JPS6240165A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPS6240165A
JPS6240165A JP60179129A JP17912985A JPS6240165A JP S6240165 A JPS6240165 A JP S6240165A JP 60179129 A JP60179129 A JP 60179129A JP 17912985 A JP17912985 A JP 17912985A JP S6240165 A JPS6240165 A JP S6240165A
Authority
JP
Japan
Prior art keywords
electrode
thermoplastic resin
polymer
conductive
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60179129A
Other languages
Japanese (ja)
Other versions
JPH0727775B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Koji Nishio
晃治 西尾
Masahisa Fujimoto
正久 藤本
Tetsuyoshi Suzuki
鈴木 哲身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Sanyo Electric Co Ltd
Original Assignee
Mitsubishi Kasei Corp
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Sanyo Electric Co Ltd filed Critical Mitsubishi Kasei Corp
Priority to JP60179129A priority Critical patent/JPH0727775B2/en
Publication of JPS6240165A publication Critical patent/JPS6240165A/en
Publication of JPH0727775B2 publication Critical patent/JPH0727775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase the mechanical strength and current collecting ability of electrode by specifying the mixing amount of thermoplastic resin in a secondary battery using a complex comprising a conductive polymer having no conjugated double bond in its principal chain, and thermoplastic resin and conductive material in positive electrode and/or negative electrode. CONSTITUTION:In a secondary battery using a complex comprising conductive polymer having no conjugated double bond in its principal chain, and thermoplastic resin and conductive material in positive electrde and/or negative electrode, the content of the thermoplastic resin is preferably limited to 0.05-0.1 in the weight ratio to the conductive polymer. By specifying the mixing amount of the thermoplastic resin, the mechanical strength of the electrode is increased without sacrifice of conductivity drop before doping. By forming the complex with conductive material, the electrode strength is further increased and current collecting ability is improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は二次電池に関し、詳しく(よ、導電性ポリマ
ーを電極材料とした非水電解質二次電池に関するもので
おる。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery using a conductive polymer as an electrode material.

〈従来の技術〉 近年、導電性ポリマーを電極材車重とした二次電池が提
案されている。
<Prior Art> In recent years, secondary batteries using conductive polymers as electrode materials have been proposed.

この種の二次電池の電極月利となる導電・ヒポ1ツマ−
は、通常は導電性はわずかであるか、各種のドーパント
をドーピング、アンド−ピングすることが可能であり、
ドーピングにより導電性が飛躍的に上昇する。そして、
アニオンをドーピングした導電性ポリマーは正極材料と
して、またカチオンをドーピングした導電性ポリマーは
負極材料として各々使用され、ドーピング及びアンド−
ピングを電気化学的に可逆的に行なうことにより充放電
可能な電池が構成される訳である。
Conductive/Hypo1 Tsuma, which is the electrode monthly rate of this type of secondary battery.
usually has little electrical conductivity, or can be doped and doped with various dopants,
Doping dramatically increases conductivity. and,
Conductive polymers doped with anions are used as positive electrode materials, and conductive polymers doped with cations are used as negative electrode materials.
By electrochemically and reversibly performing pinging, a battery that can be charged and discharged is constructed.

この様な導電性ポリマーとしては、主鎖に共役二重結合
をもつもの、例えばポリアセチレン、ポリチオフェン、
ポリピロール等が従来から知られている。しかしながら
、このような主鎖に共役二重結合をもつポリマー、例え
ばポリアセチレン等のポリマーは、空気中の酸素によっ
て非常にたやすく酸化され、また3 00 ’C以上の
温度になると熱変成や熱分解を起こし易く、このため、
電極作製環境の管理が重大で極めて難しく、電極作製作
業が煩雑化し、電極自身の保存性が悪い等の欠点がある
。これに加えて、電池内に組込んだ場合、微旦の醒素ヤ
水分が存在するだけで変成分解を起こし、電池特性が劣
化し、また過充電を行なうとポリマー自体が変成分解す
ることがあるといった不都合もおり、電池電極用材料と
してははなはだ問題が多い。
Such conductive polymers include those having a conjugated double bond in the main chain, such as polyacetylene, polythiophene,
Polypyrrole and the like have been conventionally known. However, such polymers with conjugated double bonds in their main chains, such as polyacetylene, are very easily oxidized by oxygen in the air, and are susceptible to thermal denaturation and thermal decomposition at temperatures above 300'C. Because of this,
There are drawbacks such as the control of the electrode production environment is important and extremely difficult, the electrode production work is complicated, and the electrode itself has poor storage stability. In addition, when incorporated into a battery, even the slightest presence of moisture can cause denaturation, degrading battery characteristics, and overcharging can cause denaturation of the polymer itself. There are many disadvantages, and there are many problems as a material for battery electrodes.

