JPS6240344B2 - - Google Patents

Info

Publication number
JPS6240344B2
JPS6240344B2 JP4842085A JP4842085A JPS6240344B2 JP S6240344 B2 JPS6240344 B2 JP S6240344B2 JP 4842085 A JP4842085 A JP 4842085A JP 4842085 A JP4842085 A JP 4842085A JP S6240344 B2 JPS6240344 B2 JP S6240344B2
Authority
JP
Japan
Prior art keywords
ethanol
sulfate
water
hydrogen
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4842085A
Other languages
Japanese (ja)
Other versions
JPS61207348A (en
Inventor
Yoshio Isogai
Seiji Uchama
Motomasa Hosokawa
Takashi Ookawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4842085A priority Critical patent/JPS61207348A/en
Publication of JPS61207348A publication Critical patent/JPS61207348A/en
Publication of JPS6240344B2 publication Critical patent/JPS6240344B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はメタノールを一酸化炭素及び水素と接
触反応させて得られた反応生成液より高純度の無
水エタノールを製造する方法に関する。一般に
99.5容量%以上の純度を有する無水エタノール
は、医薬品、化粧品、酒精飲料等に汎用され、更
に近年では石油代替エネルギー源として注目され
ている。 (従来の技術及び発明が解消しようとする問題
点) 現在、エタノールは工業的には、エチレンの水
和法か又は醗酵法によつて製造されている。これ
らの方法において、含水エタノールから無水エタ
ノールを製造するには、希薄エタノール水溶液を
蒸留塔(濃縮塔)でエタノール−水系の共沸組成
近くまで濃縮し、次いでベンゼン等のエントレー
ナーと共に共沸蒸留し、塔頂から共沸物を留出さ
せ、この共沸蒸留物を凝縮した後、エントレーナ
ーに富む層と水に富む層に分離し、一方、エント
レーナーに富む層を共沸蒸留塔に返送し、他方で
は水に富む層を更に他の蒸留塔で処理して、エン
トレーナー及びエタノールを回収しつゝ共沸蒸留
塔の塔底より無水エタノールを得るのが一般であ
る。 一方、将来の石油資源の枯渇に対処すべく、メ
タノールを一酸化炭素及び水素と反応させてエタ
ノールを製造する方法が研究されているが、この
場合には使用する触媒の種類にもよるが、一般に
エタノール以外にアセトアルデヒド、ジメトキシ
エタン、ジメチルエーテル、メチルエチルエーテ
ル、ギ酸メチル、酢酸メチル、酢酸エチル、吉草
酸メチル、プロパノール等多数の副生物が同時に
生成する。これらの副生物を蒸留法により分離
し、得られる含水エタノールに従来の共沸蒸留に
よる無水化法を適用することにより、高純度無水
エタノールを製造することは必らずしも不可能で
はない。しかし、前述の副生物を含まない高純度
の無水エタノールを分離するためには高い段数を
要する蒸留塔を必要とし、必然的に多大なエネル
ギーを消費することになり、工業的見地からは効
率的な方法とは言い難い。 (問題を解決するための手段) 本発明はメタノールを一酸化炭素及び水素と反
応させて製造される希薄エタノール溶液から効率
よく高純度の無水エタノールを製造する方法を提
供するもので、メタノールを一酸化炭素及び水素
と接触反応させて得られるエタノール含有反応生
成液を蒸留し、エタノールと水の共沸成分を得、
これをモレキユラーシーブス、硫酸塩無水物、炭
酸塩無水物から選ばれた少くとも1種及び活性炭
からなる吸着剤で処理し無水エタノールを製造す
る方法である。 本発明において硫酸塩無水物とは硫酸マグネシ
ウム、硫酸カルシウム、硫酸銅、硫酸亜鉛等の結
晶水を有することができる硫酸塩の無水物を意味
し、炭酸塩無水物とは炭酸カリウム等の結晶性を
有することができる炭酸塩の無水物を意味する。
活性炭としては一般市販の活性炭がいずれも使用
できるが、特にヤシガラ活性炭が好ましい結果が
得られる。 メタノールを一酸化炭素及び水素と反応させて
得られるエタノールを含有する反応生成液は必要
に応じ蒸留器により触媒成分を分離したのち適宜
蒸留し、低沸分を除いたのち共沸組成の含水エタ
ノールを吸着剤と接触させる。吸着剤との接触方
法としては液体−固体接触及び気体−固体接触の
通常の方法が使用でき、この場合、モレキユラー
シーブス、硫酸塩無水物、炭酸塩無水物と活性炭
は同一の塔に混合して、充填して使用しても良
く、別々に充填して、それぞれの充填層を形成さ
せて使用しても良い。吸着温度は吸着した水及び
微量不純物が脱離しない程度の範囲で行なえば良
く、通常は0〜80℃で行なうのが好ましい。 吸着能が低下した吸着剤の再生方法としては、
通常の方法が適用でき、例えば乾燥したチツ素や
空気などの不活性ガスを加熱下通じ、水及び不純
物を脱離させる。脱離の温度としては脱水剤の種
類によつて異なり、硫酸塩及び炭酸塩の無水物を
使用する場合は、結晶水を脱離する温度以上、モ
レキユラーシーブス類を使用する場合は150℃以
上が好ましい。 本発明におけるメタノール、一酸化炭素および
水素を反応させる反応条件は、一酸化炭素と水素
の混合比がH2/CO=0.25〜4(モル比)、好まし
くは0.5〜3(モル比)の範囲である。反応圧力
は50Kg/cm2Gで上限に特に制限はないが、実用的
には100〜500Kg/cm2Gの範囲が好適である。 反応温度は180〜280℃、好ましくは210〜250℃
の範囲である。これより低い温度では反応速度が
小さくなり、又これより高い温度では副生物が多
くなるので好ましくない。 触媒としてはコバルトを主触媒とし、これにヨ
ウ素又は臭素、リン又は窒素化合物、ルテニウ
ム、マンガン、アルミニウム、イリジウム、ロジ
ウム等を適宜組合せたものが使用できる。 (発明の効果) 本発明はメタノールと一酸化炭素及び水素とか
ら製造され、エタノール以外に副生物としてアセ
トアルデヒド、ジメトキシエタン、ジメチルエー
テル、メチルエチルエーテル、ギ酸メチル、酢酸
メチル、酢酸エチル、吉草酸メチル、プロパノー
ル等を含有する反応液から簡単な操作で無水エタ
ノールを分離することができ、従来の蒸留法に比
し多大のエネルギー消費を節約することができ
る。 本発明により製造された無水エタノールをJIS
規格に従つて品質試験を行なつた結果、微量不純
物の検出は認められず、JIS規格に合格した。 (実施例) 下記に実施例を示すが、こゝで%は重量%であ
る。 実施例 1 メタノールと一酸化炭素及び水素とをコバルト
系触媒及びベンゼン溶媒の存在下反応させて得た
粗反応液から蒸発濃縮法によつて触媒成分を分離
し、未反応メタノール、生成エタノール、溶媒ベ
ンゼンの他、アルデヒド類、エーテル類、エステ
ル類及びメタノール、エタノール以外のC3以上
のアルコール類等の副生物を含有し、次の組成を
有する反応液を得た。 組成:水6.0、メタノール28.0、エタノール19.0、
ベンゼン44.0、アセトアルデヒド0.3、ジメチ
ルエーテル0.1、メチルエチルエーテル0.1、ギ
酸メチル0.1、酢酸メチル0.2、酢酸エチル0.1、
ジメトキシエタン0.1、n−プロパノール0.8、
吉草酸メチル0.1、その他高沸物1.1 この反応液を精留塔で精留し、塔底より水25.0
%、エタノール68.5%、n−プロパノール3.8
%、吉草酸メチル0.8%、その他高沸物1.9%の組
成を有するエタノール含有溶液を得、更にこの溶
液を精留塔で精留し、塔頂より、エタノール95.2
%、水4.7%及び微量不純物として吉草酸メチル
0.06%、未知物質0.04%を含有するエタノールを
分離した。 この様にして得た95.2%エタノール10g、硫酸
マグネシウムの無水物5g及び粒状活性炭3gを
