JPS6240678B2 - - Google Patents

Info

Publication number
JPS6240678B2
JPS6240678B2 JP54103081A JP10308179A JPS6240678B2 JP S6240678 B2 JPS6240678 B2 JP S6240678B2 JP 54103081 A JP54103081 A JP 54103081A JP 10308179 A JP10308179 A JP 10308179A JP S6240678 B2 JPS6240678 B2 JP S6240678B2
Authority
JP
Japan
Prior art keywords
cooling
supply device
vacuum container
water
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54103081A
Other languages
Japanese (ja)
Other versions
JPS5627687A (en
Inventor
Masaaki Kuryama
Masahiro Yamamoto
Masayuki Furuyama
Tatsuo Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10308179A priority Critical patent/JPS5627687A/en
Publication of JPS5627687A publication Critical patent/JPS5627687A/en
Publication of JPS6240678B2 publication Critical patent/JPS6240678B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)

Description

【発明の詳細な説明】 本発明は核融合装置用真空容器の冷却装置に係
り、特に、真空容器の外周面に設けられた冷却管
にガスと水を流通させて冷却するに好適な核融合
装置用真空容器の冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device for a vacuum vessel for a nuclear fusion device, and in particular, a nuclear fusion device suitable for cooling by flowing gas and water through a cooling pipe provided on the outer circumferential surface of the vacuum vessel. The present invention relates to a cooling device for a vacuum container for equipment.

一般に、核融合装置用真空容器は、正常な内部
壁面を得るために200℃乃至500℃程度のベーキン
グ操作が行われ、その後プラズマ発生運転を行う
ために速やかに真空容器を冷却しなければならな
い。また、プラズマ発生運転中は、プラズマから
受ける熱を速やかに除去するために強力に真空容
器を冷却する必要がある。
Generally, a vacuum vessel for a nuclear fusion device is subjected to a baking operation at about 200°C to 500°C to obtain a normal internal wall surface, and then the vacuum vessel must be quickly cooled to perform plasma generation operation. Furthermore, during plasma generation operation, it is necessary to powerfully cool the vacuum container in order to quickly remove the heat received from the plasma.

従来の核融合装置用真空容器の冷却方式は、水
またはガスのいずれか一方を用いた冷却方式であ
る。水冷却方式では、ベーキング操作後の冷却
は、200℃乃至500℃の高温の真空容器に直接水を
通そうとすると水の蒸発による通水の困難性、局
部急冷による熱応力の問題により困難なため、一
旦100℃付近まで自然放冷により温度降下させ、
その後通水冷却することが行なわれるが、必要な
温度まで真空容器を冷却するには極めて長時間を
有する欠点があつた。一方、ガス冷却方式では、
ベーキング操作後の冷却は200℃乃至500℃の高温
の真空容器を冷却した高温ガス(200℃乃至500
℃)が冷却管出口から排出されるため、冷却管の
電気的絶縁が充分な信頼性を持つて確保すること
が困難であり、また、プラズマ発生運転中のプラ
ズマから受ける熱を冷却するために、前記水冷却
方式にくらべ大きな配管を用いなければならずス
ペース的に困難な問題があつた。
A conventional cooling method for a vacuum vessel for a nuclear fusion device is a cooling method using either water or gas. In the water cooling method, cooling after the baking operation is difficult when trying to directly pass water through a vacuum container at a high temperature of 200°C to 500°C due to water evaporation and thermal stress caused by local rapid cooling. Therefore, the temperature was first lowered by natural cooling to around 100℃,
After that, cooling is carried out by passing water through the vacuum container, but this method has the disadvantage that it takes an extremely long time to cool the vacuum container to the required temperature. On the other hand, with gas cooling method,
Cooling after the baking operation is performed using high-temperature gas (200℃ to 500℃) cooled in a vacuum container at a high temperature of 200℃ to 500℃.
°C) is discharged from the cooling pipe outlet, it is difficult to ensure electrical insulation of the cooling pipe with sufficient reliability. However, compared to the water cooling method described above, larger piping had to be used, creating a problem in terms of space.

本発明は上述の点の鑑み成されたもので、その
目的とするところは、水とガスを用いて冷却する
ものであつても、真空容器を効率良く速やかに冷
却すると共に、冷却管の電気的絶縁が充分であり
信頼性の向上する核融合装置用真空容器の冷却装
置を提供するにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to efficiently and quickly cool a vacuum container even when cooling is performed using water and gas, and to An object of the present invention is to provide a cooling device for a vacuum vessel for a nuclear fusion device, which has sufficient physical insulation and improved reliability.