ところで、最近、主鎖に共役二重結合をもたない\導電
性ポリマーが見出され、その電極材料への応用が研究さ
れている。この種の導電性ポリマーは、空気中で安定で
酸化されることがなく、また300℃以上の温度でも熱
分解されることがない等の特長があり、このため、電極
の作製環境管理がそれ程重大でなく、作製作業がし易い
うえに電極自身の保存性が非常によい。従って、電池内
に組込んだ場合、微量の酸素や水分の存在下ではポリマ
ーが劣化を起こしにくく、また過充電を行なってもポリ
マーの変成分解がほとんど生じないので、ポリマーの劣
化に起因する電池性能低下がなく、充放電を長期間に亘
って繰り返しえる等の利点がおる。
By the way, recently, conductive polymers that do not have conjugated double bonds in their main chains have been discovered, and their application to electrode materials is being studied. This type of conductive polymer has characteristics such as being stable in the air and not being oxidized, and not being thermally decomposed even at temperatures of 300°C or higher, which makes it difficult to control the environment for electrode production. It is not critical, the manufacturing work is easy, and the electrode itself has a very good shelf life. Therefore, when incorporated into a battery, the polymer is unlikely to deteriorate in the presence of trace amounts of oxygen or moisture, and even if overcharged, there will be almost no alteration and decomposition of the polymer. It has the advantage that there is no performance deterioration and charging and discharging can be repeated over a long period of time.

〈発明が解決しようとする問題点〉 ところで、この種の導電性ポリマーの実用成形品を製造
する方法としては従来より粉末状ポリマーを加圧成形す
る方法が一般的でおるが、この方法では機械的強度の低
い成形品しか得られず、その成形品を電極として用いた
場合には、サイクル寿命が長くとれないために充放電ザ
イクル特性が悪く、充放電容量が高くできないのでエネ
ルギー密度が小さい他、放電時の電圧平坦性が悪いとい
った問題がある。
<Problems to be Solved by the Invention> By the way, as a method for manufacturing practical molded articles of this type of conductive polymer, a method of press-molding a powdered polymer has conventionally been common, but this method does not require mechanical processing. Only molded products with low physical strength can be obtained, and when such molded products are used as electrodes, the cycle life cannot be long, resulting in poor charge-discharge cycle characteristics, and the charge-discharge capacity cannot be increased, resulting in low energy density. , there are problems such as poor voltage flatness during discharge.

ポリアセチレン等の主鎖に共役二重結合をもつ導電性ポ
リマーの場合には、特開昭60−10569号公報に開
示されているようにそのポリマーを熱可塑性樹脂や導電
性部材と複合体化することにより特性改善を図る方法が
知られてあり、この技術を主鎖に共19二重結合をもた
ない導電性ポリマーを電極材料とする場合に適用するこ
とも考えられる。しかしながら、このような主鎖に共役
二重結合をもたない導電i生ポリマーは主鎖に共役二重
結合をもつ導電性ポリマーに較べて未ドープ時やドープ
率が低い場合の導電性が一般的に低いことがら、電極の
機械的強度を増加するために熱可塑性樹脂を添加・混合
する場合、その混合量が多過ぎると一電極の導電性が著
しく低下して電池性能に大きな影響がでるという傾向が
大きく、必然的にその混合量は主鎖に共役二重結合をも
つ導電性ポリマーにおける混合量とはかなり相違したも
のとなるので、上記技術をそのまま用いることはできな
いのが現状でおる。
In the case of a conductive polymer having a conjugated double bond in the main chain such as polyacetylene, the polymer is made into a composite with a thermoplastic resin or a conductive member as disclosed in JP-A-60-10569. There is a known method for improving characteristics by this method, and it is conceivable to apply this technique to the case where a conductive polymer having no double bond in the main chain is used as an electrode material. However, such conductive raw polymers that do not have conjugated double bonds in their main chains generally have lower conductivity than conductive polymers that have conjugated double bonds in their main chains when undoped or at a low doping rate. Therefore, when adding or mixing thermoplastic resin to increase the mechanical strength of the electrode, if the amount of thermoplastic resin is too large, the conductivity of one electrode will decrease significantly, which will have a major impact on battery performance. There is a strong tendency to .