50ml栓付三角フラスコに入れ、激しく撹拌した
後、室温で放置し、静置後上澄液をガスクロマト
グラフイーにより分析した。 結果は第1表に示した様に上澄液中のエタノー
ル濃度99.6重量%であり、吉草酸メチル及び未知
物質の検出は認められなかつた。 実施例 2〜5 実施例1で分離した含水エタノールを使用し、
硫酸マグネシウム無水物の代りに硫酸カルシウ
ム、硫酸亞鉛、硫酸銅の各無水物及びモレキユラ
シーブス−3Aを使用した以外は実施例1と全く
同様な操作で含水エタノールの吸着、精製を試み
た。結果を第1表に示したが、いずれの場合も高
い吸着能を示し、原料中に微量存在した吉草酸メ
チル等の不純物は検出されなかつた。 実施例 6 実施例1と同様な方法で吸着剤として炭酸カリ
ウムの無水物5gと活性炭3gを用いた結果を第
1表に示す。 参考例 1〜6 脱水能が低下した硫酸マグネシウム、硫酸カル
シウム、硫酸亜鉛、硫酸銅、炭酸カリウム及びモ
レキユラシーブス−3Aと活性炭よりなる吸着剤
を電気炉中で所定温度に3時間加熱し、再生した
各脱水剤を使用して、再度、実施例1で分離した
含水エタノールについて吸着、精製を行なつた。
結果を第2表に示した。 表より、脱水能の低下した脱水剤は所定の条件
により再生することができ、繰り返し使用できる
ことが判る。
(Industrial Application Field) The present invention relates to a method for producing highly pure anhydrous ethanol from a reaction product liquid obtained by contacting methanol with carbon monoxide and hydrogen. in general
Anhydrous ethanol, which has a purity of 99.5% by volume or higher, is widely used in pharmaceuticals, cosmetics, alcoholic beverages, etc., and has recently attracted attention as an energy source as an alternative to petroleum. (Problems to be Solved by the Prior Art and the Invention) Currently, ethanol is industrially produced by an ethylene hydration method or a fermentation method. In these methods, to produce anhydrous ethanol from aqueous ethanol, a dilute aqueous ethanol solution is concentrated in a distillation column (concentration column) to a composition close to the azeotropic composition of the ethanol-water system, and then azeotropically distilled with an entrainer such as benzene. , the azeotrope is distilled from the top of the column, and after condensing this azeotrope distillate, it is separated into an entrainer-rich layer and a water-rich layer, while the entrainer-rich layer is returned to the azeotropic distillation column. However, on the other hand, it is common to further process the water-rich layer in another distillation column to recover the entrainer and ethanol while obtaining anhydrous ethanol from the bottom of the azeotropic distillation column. On the other hand, in order to cope with the depletion of petroleum resources in the future, research is being conducted on a method of producing ethanol by reacting methanol with carbon monoxide and hydrogen, but in this case, depending on the type of catalyst used, Generally, in addition to ethanol, many by-products such as acetaldehyde, dimethoxyethane, dimethyl ether, methyl ethyl ether, methyl formate, methyl acetate, ethyl acetate, methyl valerate, and propanol are produced simultaneously. It is not necessarily impossible to produce high-purity anhydrous ethanol by separating these by-products by distillation and applying a conventional azeotropic distillation dehydration method to the resulting aqueous ethanol. However, in order to separate high-purity anhydrous ethanol that does not contain the above-mentioned by-products, a distillation column with a high number of plates is required, which inevitably consumes a large amount of energy, making it inefficient from an industrial standpoint. It's hard to say that it's a good method. (Means for Solving the Problem) The present invention provides a method for efficiently producing high-purity anhydrous ethanol from a dilute ethanol solution produced by reacting methanol with carbon monoxide and hydrogen. Distilling the ethanol-containing reaction product liquid obtained by contact reaction with carbon oxide and hydrogen to obtain an azeotropic component of ethanol and water,
