JPS6240410A - Optical system having focus detecting device - Google Patents

Optical system having focus detecting device

Info

Publication number
JPS6240410A
JPS6240410A JP18076985A JP18076985A JPS6240410A JP S6240410 A JPS6240410 A JP S6240410A JP 18076985 A JP18076985 A JP 18076985A JP 18076985 A JP18076985 A JP 18076985A JP S6240410 A JPS6240410 A JP S6240410A
Authority
JP
Japan
Prior art keywords
focus
focus detection
light
lens
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18076985A
Other languages
Japanese (ja)
Inventor
Takashi Matsushita
松下 敬
Sadahiko Tsuji
辻 定彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18076985A priority Critical patent/JPS6240410A/en
Publication of JPS6240410A publication Critical patent/JPS6240410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Abstract

PURPOSE:To simplify mechanism and to make focus detection possible with high accuracy by constituting focus group of a photographing system of a lens group of negative refracting power, and at the same time, using a reflection mirror partially for focus detection and making focus detection by moving the focus section of the photographing section and an element for focus detection in a body. CONSTITUTION:When a focus group is constituted of a lens group of negative refracting power, and the distance between a projection lens and a light source or the distance between a photodetecting lens and a photodetecting element is S, focal length of a lens group for focusing is (f), and A (Anot equal to 1) is constant, focus detection is made constituting to satisfy L.S=A.f<2>. In this way, error in range finding when the distance of an object changed can be portioned out to plus side and minus side within the depth of focus, and accuracy of focus detection can be improved. For instance, as the focus group 61 is of negative refracting power, front side focus position F is positioned more image face side that front side principal point position H61, the position F and position H62 can be conformed easily, and the whole optical system can be constituted as a photographing system of a camera, etc. in well-balanced form.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は写真用カメラやビデオカメラ等に好適な焦点検
出装置を有した光学系に関し、特に投光手段により光束
を被写体側へ投光し、被写体からの反射光束を受光手段
により受光することにより撮影系の焦点検出を行った所
謂能動型の焦点検出装置を有した光学系に関するもので
ある。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an optical system having a focus detection device suitable for photographic cameras, video cameras, etc. The present invention relates to an optical system having a so-called active focus detection device that detects the focus of a photographing system by receiving a reflected light beam from an object using a light receiving means.

(従来の技術) 最近は能動型の焦点検出装置がレンズシャッターカメラ
に限らず一眼レフカメラやビデオカメラ等にも多く用い
られている。このうち3角測距の原理を利用した能動型
の焦点検出装置を有した光学系が例えば特開昭58−8
0608号公報や特開昭59−201007号公報等で
提案されている。
(Prior Art) Recently, active focus detection devices have been widely used not only in lens shutter cameras but also in single-lens reflex cameras, video cameras, and the like. Among these, an optical system having an active focus detection device using the principle of triangular distance measurement is disclosed in Japanese Patent Application Laid-Open No. 58-88, for example.
This method has been proposed in JP-A No. 0608, Japanese Unexamined Patent Publication No. 59-201007, and the like.

第1図、第2図は従来の3角測距の原理を利用した代表
的な能動型の焦点検出用の光学系の概略図である。第1
図は投光用レンズ11を介して光源12からの光束を被
写体13側へ投光し、被写体13からの反射光束を受光
レンズ14で複数個の受光素子より成る受光部15で受
光している。
FIGS. 1 and 2 are schematic diagrams of a typical active focus detection optical system that utilizes the principle of conventional triangular distance measurement. 1st
In the figure, a light beam from a light source 12 is projected to a subject 13 through a light projecting lens 11, and a reflected light beam from the subject 13 is received by a light receiving lens 14 at a light receiving section 15 made up of a plurality of light receiving elements. .

