CN100401455C (en) Luminous container for high-voltage discharge lamp and its used sealing parts at end
KR100924262B1 (en) Ceramic Electrostatic Chuck having a mesh electrode and the method of the same
JP7284560B2 (en) Electrode embedded material
JP7109258B2 (en) Method for manufacturing electrode-embedded member
US20160276103A1 (en) High capacitance single layer capacitor and manufacturing method thereof
JPH0982504A (en) Chip thermistor and its manufacture