本発明は真空容器の外周面に設けられている冷
却管の冷却媒体供給端、及び回収端に冷却ガス弁
を介して冷却ガス供給装置、冷却水弁を介して冷
却水供給装置を各々接続し、前記冷却管には、ベ
ーキング操作後に真空容器が水の沸点温度付近よ
り高い場合には前記冷却ガス供給装置より冷却ガ
スが流通され、かつ、プラズマ発生運転中に真空
容器が水の沸点温度付近より低い場合には前記冷
却水供給装置より冷却水が流通されると共に前記
冷却管と冷却ガス供給装置、及び冷却水供給装置
とはそれぞれ絶縁されて接続されることにより所
期の目的を達成するようになしたものである。
The present invention connects a cooling gas supply device through a cooling gas valve and a cooling water supply device through a cooling water valve to the cooling medium supply end and recovery end of a cooling pipe provided on the outer peripheral surface of a vacuum container, respectively. , when the temperature of the vacuum container is higher than the boiling point of water after the baking operation, the cooling gas is supplied from the cooling gas supply device to the cooling pipe; If the temperature is lower than that, cooling water is distributed from the cooling water supply device, and the cooling pipe, the cooling gas supply device, and the cooling water supply device are connected insulated from each other to achieve the intended purpose. This is how it was done.

以下、図面の実施例に基づいて本発明を詳細に
説明する。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

まず第1図を用いて核融合装置における真空容
器付近の構造について説明する。該図に示す如
く、トーラス状の真空容器1は、数分割された厚
肉部2と、この厚肉部2の間に配置されたベロー
ズ部3とから構成される。真空容器1内には動作
ガスが封入されていて、変流器4によつて電荷を
加えて放電を行い、真空容器1内にプラズマ5を
発生させる。又、真空容器1の周囲には、トロイ
ダルコイル6とポロイダルコイル7とが設けられ
ていて、プラズマ5を真空容器1内に閉込める。
そして、真空容器1の外周には、第2図に示すよ
うにベーキング用の電気ヒータ8が取付けられ、
さらに真空容器1の外周面には冷却管9が設けら
れている。
First, the structure of the vicinity of the vacuum vessel in the fusion device will be explained using FIG. As shown in the figure, the toroidal vacuum container 1 is composed of a thick wall section 2 divided into several parts and a bellows section 3 arranged between the thick wall sections 2. A working gas is sealed in the vacuum container 1, and a current transformer 4 applies an electric charge to generate a discharge, thereby generating plasma 5 in the vacuum container 1. Further, a toroidal coil 6 and a poloidal coil 7 are provided around the vacuum vessel 1 to confine the plasma 5 within the vacuum vessel 1.
As shown in FIG. 2, an electric heater 8 for baking is attached to the outer periphery of the vacuum container 1.
Further, a cooling pipe 9 is provided on the outer peripheral surface of the vacuum container 1.

上記冷却管9の配置構成について第3図を用い
て説明する。該図に示す如く、冷却管9は真空容
器1の外周面に設置され、この冷却管9の冷媒供
給端、及び回収端には、大地と電気的に絶縁する
ためにゴムチユーブ等からなる絶縁管10aが配
置されている。さらに冷却管9は冷却ガス弁11
a,11bを介して冷却ガス供給装置12に連通
されている。また、冷却管9は途中で分岐し、冷
却水弁13a,13bを介して冷却水供給装置1
4に連通されている。さらに冷却管9の回収端側
には、熱交換器15が配置され、この熱交換器1
5は冷却水供給装置14に接続されていると共
に、熱交換器15の大地側には大地と電気的に絶
縁するために絶縁管10bが設けられている。
尚、ヒータ8は、ヒータ電源16と接続されてい
て、ヒータ電源16によつて加熱される。
The arrangement of the cooling pipes 9 will be explained using FIG. 3. As shown in the figure, a cooling pipe 9 is installed on the outer peripheral surface of the vacuum vessel 1, and an insulating pipe made of a rubber tube or the like is installed at the refrigerant supply end and the recovery end of the cooling pipe 9 to electrically insulate it from the ground. 10a is arranged. Furthermore, the cooling pipe 9 has a cooling gas valve 11.
It is connected to the cooling gas supply device 12 via a and 11b. In addition, the cooling pipe 9 branches in the middle and passes through the cooling water supply device 1 through cooling water valves 13a and 13b.
It is connected to 4. Further, a heat exchanger 15 is arranged on the recovery end side of the cooling pipe 9.
5 is connected to the cooling water supply device 14, and an insulating tube 10b is provided on the ground side of the heat exchanger 15 to electrically insulate it from the ground.
Note that the heater 8 is connected to a heater power source 16 and is heated by the heater power source 16.

