JPS6240663B2 - - Google Patents

Info

Publication number
JPS6240663B2
JPS6240663B2 JP54140614A JP14061479A JPS6240663B2 JP S6240663 B2 JPS6240663 B2 JP S6240663B2 JP 54140614 A JP54140614 A JP 54140614A JP 14061479 A JP14061479 A JP 14061479A JP S6240663 B2 JPS6240663 B2 JP S6240663B2
Authority
JP
Japan
Prior art keywords
frequency
insulation resistance
circuit
output
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54140614A
Other languages
Japanese (ja)
Other versions
JPS5663270A (en
Inventor
Tatsuji Matsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP14061479A priority Critical patent/JPS5663270A/en
Publication of JPS5663270A publication Critical patent/JPS5663270A/en
Publication of JPS6240663B2 publication Critical patent/JPS6240663B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は活線絶縁抵抗測定方法に関する。 (従来技術) 電気機器或は送電線電路等の絶縁抵抗の測定に
は一般にメガーと呼ばれる測定器を用いている
が、活線状態の測定には適用できない。従来活線
状態の絶縁抵抗測定方法としては商用周波数より
も低い周波数の交流電圧を被測定回路に重畳して
その帰還電流を検出する方式が知られているが、
帰還電流には浮遊容量を通る成分が含まれるため
浮遊容量の大きい活線回路には適用できないしま
たこの方式の採用は非接地系回路に限定される。 第1図は従来の測定装置を示すブロツク図であ
る。従来技術の方法については例えば特許出願公
開昭53−79578があるのでこれを従来例として説
明する。第1図においてTR1は交流電源に接続
されるトランスであり、PWSは各構成要素作動
用直流電源回路である。OSCは測定用低周波電
圧を発生する発振器、TR2はトランス、ROは電
流検出抵抗、F1はフイルタ、AP1は増幅器、
Mは指示計を示す。 電流検出抵抗ROおよび変圧器TR2の2次側は
接地系の接地線ELに挿入接続されている。接地
系の接地線とは接地系において接地のために用い
られる線路を意味する。例えば中性点接地式星形
3相回路の場合は中性点を大地に結ぶ線路がこれ
に当たる。 第1図では接地系の接地線ELのところで発振
器OSC1の出力をトランスTR2を介して低周波
の測定電圧を送出し、これにより接地線ELに流
れる電流Iを抵抗Roで検出し、測定電圧の周波
数成分のみを通すフイルタF1の出力の大きさで
電路の絶縁抵抗を測定するものである。しかし電
流Iには絶縁抵抗Rを通して流れる電流以外に浮
遊容量Cによるものも含まれており第1図に示し
た従来技術では浮遊容量が多いときには測定精度
が著しく悪くなるという欠点があつた。 (発明の目的) 本発明は接地系浮遊容量に全く関係なく活線状
態での絶縁抵抗測定が可能であり、必要に応じて
は接地系浮遊容量の測定が可能である絶縁抵抗測
定方法を提供することを目的とする。 (発明の概要) この目的を達成するために、本発明に於いて
は、電路に接続した接地線等を介し電路に商用周
波数と異なる2つの周波信号(W1とW2)を印加
し、各周波数成分の漏洩電流に比例した電圧を検
出するとともに、各電圧を2乗検波することによ
り得た直流分e ,e を用いてW −W

る演算を行いその結果によつて対地浮遊容量に関
係する電路の絶縁抵抗を測定するものである。 (実施例) 以下、図示した実施例に基づいて本発明を詳細
に説明する。 第2図は本発明の1実施例を示すブロツク図で
ある。同図中第1図で用いられたのと同じ構成要
素また被測定対象には同じ記号を用いる。 本発明ではOSC1,OSC2の2つの低周波発
振器を用いる。夫々の角周波数をW1,W2とす
る。 トランスTR2の出力端では両周波数成分の振
幅は等しいものとし、トランスTR2から送出さ
れる周波数W1の低周波信号電圧をe0sinω1t、絶
縁抵抗R、静電容量Cからなる対地インピーダン
スをZ1とすれば、Ro両端の低周波信号電圧V1
一般に|Z1|≫Roであるから V1〓Ro/|Z|e0sin(ω1t+φ) …(1) と近似できる。こゝで Z1=R/1+jWCR φ=−tan-1W1CR ……(2) である。 したがつて中心角周波数W1のフイルタF1の
出力信号は(1)式で示されるから、その振幅成分e1
は e1=Roe/|Z| =Roe/R√1+(12 ……(3) また中心角周波数W2のフイルタF2の出力信号
は同様にV2=Roe/|Z|sin(W2t+φ) (ここでZ2=R/1+jWCR,φ=− tan-1W2CR)であるからその振幅成分e2は e2=Roe/|Z| =Roe/R√1+(22 ……(4) となる。 (3),(4)式の振幅成分e1,e2は両フイルタの出力
を整流することにより得られる。例えばe1,e2
夫々2乗してその差をとると W1〉W2とすると (5)式を(3)もしくは(4)式に代入して計算すると となり、絶縁抵抗Rを測定することができる。 本実施例ではフイルタF1出力の低周波信号
V1を直接2乗回路SQ1に通し、2乗検波して得
た直流分をLPF1に通すことにより前記の如くフ
イルタ出力を整流しその直流分e1を2乗したのと
同等なe に比例した電圧を求めている。同様に
フイルタF2出力の低周波信号を2乗回路SQ2
に通しその直流分をLPF2に通すことによりe
を求めることができる。かくして得られたe
定数倍(W )することによりW が、また