また、金属酸化物や金属硫化物を使用した電極に熱可塑
性樹脂を添加・混合して電極の機械的強度を増加させる
という公知技術もあり、これを上記と同じく適用するこ
とも考えられるが、このような金属間化合物は主鎖に共
役二重結合をもたない導電性ポリマーに較べて導電率が
高いため、上記と同様に熱可塑性樹脂混合量はがなり相
違したものとなるのでこの技術もその−まま適用するこ
とはできない。
Additionally, there is a known technique that increases the mechanical strength of an electrode by adding and mixing a thermoplastic resin to an electrode using a metal oxide or metal sulfide, and it is conceivable that this could be applied in the same way as above. Since such intermetallic compounds have higher electrical conductivity than conductive polymers that do not have conjugated double bonds in their main chains, the amount of thermoplastic resin mixed will be different as described above, so this technology cannot be applied as is.

〈問題点を解決するための手段〉 本発明者は上記した問題を解決し、主鎖に共役二重結合
を有さない導電性ポリマーにおけるサイクル特性向上、
エネルギー密度増大並びに放電時の電圧平坦性改善を図
らんと研究したところ、下記の手段を用いた場合には所
期の目的を達成できることを知得した。
<Means for Solving the Problems> The present inventor has solved the above-mentioned problems, and has improved the cycle characteristics of a conductive polymer that does not have a conjugated double bond in its main chain.
As a result of research aimed at increasing energy density and improving voltage flatness during discharge, it was discovered that the intended purpose could be achieved by using the following means.

即ち、この発明の二次電池は、主鎖に共役二重結合をも
たない導電性ポリマー、熱可塑性樹脂、および導電性部
材よりなる複合体を正極または負極の少なくとも一方の
電極とした二次電池であって、熱可塑性樹脂の混合量が
導電性ボッマーに対するff1M比で0.005〜0.
2、好ましくは0.05〜0.1であることを要旨とす
るものである。
That is, the secondary battery of the present invention is a secondary battery in which at least one of the positive electrode and the negative electrode is a composite composed of a conductive polymer having no conjugated double bond in its main chain, a thermoplastic resin, and a conductive member. The battery includes a thermoplastic resin mixed in an amount of 0.005 to 0.005 in terms of ff1M ratio to conductive Bommer.
2, preferably 0.05 to 0.1.

主鎖に共役二重結合を有ざない導電性ポリマーの分子昌
としては、一般に1万〜50万程度のものが使用され、
例えば次式によって表せられる構成単位を有するもの等
のアセナフチレン系重合体が挙げられる。
The molecular weight of conductive polymers that do not have conjugated double bonds in the main chain is generally about 10,000 to 500,000,
For example, acenaphthylene polymers such as those having a structural unit represented by the following formula may be mentioned.

式中、R1、R2は、水M原子;ハロゲン原子、例えば
、塩素、臭素、沃素;アルキル基、例えば、炭素数1〜
6、好ましくは、炭素@1〜3のアルキル基;アルコキ
シ基、例えば、炭素数1〜6、好ましくは、炭素数1〜
3のアルコキシ基;アリール基、例えば、フェニル基、
トルイル基:アリロキシ基、例えば、フェノキシ基、メ
チルフェノキシ基;ニトロ基;シアノ基を表わす。
In the formula, R1 and R2 represent a water M atom; a halogen atom, such as chlorine, bromine, or iodine; an alkyl group, such as a carbon number of 1 to
6, preferably an alkyl group having 1 to 3 carbon atoms; an alkoxy group, for example, an alkyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms;
3 alkoxy group; aryl group, for example, phenyl group,
Tolyl group: represents an allyloxy group, such as a phenoxy group, a methylphenoxy group; a nitro group; a cyano group.