以上の如く構成された本実施例による作用を説
明する。
The operation of this embodiment configured as above will be explained.

まず、ベーキング操作後の冷却のように、真空
容器1の温度が水の沸点温度より高い場合(たと
えば150℃以上)には、冷却水弁13a,13b
を閉じて冷却ガス弁11a,11bを開放し、第
3図上矢印Aで示すように冷却ガス供給装置12
から絶縁管10aを通つて冷却管9に冷却ガスを
供給する。冷却後の高温ガスは、大地より絶縁さ
れた熱交換器15で冷却され、その後絶縁管10
aを通つて第3図上矢印Bのように冷却ガス供給
装置12に回収される。一方、プラズマ発生運転
中のように、真空容器1の温度が水の沸点温度付
近以下で、かつ、大量の熱量を冷却しなければな
らない場合には、冷却ガス弁11a,11bを閉
じて冷却水弁13a,13bを開放する。冷却水
弁13a,13bを開放すると第3図上矢印Cで
示すように冷却水供給装置14内の冷却水は絶縁
管10aを通つて冷却管9に送られて真空容器1
を冷却する。真空容器1を冷却した後は、冷却水
は熱交換器15で冷却され、絶縁管10aを通つ
て第3図上矢印Dで示すように冷却水供給装置1
4に回収される。
First, when the temperature of the vacuum container 1 is higher than the boiling point temperature of water (for example, 150° C. or higher), such as during cooling after a baking operation, the cooling water valves 13a and 13b
is closed, the cooling gas valves 11a and 11b are opened, and the cooling gas supply device 12 is opened as shown by the upper arrow A in FIG.
Cooling gas is supplied from the cooling pipe 9 to the cooling pipe 9 through the insulating pipe 10a. The cooled high-temperature gas is cooled in a heat exchanger 15 insulated from the ground, and then passed through an insulated pipe 10.
a, and is collected by the cooling gas supply device 12 as indicated by the upper arrow B in FIG. On the other hand, when the temperature of the vacuum vessel 1 is below the boiling point of water and a large amount of heat must be cooled, such as during plasma generation operation, the cooling gas valves 11a and 11b are closed and the cooling water is turned off. Open valves 13a and 13b. When the cooling water valves 13a and 13b are opened, the cooling water in the cooling water supply device 14 is sent to the cooling pipe 9 through the insulating pipe 10a, as shown by the upper arrow C in FIG.
to cool down. After cooling the vacuum container 1, the cooling water is cooled by the heat exchanger 15, and passes through the insulating tube 10a to the cooling water supply device 1 as shown by the upper arrow D in FIG.
It will be collected on 4th.

このような本実施例によれば、ガス冷却と水冷
却とを併用しているので、短時間で効率よく冷却
できるとともに、スペースも少なくてすみ、電気
的に絶縁された熱交換器ならびに絶縁管を用いて
いるので冷却管の絶縁の信頼性は高い。
According to this embodiment, since gas cooling and water cooling are used together, cooling can be performed efficiently in a short period of time, and space is also required. The reliability of the cooling pipe insulation is high.