そして受光部15上に結像した反射光束位置を検出する
ことにより被写体13までの測距を行っている。この焦
点検出方法は複数の受光素子を用いている為に受光手段
の信号処理及びこれに伴う電気回路が複雑になる傾向が
あった。
The distance to the subject 13 is measured by detecting the position of the reflected light beam formed on the light receiving section 15. Since this focus detection method uses a plurality of light receiving elements, the signal processing of the light receiving means and the accompanying electric circuit tend to become complicated.

第2図は撮影系21の一部を介して光[26からの光束
を被写体22側へ投光し、被写体22側からの反射光束
を2つの受光素子より成る受光部24で受光している。
In FIG. 2, a light beam from the light [26] is projected to the subject 22 side through a part of the photographing system 21, and the reflected light beam from the subject 22 side is received by the light receiving section 24 consisting of two light receiving elements. .

このとき受光部24を焦点調節用レンズ群25と連動さ
せて矢印の方向へ走査し2つの受光素子からの出力が等
しくなるようにし、若しくは出力差が一定値以下に・な
るようにして撮影系の焦点検出を行っている。この焦点
検出方法は信号処理及び電気回路が比較的簡単になるが
、焦点調節用レンズ群25の繰り出し量と受光部24を
所定の関係で移動させねばならない。
At this time, the light receiving section 24 is linked with the focusing lens group 25 to scan in the direction of the arrow so that the outputs from the two light receiving elements are equal, or the difference in output is below a certain value, so that the photographing system Focus detection is performed. Although this focus detection method requires relatively simple signal processing and electric circuitry, it is necessary to move the amount of extension of the focusing lens group 25 and the light receiving section 24 in a predetermined relationship.

この為、カム機構、駆動方法等の連係構造が複雑となり
高精度の焦点検出が難しくなる傾向があった。
For this reason, the interlocking structure of the cam mechanism, drive method, etc. becomes complicated, and highly accurate focus detection tends to become difficult.

(発明が解決しようとする問題点) 本発明は簡素な構成でしかも高精度な焦点検出か可能な
3角測距を利用した焦点検出装置を有した光学系の提供
を目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to provide an optical system having a focus detection device using triangular distance measurement that has a simple configuration and is capable of highly accurate focus detection.

本発明の更なる目的は本出願人が先に出願した特願昭6
0−31033号に係る焦点検出装置を更に改善し、無
限遠物体から近距離物体に至るまで高粒度な焦点検出を
可能とした焦点検出装置を有した光学系の提供にある。
A further object of the present invention is to obtain a patent application filed in 1983 by the applicant.
The present invention further improves the focus detection device according to No. 0-31033, and provides an optical system having a focus detection device that enables high-granularity focus detection from objects at infinity to objects at short distances.

(問題点を解決するための手段) 基線長りを隔てて配置した焦点検出用の投光手段と受光
手段を利用して撮影系の焦点検出を行う際、前記投光手
段基しくは受光手段のうち一方の手段の光路を反射鏡を
介して折り曲げ、この折り曲げた光路上に前記焦点検出
用の一要素を配置し、前記撮影系の焦点調節用レンズ群
を負の屈折力のレンズ群で構成し、前記一要素と一体的
に移動させると共に前記投光手段の投光レンズと光源と
の間隔若しくは前記受光手段の受光レンズと受光素子と
の間隔をS、前記焦点調節用レンズ群の焦点距離なf、
A (A≠1)を定数としたときL−5=A−f2を満
足するように構成したことである。この他本発明の特徴
は実施例において記載されている。
(Means for Solving the Problem) When detecting the focus of a photographing system by using a light projecting means and a light receiving means for focus detection arranged apart from each other by a baseline length, the light projecting means or the light receiving means The optical path of one of the means is bent through a reflecting mirror, the one element for focus detection is disposed on this bent optical path, and the focus adjustment lens group of the photographing system is a lens group with negative refractive power. The distance between the light projecting lens of the light projecting means and the light source or the distance between the light receiving lens of the light receiving means and the light receiving element is set to S, and the focal point of the focusing lens group is moved integrally with the one element. Distance f,
The configuration is such that when A (A≠1) is a constant, L-5=A-f2 is satisfied. Other features of the invention are described in the Examples.