を定数倍(W )することによりW が、ま

を定数倍(W )することによりW
が得ら
れる。W とW との差を引算回路SU
Bでと
るときはSUB出力にはW −W が得
られ、
このSUB出力を平方根回路Rootに通すことによ
り√ が得られる。そしてこ
のRoot
出力で「定数値」Roep を割り算するこ
とによつて(8)式の右辺の演算がなされるため電路
の絶縁抵抗Rを求めることができる。 又引算回路SUB出力のW −W
1/R2
に比例した値となることは(7)式から明らかであ
る。 上記説明のように本発明の方法によれば測定さ
れた絶縁抵抗には浮遊容量の影響を全くうけな
い。また(6)式からも分るようにLPF1出力e
LPF2出力e との差e −e をとり、その平

根を求め、これを「定数倍」
(Industrial Application Field) The present invention relates to a method for measuring live wire insulation resistance. (Prior Art) A measuring device called a megger is generally used to measure the insulation resistance of electrical equipment, power transmission lines, etc., but it cannot be used to measure live lines. A conventional method for measuring insulation resistance in a live line state is to superimpose an AC voltage at a frequency lower than the commercial frequency onto the circuit under test and detect the feedback current.
Since the feedback current includes a component that passes through stray capacitance, it cannot be applied to live circuits with large stray capacitances, and the adoption of this method is limited to non-grounded circuits. FIG. 1 is a block diagram showing a conventional measuring device. Regarding the method of the prior art, for example, there is Patent Application Publication No. 53-79578, which will be explained as a conventional example. In FIG. 1, TR1 is a transformer connected to an AC power supply, and PWS is a DC power supply circuit for operating each component. OSC is an oscillator that generates low frequency voltage for measurement, TR2 is a transformer, RO is a current detection resistor, F1 is a filter, AP1 is an amplifier,
M indicates indicator. The secondary side of the current detection resistor RO and the transformer TR2 is inserted and connected to the grounding line EL of the grounding system. The grounding line of a grounding system means a line used for grounding in a grounding system. For example, in the case of a star-shaped three-phase circuit with a grounded neutral point, this is the line that connects the neutral point to the ground. In Figure 1, the output of the oscillator OSC1 is sent to the grounding line EL of the grounding system as a low-frequency measurement voltage through the transformer TR2, and the current I flowing through the grounding line EL is detected by the resistor Ro, and the measured voltage is The insulation resistance of the electrical circuit is measured by the magnitude of the output of the filter F1 that passes only frequency components. However, the current I includes a current due to stray capacitance C in addition to the current flowing through the insulation resistor R, and the conventional technique shown in FIG. 1 has the disadvantage that measurement accuracy deteriorates significantly when there is a large amount of stray capacitance. (Objective of the Invention) The present invention provides an insulation resistance measurement method that is capable of measuring insulation resistance in a live wire state, regardless of ground system stray capacitance, and that also enables measurement of ground system stray capacitance if necessary. The purpose is to (Summary of the Invention) In order to achieve this object, in the present invention, two frequency signals (W 1 and W 2 ) different from the commercial frequency are applied to the electric line via a grounding wire connected to the electric line, By detecting the voltage proportional to the leakage current of each frequency component and using the DC components e 2 1 and e 2 2 obtained by square - law detection of each voltage ,
The calculation 2 1 e 2 2 is performed, and the insulation resistance of the electrical circuit, which is related to the ground stray capacitance, is measured based on the result. (Example) Hereinafter, the present invention will be described in detail based on the illustrated example. FIG. 2 is a block diagram showing one embodiment of the present invention. In the figure, the same symbols are used for the same components and objects to be measured as used in FIG. 1. In the present invention, two low frequency oscillators, OSC1 and OSC2, are used. Let the respective angular frequencies be W 1 and W 2 . At the output end of transformer TR2, the amplitudes of both frequency components are assumed to be equal, the low frequency signal voltage of frequency W 1 sent from transformer TR2 is e 0 sinω 1 t, and the impedance to ground consisting of insulation resistance R and capacitance C is If Z 1 , the low-frequency signal voltage V 1 across Ro is generally |Z 1 |≫Ro, so it can be approximated as V 1 〓Ro/|Z 1 | e 0 sin (ω 1 t + φ 1 ) …(1) can. Here, Z 1 =R/1+jW 1 CR φ 1 =-tan -1 W 1 CR ...(2). Therefore, since the output signal of filter F1 with central angular frequency W 1 is expressed by equation (1), its amplitude component e 1
is e 1 = Roe p / | Z 1 | = Roe p / R√1 + ( 1 ) 2 ... (3) Similarly, the output signal of filter F2 with center angular frequency W 2 is V 2 = Roe p / | Z 2 | sin(W 2 t + φ 2 ) (here Z 2 = R/1 + jW 2 CR, φ 2 = - tan -1 W 2 CR), so its amplitude component e 2 is e 2 = Roe p / | Z 2 |=Roe p /R√1+( 2 ) 2 ...(4). Amplitude components e 1 and e 2 in equations (3) and (4) are obtained by rectifying the outputs of both filters. For example, if we square e 1 and e 2 and take the difference, we get If W 1 〉W 2 When calculating by substituting equation (5) into equation (3) or (4), Therefore, the insulation resistance R can be measured. In this embodiment, the low frequency signal of the filter F1 output is
By passing V 1 directly through the square-law circuit SQ1 and passing the DC component obtained by square-law detection through LPF1, e 2 1 is equivalent to rectifying the filter output as described above and squaring the DC component e 1 . We are looking for a voltage proportional to . Similarly, the low frequency signal of filter F2 output is converted to square circuit SQ2.
By passing the direct current through LPF2, e 2 2
can be found. By multiplying the thus obtained e 2 1 by a constant (W 2 2 ), W 2 2 e 2 1 is obtained, and e 2 2
By multiplying e 2 2 by a constant (W 2 1 ), we get W 2 2 e 2 1 , and by multiplying e 2 2 by a constant (W 2 1 ), we get W 2 2 e 2 2
is obtained. Subtraction circuit SU for the difference between W 2 2 e 2 1 and W 2 1 e 2 2
When taken at B, W 2 2 e 2 1W 2 1 e 2 2 is obtained as the SUB output,
By passing this SUB output through the square root circuit Root, √ 2 2 2 12 1 2 2 is obtained. And this Root
By dividing the "constant value" Roe p2 12 2 by the output, the right side of equation (8) is calculated, so the insulation resistance R of the electric circuit can be determined. Also, W 2 2 e 2 1 − W 2 1 e 2 2 of the subtraction circuit SUB output is 1/R 2
It is clear from equation (7) that the value is proportional to . As explained above, according to the method of the present invention, the measured insulation resistance is not affected by stray capacitance at all. Also, as can be seen from equation (6), LPF1 output e 2 1 and
Take the difference e 2 1 - e 2 2 from the LPF2 output e 2 2, find the square root of it, and multiply it by a constant.