以上説明した本発明の核融合装置用真空容器の
冷却装置によれば、真空容器の外周面に設けられ
ている冷却管の冷却媒体供給端、及び回収端に冷
却ガス弁を介して冷却ガス供給装置、冷却水弁を
介して冷却水供給装置を各々接続し、前記冷却管
には、ベーキング操作後に真空容器が水の沸点温
度付近より高い場合には前記冷却ガス供給装置よ
り冷却ガスが流通され、かつ、プラズマ発生運転
中に真空容器が水の沸点温度付近より低い場合に
は前記冷却水供給装置より冷却水が流通されると
共に、前記冷却管と冷却ガス供給装置、及び冷却
水供給装置とはそれぞれ絶縁されて接続されてい
るものであるから、ベーキング操作後やプラズマ
発生運転中に冷却ガス、冷却水を必要に応じて冷
却管に流すことができるので、効率良く速やかに
真空容器が冷却できると共に、冷却管は絶縁を介
して接続されているので、電気的絶縁が充分であ
り信頼性が向上するため、此種核融合装置用真空
容器の冷却装置に採用する場合には非常に有効で
ある。
According to the cooling device for a vacuum vessel for a nuclear fusion device of the present invention described above, cooling gas is supplied via the cooling gas valve to the cooling medium supply end and the recovery end of the cooling pipe provided on the outer peripheral surface of the vacuum vessel. The apparatus is connected to a cooling water supply device through a cooling water valve, and cooling gas is supplied to the cooling pipe from the cooling gas supply device when the temperature of the vacuum container is higher than around the boiling point of water after the baking operation. , and when the temperature of the vacuum container is lower than around the boiling point temperature of water during plasma generation operation, cooling water is distributed from the cooling water supply device, and the cooling pipe, the cooling gas supply device, and the cooling water supply device are connected to each other. are insulated and connected to each other, so cooling gas and water can be flowed through the cooling pipes as needed after baking operations or during plasma generation operations, so the vacuum vessel can be cooled down efficiently and quickly. In addition, since the cooling pipes are connected through insulation, there is sufficient electrical insulation and reliability is improved, so it is very effective when used in the cooling system of the vacuum vessel for this type of nuclear fusion device. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は核融合装置の概略構造を一部破断して
示す平面図、第2図は核融合装置の概略構造を示
す断面図、第3図は本発明の核融合装置用真空容
器の冷却装置の一実施例を示す説明図である。 1……真空容器、6……トロイダルコイル、7
……ポロイダルコイル、8……ヒータ、9……冷
却管、10a,10b……絶縁管、11a,11
b……冷却ガス弁、12……冷却ガス供給装置、
13a,13b……冷却水弁、14……冷却水供
給装置、15……熱交換器。
Fig. 1 is a partially cutaway plan view showing the schematic structure of the fusion device, Fig. 2 is a sectional view showing the schematic structure of the fusion device, and Fig. 3 is the cooling of the vacuum vessel for the fusion device of the present invention. FIG. 2 is an explanatory diagram showing one embodiment of the device. 1... Vacuum container, 6... Toroidal coil, 7
... Poloidal coil, 8 ... Heater, 9 ... Cooling pipe, 10a, 10b ... Insulation tube, 11a, 11
b... Cooling gas valve, 12... Cooling gas supply device,
13a, 13b... Cooling water valve, 14... Cooling water supply device, 15... Heat exchanger.

Claims (1)

【特許請求の範囲】 1 内部にプラズマを収納すると共に、その周囲
に複数のコイルを有し、ほぼトーラス状に形成さ
れる真空容器の外周面に冷却媒体を流通させる冷
却管を備えている核融合装置用真空容器の冷却装
置において、前記冷却管の冷却媒体供給端、及び
回収端に冷却ガス弁を介して冷却ガス供給装置、
冷却水弁を介して冷却水供給装置を各々接続し、
前記冷却管には、ベーキング操作後に前記真空容
器が水の沸点温度付近より高い場合には前記冷却
ガス供給装置より冷却ガスが流通され、かつ、プ
ラズマ発生運転中に前記真空容器が水の沸点温度
付近より低い場合には前記冷却水供給装置より冷
却水が流通されると共に、前記冷却管と冷却ガス
供給装置、及び冷却水供給装置とはそれぞれ絶縁
されて接続されていることを特徴とする核融合装
置用真空容器の冷却装置。 2 前記冷却管の冷却媒体回収端近傍に、前記真
空容器冷却後の冷却ガス、又は冷却水を冷却する
熱交換器を備えていることを特徴とする特許請求
の範囲第1項記載の核融合装置用真空容器の冷却
装置。
[Claims] 1. A core that houses plasma inside, has a plurality of coils around it, and is equipped with a cooling pipe that circulates a cooling medium around the outer circumferential surface of a vacuum container formed in a substantially toroidal shape. In the cooling device for a vacuum container for a fusion device, a cooling gas supply device via a cooling gas valve to a cooling medium supply end and a recovery end of the cooling pipe,
Connect each cooling water supply device via a cooling water valve,
Cooling gas is passed through the cooling pipe from the cooling gas supply device when the temperature of the vacuum container is higher than around the boiling point of water after the baking operation, and when the temperature of the vacuum container is higher than the boiling point of water during plasma generation operation. When the temperature is lower than the vicinity, cooling water is distributed from the cooling water supply device, and the cooling pipe, the cooling gas supply device, and the cooling water supply device are each connected in an insulated manner. Cooling device for vacuum vessel for fusion equipment. 2. The nuclear fusion device according to claim 1, further comprising a heat exchanger that cools the cooling gas or cooling water after cooling the vacuum container, in the vicinity of the cooling medium recovery end of the cooling pipe. Cooling device for vacuum container for equipment.
JP10308179A 1979-08-15 1979-08-15 Nuclear fusion equipment Granted JPS5627687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10308179A JPS5627687A (en) 1979-08-15 1979-08-15 Nuclear fusion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10308179A JPS5627687A (en) 1979-08-15 1979-08-15 Nuclear fusion equipment