This is a method for producing anhydrous ethanol by treating this with an adsorbent consisting of at least one selected from molecular sieves, sulfate anhydrides, and carbonate anhydrides and activated carbon. In the present invention, sulfate anhydride means an anhydride of sulfate such as magnesium sulfate, calcium sulfate, copper sulfate, zinc sulfate, etc., which can have water of crystallization, and carbonate anhydride means a crystalline sulfate such as potassium carbonate. means an anhydride of carbonate which can have .
As the activated carbon, any commercially available activated carbon can be used, but especially preferred results are obtained with coconut shell activated carbon. The ethanol-containing reaction product obtained by reacting methanol with carbon monoxide and hydrogen is used to separate catalyst components using a distillation device if necessary, and then distilled as appropriate to remove low-boiling components, resulting in azeotropic hydrous ethanol. is brought into contact with the adsorbent. Conventional liquid-solid contact and gas-solid contact methods can be used for contacting the adsorbent; in this case, molecular sieves, sulfate anhydride, carbonate anhydride and activated carbon are mixed in the same column. They may be filled and used, or they may be filled separately to form respective filled layers. The adsorption temperature may be within a range such that the adsorbed water and trace impurities are not desorbed, and it is usually preferred to carry out the adsorption at a temperature of 0 to 80°C. As a method for regenerating adsorbents whose adsorption capacity has decreased,
A conventional method can be applied, for example, by passing an inert gas such as dry nitrogen or air under heating to remove water and impurities. The dehydration temperature varies depending on the type of dehydrating agent; when using sulfate and carbonate anhydrides, it is at least the temperature at which water of crystallization is desorbed, and when using molecular sieves, it is 150°C. The above is preferable. The reaction conditions for reacting methanol, carbon monoxide, and hydrogen in the present invention are such that the mixing ratio of carbon monoxide and hydrogen is in the range of H 2 /CO = 0.25 to 4 (molar ratio), preferably 0.5 to 3 (molar ratio). It is. The reaction pressure is 50 kg/cm 2 G, and there is no particular upper limit, but a range of 100 to 500 kg/cm 2 G is suitable for practical use. Reaction temperature is 180-280℃, preferably 210-250℃
is within the range of If the temperature is lower than this, the reaction rate will be low, and if the temperature is higher than this, the amount of by-products will increase, which is not preferable. As the catalyst, cobalt is used as the main catalyst, and a combination thereof with iodine or bromine, phosphorus or a nitrogen compound, ruthenium, manganese, aluminum, iridium, rhodium, etc. can be used. (Effects of the Invention) The present invention is produced from methanol, carbon monoxide and hydrogen, and in addition to ethanol, the by-products include acetaldehyde, dimethoxyethane, dimethyl ether, methyl ethyl ether, methyl formate, methyl acetate, ethyl acetate, methyl valerate, Anhydrous ethanol can be separated from a reaction solution containing propanol etc. with a simple operation, and a large amount of energy consumption can be saved compared to conventional distillation methods. The anhydrous ethanol produced according to the present invention is
As a result of quality tests conducted in accordance with the standards, no trace impurities were detected, and the product passed the JIS standard. (Example) Examples are shown below, where % is by weight. Example 1 A catalyst component was separated by evaporation concentration from a crude reaction solution obtained by reacting methanol, carbon monoxide, and hydrogen in the presence of a cobalt catalyst and a benzene solvent, and unreacted methanol, produced ethanol, and solvent were separated. A reaction solution containing benzene and by-products such as aldehydes, ethers, esters, and alcohols of C 3 or higher other than methanol and ethanol and having the following composition was obtained. Composition: Water 6.0, Methanol 28.0, Ethanol 19.0,