(実施例) 第3図は本出願人が特願昭60−31033号で提案し
た焦点検出装置の一実施例の光学系の概略図である同図
において31は撮影系30の一部の焦点調節用レンズ群
(以下「フォーカス群」という。)。
(Embodiment) FIG. 3 is a schematic diagram of an optical system of an embodiment of the focus detection device proposed by the present applicant in Japanese Patent Application No. 60-31033. Adjustment lens group (hereinafter referred to as "focus group").

32は受光用レンズ、33は反射鏡、34は受光用レン
ズ32の熊手面上に配置した受光部でレンズ鏡筒35の
一部に取り付けられている。同図においてはレンズm筒
35と共に受光部34とフォーカス部31を一体的に繰
り出すように構成して焦点検出を行っている。尚、同図
には投光手段は図示されていないが、投光手段は撮影系
30の一部を介して被写体側へ投光するように構成され
ている。
32 is a light-receiving lens, 33 is a reflecting mirror, and 34 is a light-receiving section disposed on the rake surface of the light-receiving lens 32, which is attached to a part of the lens barrel 35. In the figure, the light receiving section 34 and the focus section 31 are integrally extended together with the lens m cylinder 35 to perform focus detection. Although the light projecting means is not shown in the figure, the light projecting means is configured to project light toward the subject through a part of the photographing system 30.

次に光学的な性質を説明する為に第3図に示す光学系に
おいて反射鏡33を省き、不図示の投光手段の光源を実
質的に撮影系30の光軸上に配置したときの概略図を第
4図に示す。第4図において41は光源、42は撮影系
の一部のフォーカス群、Fはフォーカス群の前側焦点位
置、43は有限距離の物体、44は受光レンズ、45は
受光部である。Xは物体43と焦点位置Fとの距離、H
441Ha4’は各々受光レンズ44の前側と後側の主
点位置、Lは基線長、lは物体43と主点位置H44と
の撮影系の光軸と平行方向の距離、Sは主点位置H44
°と受光部45との距離、Dは物体43からの反射光束
の受光部45上での結像位置から受光レンズ44の光軸
46までの距離である。尚、距@Dは第3図の受光部3
4の無限遠物体から有限距離物体の合焦位置までの走査
距離、即ちレンズ鏡筒35の移動距離に相当している。
Next, in order to explain the optical properties, a schematic diagram of the optical system shown in FIG. 3 in which the reflecting mirror 33 is omitted and the light source of the light projecting means (not shown) is placed substantially on the optical axis of the photographing system 30. A diagram is shown in FIG. In FIG. 4, 41 is a light source, 42 is a focus group that is part of the photographing system, F is a front focal position of the focus group, 43 is an object at a finite distance, 44 is a light receiving lens, and 45 is a light receiving section. X is the distance between the object 43 and the focal position F, H
441Ha4' are the front and rear principal point positions of the light receiving lens 44, L is the base line length, l is the distance between the object 43 and the principal point position H44 in the direction parallel to the optical axis of the imaging system, and S is the principal point position H44
The distance between .degree. Note that the distance @D is the light receiving part 3 in Fig. 3.
This corresponds to the scanning distance from the infinite distance object No. 4 to the focusing position of the finite distance object, that is, the moving distance of the lens barrel 35.