Publications (2)

Publication Number Publication Date
JPS5627687A JPS5627687A (en) 1981-03-18
JPS6240678B2 true JPS6240678B2 (en) 1987-08-29

Family

ID=14344679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10308179A Granted JPS5627687A (en) 1979-08-15 1979-08-15 Nuclear fusion equipment

Country Status (1)

Country Link
JP (1) JPS5627687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109961854A (en) * 2017-12-25 2019-07-02 哈尔滨工业大学 A kind of nuclear fusion first pars intramuralis cooling duct cooling based on jet stream

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178475U (en) * 1982-05-26 1983-11-29 株式会社京浜精機製作所 Rotating cylinder - liquid pump flow control device
JPS591887U (en) * 1982-06-28 1984-01-07 高崎 正昭 Rotary pump that can also be used as a spin-type rotary engine
JPS6019705U (en) * 1983-07-18 1985-02-09 株式会社 京浜精機製作所 Lubricating oil pump for two-stroke engines
CN108630325A (en) * 2018-03-19 2018-10-09 中国科学院合肥物质科学研究院 A kind of water-cooling structure for nuclear fusion stack vacuum chamber sector immersion type

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264594A (en) * 1975-11-21 1977-05-28 Hitachi Ltd Torus type nuclear fusion device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264594A (en) * 1975-11-21 1977-05-28 Hitachi Ltd Torus type nuclear fusion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109961854A (en) * 2017-12-25 2019-07-02 哈尔滨工业大学 A kind of nuclear fusion first pars intramuralis cooling duct cooling based on jet stream
CN109961854B (en) * 2017-12-25 2020-11-13 哈尔滨工业大学 Internal cooling channel of first wall of nuclear fusion based on jet cooling

Also Published As

Publication number Publication date
JPS5627687A (en) 1981-03-18

Similar Documents

Publication Publication Date Title
EP0392771B1 (en) Cryogenic precooler for superconductive magnet
US4773826A (en) Pump
JPS6220303A (en) Forced-cooling superconducting coil apparatus
JP3920241B2 (en) Steam generator for liquid metal furnace and its heat transfer method
US2975118A (en) Nuclear power plant
JPS6240678B2 (en)
JPH0777595A (en) Method and device for heat insulation of heat exchanger nozzle
US3170846A (en) Steam generator
CN107517508A (en) A kind of intermediate frequency fused salt electric heater unit based on concentric tubes
CA1171322A (en) Braze repair method
US4926646A (en) Cryogenic precooler for superconductive magnets
JPS5925194B2 (en) Fusion energy device
JPH1038181A (en) Ice plug forming device for vertical pipe
JPS5860512A (en) Evaporation cooling induction electric appliance
CN204792340U (en) Bottom heat dissipation type transformer cooling device
CN203706792U (en) Main transformer clamp cover type cooling device with SF6 medium as coolant
US1787801A (en) Electrically-heated container
JPS61125002A (en) Forcibly cooled superconductive coil device
CN207083245U (en) A kind of intermediate frequency fused salt electric heater unit based on concentric tubes
JPH0675041B2 (en) Direct observation equipment for carbonization process of coal
JP2606491B2 (en) Gas insulated electrical equipment
RU2070341C1 (en) Pool reactor for heating nuclear plant
JPH033211A (en) Electrical equipment with cooler
CN103811152A (en) Jacket-type cooling device and method with SF6 as coolant for main transformers
RU2242058C2 (en) Fuel assembly