【式】することにより浮遊容量を求 めることも可能である。 上記実施例においては、角周波数W1,W2なる
低周波信号をTR2を介して同時に送出している
がこれは同時送出でなくてもよい。W1,W2を交
互に一定時間送出し、検出された信号を保持して
おく回路を付加することにより同様の演算が可能
となる。 また上記実施例においてはアナログ処理のもの
を示したが、デジタル演算処理によつて本発明の
実現できることは明らかである。 (発明の効果) 本発明の方法によれば浮遊容量Cの影響なしに
高精度に絶縁抵抗の測定ができる。
It is also possible to obtain the stray capacitance by using the following formula. In the above embodiment, the low frequency signals having angular frequencies W 1 and W 2 are sent out simultaneously via the TR 2, but this need not be done simultaneously. A similar calculation becomes possible by adding a circuit that alternately sends W 1 and W 2 for a certain period of time and holds the detected signal. Furthermore, although analog processing has been shown in the above embodiments, it is clear that the present invention can be realized by digital arithmetic processing. (Effects of the Invention) According to the method of the present invention, insulation resistance can be measured with high precision without the influence of stray capacitance C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の絶縁抵抗測定装置のブロツク線
図。第2図は本発明の絶縁抵抗測定装置のブロツ
ク線図。 TR1……トランス、PWS……電源回路、TR
2……トランス、Rp……電流検出抵抗、F1,
F2……フイルタ、AP1……増幅、M……指示
計、SQ1,SQ2……2乗回路、LPF1,LPF2
……直流分検出用ローパスフイルタ、OSC1,
OSC2……低周波発振器、W ,W ,R0eo√