第4図において3角測距の原理より D=L−5/l  ・・・・・・・・・・ (])とな
る。又、フォーカス群42の結像関係は第5図に示す如
くである。同図において51はフォーカス群、H5□+
H51°は各々フォーカス群の前側と後側の主点位置、
F、F’はフォーカス群の前側と後側の焦点位置、Oは
物体、O゛は結像位置である。フォーカス群51の焦点
距離をfとし第5図に示す如く距離を設定すると所謂ニ
ュートンの式より x’=f2/X   ・・・・・・・・・・ (2)と
なる。第3図に示す焦点検出装置においては式D=X’
の如く各要素を設定することによりフォーカス群31と
受光部34を一体的に移動させて焦点検出を行うことを
特徴としている。即ちL−3/]=f2/X  −−−
−−−−−−−(3)を満足するように各要素を設定し
ている。ここでCを定数とすれば L−3=Cf2 1 =CX となる。lとXは物体までの距離の測定点が異なるだけ
であるからC=1となり (3)式はとなる。ここで式
L−S=f2は装置固有の値として設置できる条件であ
る。式t=Xはフォーカス群の前側焦点位置Fと受光レ
ンズの前側主点位置H44をWL132 系の光軸方向
に対して一致させることに相当する。即ち位置Fと位置
H44を結ぶ直線が撮影光軸と直交するように構成する
ことに相当する。ただしく4)式のl=Xは一つの物体
距離において成立しているものであり、物体距離が変化
しフォーカス群を繰り出していくと、繰り出し量X′に
相当する量だけ測距誤差が生じてくる。このときの測距
誤差は物体距離が近くなる程増大してくる。
In FIG. 4, according to the principle of triangular distance measurement, D=L-5/l (]). Further, the imaging relationship of the focus group 42 is as shown in FIG. In the same figure, 51 is the focus group, H5□+
H51° is the front and rear principal point positions of the focus group, respectively.
F and F' are the front and rear focal positions of the focus group, O is the object, and O'' is the imaging position. If the focal length of the focus group 51 is f and the distance is set as shown in FIG. 5, x'=f2/X (2) is obtained from the so-called Newton's formula. In the focus detection device shown in FIG. 3, the formula D=X'
It is characterized in that the focus group 31 and the light receiving section 34 are moved integrally by setting each element as shown in FIG. That is, L-3/]=f2/X ---
---Each element is set so as to satisfy (3). Here, if C is a constant, L-3=Cf2 1 =CX. Since l and X differ only in the measurement point of the distance to the object, C=1, and equation (3) becomes as follows. Here, the equation LS=f2 is a condition that can be set as a value unique to the device. The formula t=X corresponds to making the front focal position F of the focus group and the front principal point position H44 of the light receiving lens coincide with each other in the optical axis direction of the WL132 system. That is, this corresponds to configuring so that the straight line connecting the position F and the position H44 is orthogonal to the photographing optical axis. However, l = come. The distance measurement error at this time increases as the object distance becomes closer.

本発明は無限遠物体から近距離物体に至る全範囲におい
て高精度な焦点検出を可能としつつ光学系全体の小型化
を図り取扱い上の便宜を図ることを目的とし、その為に
前述の如くフォーカス群を負の屈折力のレンズ群で構成
し、中間距離物体で(4)式の1=xを満足すうように
し、同時に(4)式のL−S=f2の代りにL−S=A
f2(A< 1 )を満足するように構成して焦点検出
を行なうことを特徴としている。これにより物体距離が
変化したときの測距誤差を焦点深度内のプラス側とマイ
ナス側に撮り分けることができ焦点検出精度を向上させ
ている。
The purpose of the present invention is to enable highly accurate focus detection over the entire range from objects at infinity to objects at short distances, while downsizing the entire optical system to facilitate handling. The group is composed of a lens group with negative refractive power, so that 1=x in equation (4) is satisfied for an intermediate distance object, and at the same time, L-S=A is used instead of L-S=f2 in equation (4).
It is characterized in that it is configured to satisfy f2 (A<1) and performs focus detection. This allows distance measurement errors when the object distance changes to be divided into positive and negative sides within the depth of focus, improving focus detection accuracy.