Benzene 44.0, acetaldehyde 0.3, dimethyl ether 0.1, methyl ethyl ether 0.1, methyl formate 0.1, methyl acetate 0.2, ethyl acetate 0.1,
Dimethoxyethane 0.1, n-propanol 0.8,
Methyl valerate 0.1, other high-boiling substances 1.1 This reaction solution is rectified in a rectification column, and from the bottom of the column water 25.0
%, ethanol 68.5%, n-propanol 3.8%
%, methyl valerate 0.8%, and other high-boiling substances 1.9%. This solution was further rectified in a rectification column, and from the top of the column, ethanol 95.2% was obtained.
%, water 4.7% and methyl valerate as trace impurities
Ethanol containing 0.06% and unknown substance 0.04% was separated. 10 g of 95.2% ethanol thus obtained, 5 g of anhydrous magnesium sulfate, and 3 g of granular activated carbon were added.
The mixture was placed in a 50 ml Erlenmeyer flask with a stopper, stirred vigorously, and allowed to stand at room temperature. After standing, the supernatant liquid was analyzed by gas chromatography. As shown in Table 1, the ethanol concentration in the supernatant was 99.6% by weight, and no methyl valerate or unknown substances were detected. Examples 2 to 5 Using the aqueous ethanol separated in Example 1,
Adsorption and purification of aqueous ethanol was attempted in the same manner as in Example 1, except that anhydrous calcium sulfate, hyperlead sulfate, copper sulfate and Molecule Sieves-3A were used instead of anhydrous magnesium sulfate. The results are shown in Table 1, and in all cases, high adsorption capacity was exhibited, and impurities such as methyl valerate, which were present in trace amounts in the raw materials, were not detected. Example 6 Table 1 shows the results of using 5 g of anhydrous potassium carbonate and 3 g of activated carbon as adsorbents in the same manner as in Example 1. Reference Examples 1 to 6 An adsorbent consisting of magnesium sulfate, calcium sulfate, zinc sulfate, copper sulfate, potassium carbonate, Molecular Sieves-3A, and activated carbon with reduced dehydration ability is heated to a predetermined temperature in an electric furnace for 3 hours to regenerate it. The aqueous ethanol separated in Example 1 was adsorbed and purified again using each dehydrating agent.
The results are shown in Table 2. From the table, it can be seen that the dehydrating agent whose dehydrating ability has decreased can be regenerated under predetermined conditions and can be used repeatedly.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 メタノールを一酸化炭素及び水素と接触反応
させて得られるエタノールを含有する反応生成液
を蒸留し、エタノールと水の共沸成分を得、これ
をモレキユラーシーブス、硫酸塩無水物、炭酸塩
無水物から選ばれた少くとも1種及び活性炭から
なる吸着剤で処理することを特徴とする無水エタ
ノールの製造方法。
1 Distill the reaction product solution containing ethanol obtained by contacting methanol with carbon monoxide and hydrogen to obtain an azeotropic component of ethanol and water, which is mixed with molecular sieves, sulfate anhydride, and carbonate. A method for producing anhydrous ethanol, which comprises treating with an adsorbent consisting of at least one selected from anhydrides and activated carbon.
JP4842085A 1985-03-13 1985-03-13 Production of anhydrous ethanol Granted JPS61207348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4842085A JPS61207348A (en) 1985-03-13 1985-03-13 Production of anhydrous ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4842085A JPS61207348A (en) 1985-03-13 1985-03-13 Production of anhydrous ethanol