−W ……定数回路(増幅器または減衰器)、R…
…絶縁抵抗、C……浮遊容量、EL……接地系の
接地線。
FIG. 1 is a block diagram of a conventional insulation resistance measuring device. FIG. 2 is a block diagram of the insulation resistance measuring device of the present invention. TR1...Transformer, PWS...Power supply circuit, TR
2...Transformer, Rp ...Current detection resistor, F1,
F2...Filter, AP1...Amplification, M...Indicator, SQ1, SQ2...Squaring circuit, LPF1, LPF2
...Low pass filter for DC component detection, OSC1,
OSC2...Low frequency oscillator, W 2 2 , W 2 1 , R 0 eo√ 2
1

-W 2 2 ...Constant circuit (amplifier or attenuator), R...
...Insulation resistance, C...Stray capacitance, EL...Grounding wire for grounding system.

Claims (1)

【特許請求の範囲】[Claims] 1 接地線を介して電路に商用周波数と異なる2
つの低周波信号(角周波数W1,W2かつW1
W2)を印加し;該低周波信号によつて前記接地線
に流れる電流から角周波数W1及びW2夫々を抽出
するフイルタを介して夫々の角周波数成分を検出
するとともにこれら電流を2乗検波して夫々の周
波数成分に対する直流電圧e ,e を得、更にW
−W なる演算を行うことによつて
前記電
路の絶縁抵抗を測定したことを特徴とする絶縁抵
抗測定方法。
1. A frequency different from the commercial frequency is connected to the power line via the grounding wire.2.
two low-frequency signals (angular frequencies W 1 , W 2 and W 1
W 2 ) is applied; the angular frequency components are detected through a filter that extracts each of the angular frequencies W 1 and W 2 from the current flowing through the ground wire by the low frequency signal, and these currents are squared. Detection is performed to obtain DC voltages e 2 1 and e 2 2 for each frequency component, and further W
2 2 e 2 1 - W 2 1 e 2 2 An insulation resistance measuring method characterized in that the insulation resistance of the electric circuit is measured by performing the calculation: 2 2 e 2 1 −W 2 1 e 2 2 .
JP14061479A 1979-10-30 1979-10-30 Insulation resistance measuring method Granted JPS5663270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14061479A JPS5663270A (en) 1979-10-30 1979-10-30 Insulation resistance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14061479A JPS5663270A (en) 1979-10-30 1979-10-30 Insulation resistance measuring method

Publications (2)

Publication Number Publication Date
JPS5663270A JPS5663270A (en) 1981-05-29
JPS6240663B2 true JPS6240663B2 (en) 1987-08-29

Family

ID=15272795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14061479A Granted JPS5663270A (en) 1979-10-30 1979-10-30 Insulation resistance measuring method

Country Status (1)

Country Link
JP (1) JPS5663270A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286725A (en) * 1988-05-13 1989-11-17 Fuji Electric Co Ltd Ground-fault detection system

Also Published As

Publication number Publication date
JPS5663270A (en) 1981-05-29

Similar Documents

Publication Publication Date Title
US4066950A (en) Circuit for measuring the ground resistance of an ungrounded power circuit
US8036841B2 (en) Measuring method and apparatus for potentiometric measuring probes
JPS6253762B2 (en)
US3694741A (en) Coupled inductance impedance measuring circuit with increased sensitivity and frequency independence
US3448378A (en) Impedance measuring instrument having a voltage divider comprising a pair of amplifiers
JPS6240663B2 (en)
US10101179B2 (en) Electromagnetic position tracking system
RU2029965C1 (en) Capacitive sensor dielectric loss measuring device
JPH0354311B2 (en)
JP2573789B2 (en) Insulation resistance measuring device
JPS6324268B2 (en)
US3437925A (en) Circuit for converting resistance values of unknown resistor to electrical potential signal for measurement purposes
JPH0550708B2 (en)
US1727328A (en) High-frequency measuring system
RU2168182C1 (en) Contact free measuring electric current transducer
JPS5933233B2 (en) Grounding system insulation resistance measuring device
SU932424A1 (en) Impedance meter
JP2942892B2 (en) Measurement method of insulation resistance of ungrounded circuit
SU373670A1 (en) ; VSSHOYUZMAG! B; D1i | gSh "TSHSH1YSh
SU954891A1 (en) Three-element two-terminal network parameter converter
SU1320760A1 (en) Method of measuring parameters of passive complex two-element one-ports and device for effecting same
JPS6213359Y2 (en)
CN112505421A (en) Measuring circuit for direct current resistance of dry-type air-core reactor
SU473110A1 (en) Ac bridge
Castelli The potential transformer bridge with current comparator for measuring the voltage dependence of compressed-gas capacitors