第6図は本発明の一実施例の投光レンズと光源を有する
投光手段を省略した主要部の概略図である同図において
61は負の屈折力のフォーカス群、62は受光用レンズ
、63は受光部、64は反射鏡である。本実施例ではフ
ォーカス群61が負の屈折力である為、前側焦点位置F
は前側主点位置HGIよりも像面側に位置するので位置
Fと位置H62を容易に一致させることができる。これ
により受光レンズ62と受光部63を有する受光手段を
撮ELよりも後方に配置することが出来る為、光学系全
体をカメラ等の撮影系としてバランス良く構成すること
ができる。仮りに第7図に示すようにフォーカス群71
を正の屈折力のレンズ群で構成し、本実施例の如く前側
焦点位置Fと受光レンズ72の前側主点位置H7□と一
致させると受光手段が撮影系よりも物体側へ突出してし
まう。この為、光学系全体がカメラとして構成したとき
バランスの悪い配置となってしまう。
FIG. 6 is a schematic view of the main parts of an embodiment of the present invention, omitting the light projecting means having a light projecting lens and a light source. In the same figure, 61 is a focus group with negative refractive power, 62 is a light receiving lens, 63 is a light receiving section, and 64 is a reflecting mirror. In this embodiment, since the focus group 61 has negative refractive power, the front focus position F
is located closer to the image plane than the front principal point position HGI, so the position F and the position H62 can be easily matched. As a result, the light-receiving means having the light-receiving lens 62 and the light-receiving section 63 can be placed behind the photographing EL, so that the entire optical system can be configured as a photographing system such as a camera with good balance. For example, as shown in FIG. 7, the focus group 71
If the front focal position F and the front principal point position H7□ of the light-receiving lens 72 are made to coincide with each other as in this embodiment, the light-receiving means will protrude toward the object side than the photographing system. For this reason, when the entire optical system is configured as a camera, it results in an unbalanced arrangement.

次に第8図に本発明を実際の撮影系に組み込んだときの
一実施例の概略図を示す。同図において81は赤外光を
放射する光源81て光源81からの光束を投光レンズ8
7により赤外反射で可視透過の反射鏡82で反射させ撮
影系の一部を介して被写体側へ投光している。83は負
の屈折力のフォーカス群であり、フォーカス群83の前
側焦点位置Fと受光レンズ84の前側主点位置H84を
有限物体距離に焦点合せをするためにフォーカス群83
を繰り出したときに一致するようにし、更に前述の定数
AをA = 0.996としL −S = 0.996
f2の如く各要素を設定することにより近距離物体に焦
点調節するときの測距誤差の軽減を図っている。例えば
本実施例では測距誤差を焦点面でo 、 2mmあった
ものを±0.01mmに軽減している。第9図はこのと
きの様子を近軸理論計算により求めたときの図である。
Next, FIG. 8 shows a schematic diagram of an embodiment in which the present invention is incorporated into an actual photographing system. In the figure, reference numeral 81 indicates a light source 81 that emits infrared light.
7, the light is reflected by a reflective mirror 82 that reflects infrared light and transmits visible light, and is projected to the subject side through a part of the photographing system. 83 is a focus group with negative refractive power, and the focus group 83 is used to focus the front focal position F of the focus group 83 and the front principal point position H84 of the light receiving lens 84 to a finite object distance.
so that they match when unrolled, and further set the constant A mentioned above to A = 0.996 so that L - S = 0.996
By setting each element such as f2, it is possible to reduce the distance measurement error when adjusting the focus on a close object. For example, in this embodiment, the distance measurement error on the focal plane is reduced from 0.2 mm to ±0.01 mm. FIG. 9 is a diagram showing the state at this time obtained by paraxial theoretical calculation.

同図において横軸はフォーカス群の前側焦点位置から物
体までの距1lIX、縦軸はフォーカス群の焦点距離を
100mmとしたときの焦点ずれ量である。
In the figure, the horizontal axis represents the distance 1lIX from the front focal position of the focus group to the object, and the vertical axis represents the amount of defocus when the focal length of the focus group is 100 mm.