具体的には、例えば、ポリアセナフチレン。Specifically, for example, polyacenaphthylene.

ポリブロムアセナフチレン、ポリクロルアセナフヂレン
、ポリエチルアセナフチレン、ポリジメチルアセナフチ
レン2ポリメトキシアセナフチレン、ポリジフェニルア
セナフヂレン、ポリフェノキシアセナフチレン、ボリニ
1〜ロアセナフチレン、ポ1ノシアノアセナフチレン等
が挙げられる。
Polybromoacenaphthylene, polychloroacenaphthylene, polyethylacenaphthylene, polydimethylacenaphthylene 2polymethoxyacenaphthylene, polydiphenylacenaphthylene, polyphenoxyacenaphthylene, borini-1 to loacenaphthylene, poly-1-no Examples include cyanoacenaphthylene.

本発明で負極として用いられる咳ポリマーは、例えば下
記一般式(2) 式中、R、、R2は一般式(1)と同一の意味を表わす
。〉で示されるアセナフチレン化合物を公知の方法、即
ちラジカル重合する方法(ケミカルアブストラクト55
巻、12911頁(1961> )、カチオン重合する
方法(高分子化学15巻、1\o、 158.388頁
(1958ンン、アニオン重合する方法(ポリマー・コ
ミュニケーション25巻、108頁(1984) ) 
’6に準じて1qることかできる。
The cough polymer used as the negative electrode in the present invention has, for example, the following general formula (2), where R and R2 have the same meanings as in general formula (1). > by a known method, that is, a method of radical polymerization (Chemical Abstract 55)
Vol., p. 12911 (1961), Method for Cationic Polymerization (Kobunshi Kagaku Vol. 15, 1\o, p. 158.388 (1958), Method for Anionic Polymerization (Polymer Communication Vol. 25, p. 108 (1984))
You can do 1q according to '6.

また一般式(1)においてRおよび/またはR2が水素
の場合のポリマーを上記の重合方法によって得た後にポ
リマーの側鎖を公知の方法(ジャーナル・オブ・オーガ
ニック・ケミス1〜リー48巻、2949頁(1983
) )に準じて高分子反応を行なって、R1および/ま
たはR2が水素以外の置換基を有する一般式(1)で示
される構造単位を有するポリマーを得ることができる。
Furthermore, after obtaining a polymer in which R and/or R2 are hydrogen in the general formula (1) by the above polymerization method, the side chains of the polymer can be prepared by a known method (Journal of Organic Chemistry Vol. 1-48, 2949). Page (1983
) A polymer having a structural unit represented by the general formula (1) in which R1 and/or R2 has a substituent other than hydrogen can be obtained by carrying out a polymer reaction according to (1).

前記する一般式(2)で示されるアセナフチレン化合物
の重合反応に於てラジカル重合反応では開始剤として通
常のラジカル重合反応の開始剤が使用されるが、好まし
くはベンゾイルパーオキシド、アゾビスイソブチロニト
リル、過硫酸アンモニウム、過硫酸カリウム等が使用さ
れ、アセナフチレン化合物に対する開始剤の使用伍は1
0〜10−1モル比の範囲で行なうのが好ましい。反応
は無溶媒で行なうか、ベンゼン。
In the radical polymerization reaction of the acenaphthylene compound represented by the general formula (2) described above, an ordinary radical polymerization initiator is used as an initiator, preferably benzoyl peroxide, azobisisobutyro Nitrile, ammonium persulfate, potassium persulfate, etc. are used, and the use of initiators for acenaphthylene compounds is 1
The molar ratio is preferably 0 to 10<-1>. The reaction is carried out without solvent or with benzene.