Publications (2)

Publication Number Publication Date
JPS61207348A JPS61207348A (en) 1986-09-13
JPS6240344B2 true JPS6240344B2 (en) 1987-08-27

Family

ID=12802824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4842085A Granted JPS61207348A (en) 1985-03-13 1985-03-13 Production of anhydrous ethanol

Country Status (1)

Country Link
JP (1) JPS61207348A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162636A (en) * 1986-12-25 1988-07-06 Res Assoc Petroleum Alternat Dev<Rapad> Production of absolute alcohol

Also Published As

Publication number Publication date
JPS61207348A (en) 1986-09-13

Similar Documents

Publication Publication Date Title
JP3301542B2 (en) Ethyl acetate production method
UA72617C2 (en) A method for the preparation of vinyl acetate
JP2003535814A (en) Method for producing ethyl acetate and apparatus for performing the method
CA1184202A (en) Process for continuously preparing ethylene glycol
CN100575321C (en) The separation method of alkene
JPS62129247A (en) Purification of crude terephthalic acid
AU2011213053B2 (en) Processes for producing anhydrous ethanol compositions
CA2054894A1 (en) Integrated process for producing iso-butene and alkyl tert-butyl ethers
JP6718017B2 (en) Method for producing 1,3-cyclohexanedimethanol
US9447018B2 (en) Ethyl acetate production
JPS6125694B2 (en)
US4582645A (en) Carbonate production
JPS6240344B2 (en)
US6057482A (en) Process for producing benzyl acetate and benzyl alcohol
JPH0629280B2 (en) Purification method of crude tetrahydrofuran
JP2533060B2 (en) Hydrolysis of alkyl dicarboxylate
US4359593A (en) Process for recovering ethanol from dilute aqueous solutions employing solid sorbent
JP3959993B2 (en) Method for producing 1,4-butanediol
CN1152848C (en) Process for synthesizing dimethyl ether in three-phase slurry bed
JPS6115851A (en) Manufacture of 1,4-butandiol
JP4483156B2 (en) Method for purifying gamma-butyrolactone
JP2511256B2 (en) Method for purifying β-phenethyl alcohol
CN117384066A (en) Refining method of low-carbon aliphatic nitrile prepared by dehydrogenating and ammonifying low-carbon aliphatic alcohol
KR101883993B1 (en) Preparation method of 1,3-cyclohexanedicarboxylic acid
WO2019150578A1 (en) Method for preparing cyclopentenone

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term