第10図(A)、 (B)は本発明に係る受光レンズと
反射鏡を一体的に構成した光学部材10の一実施例の概
略図である。図中101は受光レンズに相当する屈折面
、102は反射鏡、103は受光部である。特に図中 
(B)では反射面を3つ設は受光部103の位置を任意
に変えている。本実施例の光学部10をプラスチック等
で一体成型すれば製作容易となるので好ましい。
FIGS. 10(A) and 10(B) are schematic diagrams of an embodiment of an optical member 10 in which a light-receiving lens and a reflecting mirror according to the present invention are integrated. In the figure, 101 is a refractive surface corresponding to a light-receiving lens, 102 is a reflecting mirror, and 103 is a light-receiving section. Especially in the diagram
In (B), three reflecting surfaces are provided and the position of the light receiving section 103 is arbitrarily changed. It is preferable to integrally mold the optical section 10 of this embodiment using plastic or the like, since manufacturing is facilitated.

以上の実施例においては投光手段の光源からの光束を撮
影系の一部を介して被写体側へ投光し、被写体からの反
射光束を撮影系の外部に配置した受光手段で受光した場
合について示したが、本発明においては第11図に示す
ように投光手段と受光手段を入れ替えて構成しても良く
、又、第12図に示すように投光手段及び受光手段の双
方を撮影系の外部に配置して構成しても良く、又、投光
手段及び受光手段の双方を撮影系の一部を介して配置し
ても良い。第11図、第12図において111.121
は光源、112,122は投光用レンズ、113,12
3はフォーカス群、114.124は受光部、125は
受光用ンンズである。
In the above embodiments, the light flux from the light source of the light projecting means is projected onto the subject through a part of the photographing system, and the reflected light flux from the subject is received by the light receiving means arranged outside the photographing system. However, in the present invention, the light projecting means and the light receiving means may be replaced as shown in FIG. Alternatively, both the light projecting means and the light receiving means may be arranged through a part of the photographing system. 111.121 in Figures 11 and 12
is a light source, 112, 122 are projecting lenses, 113, 12
3 is a focus group, 114 and 124 are light receiving sections, and 125 is a light receiving lens.

(発明の効果) 本発明によれば撮影系のフォーカス群を負の屈折力のレ
ンズ群で構成すると共に、反射鏡を焦点検出用の一部分
に用い、撮影系のフォーカス部と焦点検出用の一要素を
一体的に移動させて焦点検出を行うことにより機構上の
簡素化を図った、しかも高鯖度の焦点検出が可能な焦点
検出装置を有した光学系を達成することができる。
(Effects of the Invention) According to the present invention, the focus group of the photographing system is composed of a lens group with negative refractive power, and a reflecting mirror is used as a part of the focus detection part, and the focus part of the photographing system and the focus detection part are combined. By integrally moving the elements to perform focus detection, it is possible to achieve an optical system that is mechanically simplified and has a focus detection device that can perform focus detection with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の能動型の焦点検出用の光学系の
概略図、第3図、第4図、第5図は本出願人が先に提案
した焦点検出用の光学系の説明図、第6図は本発明の一
実施例の光学系の概略図、第7図は第6図の光学系と比
較する為の説明図、第8図は本発明を具体的に撮影系に
適用したときの説明図、第9図は本発明における測距精
度の説明図、第11図、第12図は各々本発明の他の実
施例の説明図、第10図は本発明の一部分の他の実施例
の説明図である。 図中31.61,71.83はフォーカス群、34.6
3.85は受光部、32,62.84は受光レンズ、3
3,64.86は反射鏡、Fはフォーカス群の前側焦点
位置、H6□、H84は受光レンズの前側主点位置、8
1は光源、Lは基線長である。
Figures 1 and 2 are schematic diagrams of a conventional active type optical system for focus detection, and Figures 3, 4, and 5 are schematic diagrams of an optical system for focus detection previously proposed by the applicant. 6 is a schematic diagram of an optical system according to an embodiment of the present invention, FIG. 7 is an explanatory diagram for comparison with the optical system of FIG. 6, and FIG. 8 is a schematic diagram of an optical system of an embodiment of the present invention. FIG. 9 is an explanatory diagram of distance measurement accuracy in the present invention. FIGS. 11 and 12 are explanatory diagrams of other embodiments of the present invention, and FIG. 10 is a part of the present invention. It is an explanatory view of another example. In the figure, 31.61 and 71.83 are focus groups, 34.6
3.85 is the light receiving part, 32, 62.84 is the light receiving lens, 3
3, 64.86 is the reflecting mirror, F is the front focal position of the focus group, H6□, H84 is the front principal point position of the light receiving lens, 8
1 is a light source, and L is a baseline length.