1〜ルエン、ヘプタン等の有機溶媒又は水−乳化剤系の
水溶媒中で行なう。溶媒を使用する場合、アセナフチレ
ン化合物は10〜102モル濃度の範囲で行なうのが好
ましい。反応温度はO〜150’Cの範囲で行なうが、
好ましくは10〜100’Cで行なわれる。カチオン重
合反応では開始剤として通常のカチオン重合反応の開始
剤が使用されるが、好ましくは三フッ化ホウ素ニーテラ
ーi〜、塩化アルミニウム、臭化アルミニウム、五フッ
化リン、トリフルオロメタンスルフォン酸エステル等が
使用され、アセナフチレン化合物に対する開始剤の使用
旦は1o−6〜1「1モル比の範囲で行なうのが好まし
い。反応は塩化メチレン、四塩化炭素、ニトロメタン。
1 to an organic solvent such as toluene or heptane, or an aqueous solvent based on a water-emulsifier system. If a solvent is used, the acenaphthylene compound is preferably used at a concentration of 10 to 102 molar. The reaction temperature is in the range of 0 to 150'C,
It is preferably carried out at 10 to 100'C. In the cationic polymerization reaction, an ordinary cationic polymerization reaction initiator is used as an initiator, preferably boron trifluoride Nieteller i~, aluminum chloride, aluminum bromide, phosphorus pentafluoride, trifluoromethanesulfonic acid ester, etc. The initiator used for the acenaphthylene compound is preferably carried out in a molar ratio of 10-6 to 1. The reaction is carried out using methylene chloride, carbon tetrachloride, and nitromethane.

ジクロルエタン等の有機溶媒中で行ない1o−2〜10
”モル濃度の範囲で行なうのが好ましい。
1o-2 to 10 in an organic solvent such as dichloroethane
``It is preferable to work within a molar concentration range.

反応温度は一78〜100’C,好ましくは一78〜5
0’Cで行なわれる。アニオン重合反応では開始剤とし
て通常のアニオン重合反応の開始剤が使用されるが、好
ましくはn−ブチルリチウム、  5ec−ブチルリチ
ウム、フェニルマグネシウムブロマイド等が使用され、
アセナフチレン化合物に対する開始剤の使用けは1o−
6〜10−1モル比の範囲で行なうのが好ましい。反応
はエーテル系溶媒、好ましくはジエチルエーテル、ジブ
チルエーテル、テトラヒドロフラン。
The reaction temperature is 178-100'C, preferably 178-100'C.
It is done at 0'C. In the anionic polymerization reaction, a normal anionic polymerization initiator is used as an initiator, preferably n-butyllithium, 5ec-butyllithium, phenylmagnesium bromide, etc.
The use of initiators for acenaphthylene compounds is 1o-
The molar ratio is preferably 6 to 10<-1>. The reaction is carried out using an ether solvent, preferably diethyl ether, dibutyl ether, or tetrahydrofuran.

ジオキザン、ジフェニルエーテル等の中で行なわれ、ア
セナフチレン化合物は10−2〜102モルQ度の範囲
で行なうのが好ましい。反応温度は一78〜150’C
,好ましくは一78〜100°Cで行なわれる。
It is preferably carried out in dioxane, diphenyl ether, etc., and the acenaphthylene compound is preferably carried out in a range of 10 -2 to 102 molar Q degrees. Reaction temperature is -78~150'C
, preferably at -78 to 100°C.

熱可塑性樹脂としては、電池の電解液に対して実質的に
不溶のものであれば特に制限なく用いることができる。
As the thermoplastic resin, any thermoplastic resin can be used without particular limitation as long as it is substantially insoluble in the electrolyte of the battery.

通常、分子徂1万以上のものが用いられ、具体例として
は、ポリエチレン。
Generally, materials with a molecular length of 10,000 or more are used, and a specific example is polyethylene.

ポリプロピレン、エチレン−プロピレン共重合体、エチ
レンーテ1へラフロロエチレン共重合体。
Polypropylene, ethylene-propylene copolymer, ethylenetetrafluoroethylene copolymer.

ポリテトラフロロエチレン、ポリ1〜リフロ口エチレン
、ポリジフロロエチレン、四フッ化エチレン−パーフロ
ロアルキルビニルエーテル共重合体、四フッ化エチレン
ー六フッ化プロピレン。
Polytetrafluoroethylene, poly1 to reflow ethylene, polydifluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene.