Claims (1)

【特許請求の範囲】[Claims] (1)基線長Lを隔てて配置した焦点検出用の投光手段
と受光手段を利用して撮影系の焦点検出を行う際、前記
投光手段若しくは受光手段のうち一方の手段の光路を反
射鏡を介して折り曲げ、この折り曲げた光路上に前記焦
点検出用の一要素を配置し、前記撮影系の焦点調節用レ
ンズ群を負の屈折力のレンズ群で構成し、前記一要素と
一体的に移動させると共に前記投光手段の投光レンズと
光源との間隔若しくは前記受光手段の受光レンズと受光
素子との間隔をS、前記焦点調節用レンズ群の焦点距離
をf、A(A≠1)を定数としたときL・S=A・f^
2を満足するように構成したことを特徴とする焦点検出
装置を有した光学系。
(1) When detecting the focus of an imaging system using a light projecting means and a light receiving means for focus detection, which are arranged with a baseline length L apart, the optical path of one of the light projecting means or the light receiving means is reflected. It is bent through a mirror, and the one element for focus detection is arranged on this bent optical path, and the focus adjustment lens group of the imaging system is composed of a lens group with negative refractive power, and the element is integrated with the one element. At the same time, the distance between the light projecting lens of the light projecting means and the light source or the distance between the light receiving lens and the light receiving element of the light receiving means is set to S, the focal length of the focusing lens group is set to f, and A (A≠1). ) is a constant, L・S=A・f^
An optical system having a focus detection device, characterized in that it is configured to satisfy the following.
JP18076985A 1985-08-17 1985-08-17 Optical system having focus detecting device Pending JPS6240410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18076985A JPS6240410A (en) 1985-08-17 1985-08-17 Optical system having focus detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18076985A JPS6240410A (en) 1985-08-17 1985-08-17 Optical system having focus detecting device

Publications (1)

Publication Number Publication Date
JPS6240410A true JPS6240410A (en) 1987-02-21

Family

ID=16089000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18076985A Pending JPS6240410A (en) 1985-08-17 1985-08-17 Optical system having focus detecting device

Country Status (1)

Country Link
JP (1) JPS6240410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169419A (en) * 1987-12-25 1989-07-04 Hitachi Ltd Automatic focusing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169419A (en) * 1987-12-25 1989-07-04 Hitachi Ltd Automatic focusing device

Similar Documents

Publication Publication Date Title
US4469939A (en) Distance measuring apparatus
JPH0782143B2 (en) Focus correction device for macro photography of autofocus cameras
JPS63118112A (en) Focus detector
JPS6144244B2 (en)
JPH0365525B2 (en)
JPS6240410A (en) Optical system having focus detecting device
JPS6226729Y2 (en)
JPH0713699B2 (en) Projection system for automatic focus detection
JPH01284811A (en) Camera system
JPS6240411A (en) Optical system having focus detecting device
JPH0210514Y2 (en)
JPS63229439A (en) Automatic focusing device
JPS63235908A (en) Focus detector
JPS6278513A (en) Optical system with focus detector
JPH02101413A (en) Light projecting system for focus detection
JPS63235906A (en) Focus detector
JPS6278512A (en) Optical system with focus detector
JPS6278514A (en) Optical system with focus detector
JPS63235907A (en) Focus detector
JPS63139310A (en) Pattern projecting device for detecting focus
JP3283058B2 (en) Camera ranging device
JPS62106425A (en) Optical system for focus detection
JPH0544644B2 (en)
JPS62168106A (en) Focus detecting device
JPH0926612A (en) Finder device