共重合体、ポリ三フッ化塩化エチレン、ポリフッ化ビニ
リデン、四フッ化エチレンーエチレン共重合体、クロロ
1〜1ノフルオロエチレンーエチレン共重合体、ポリア
ミド、ポリエステル、ポリカーポネ−1〜、及び、変性
ポリオレフィン等が挙げられる。
Copolymers, polytrifluorochloroethylene, polyvinylidene fluoride, tetrafluoroethylene-ethylene copolymers, chloro 1-1 nofluoroethylene-ethylene copolymers, polyamides, polyesters, polycarbonate-1 and modified Examples include polyolefins.

また、導電性部材としては充放電を繰り返しても溶解し
ないステンレス鋼、金、白金、ニッケル、銅、モリブデ
ン、チタン等の金属、カーボン、炭素繊維等の部子Aか
らなるものならば特に制限はないが、特に、軽i且つ高
導電性のものが好ましい。具体的には、そのような金属
からできた金属網、あるいは、金属メッキ繊維。
In addition, there are no particular restrictions on conductive members if they are made of metals such as stainless steel, gold, platinum, nickel, copper, molybdenum, titanium, etc., carbon, carbon fiber, etc., which do not dissolve even after repeated charging and discharging. However, it is particularly preferable to use a material that is light in weight and highly conductive. Specifically, metal nets made from such metals or metal-plated fibers.

金属蒸着繊維、金属含有合成繊維、更には炭素繊維、炭
素複合繊維等からなる網ヤ織布及び不織布が挙げられる
Examples include net woven fabrics and nonwoven fabrics made of metal-deposited fibers, metal-containing synthetic fibers, carbon fibers, carbon composite fibers, and the like.

本発明の導電性ポリマーおよび熱可塑性樹脂の使用量は
、通常、導電性部材100重量部に対して導電性ポリマ
ー100〜5000重量部、熱可塑性樹脂1〜1ooo
、IH部から選ばれる。
The amount of the conductive polymer and thermoplastic resin used in the present invention is usually 100 to 5000 parts by weight of the conductive polymer and 1 to 100 parts by weight of the thermoplastic resin per 100 parts by weight of the conductive member.
, selected from the IH Department.

〈作 用〉 このように、主鎖に共役二重結合をもたない導電性ポリ
マーに上記混合二の熱可塑性樹脂を加えることによって
未ドープ時等の導電は低下を招くことなく電極強度向上
を図ることができ、更に、これらに導電性部材を組合せ
、複合体とす、8.ことにより、電極強度を更に向上で
き且つ電極の集電性を極めて良好なものとすることがで
きる。
<Function> In this way, by adding the thermoplastic resin mixture No. 2 above to a conductive polymer that does not have a conjugated double bond in its main chain, the electrode strength can be improved without causing a decrease in conductivity when undoped. 8. A conductive member can be combined with these to form a composite; By doing so, the electrode strength can be further improved and the current collecting property of the electrode can be made extremely good.

〈実施例〉 容Q 500m、l!の四ツロ丸底フラスコにアセナフ
チレン 20.Oq(0,131モル)、ドテシル硫酸
ナトリウム2.0g、脱塩水100mgを採り、窒素で
系内を置換し、更に過硫酸アンモニウム6.1nl(]
を添加する。これらを攪拌しながら反応温度95°Cで
4時間保持したのち、反応液を冷却し、硫酸ナトリウム
の飽和水溶液中に添加し、生成したポリアセナフチレン
を析出させた。次いで、メタノール及び水による洗浄並
びに濾過を繰り返した後、得られた淡黄色固体を1〜ル
エンに溶解し、大量のメタノール中にあけて再沈精製し
、12.9CJの淡黄色重合体(ポリアセナフチレン)
を得た。この重合体をテ1〜ラヒドロフランを用いたG
PCによる分子圧測定にかけたところ、重量平均分子量
は1.5X 105で必った。
<Example> Capacity Q 500m, l! Acenaphthylene in a four-sided round bottom flask 20. Take Oq (0,131 mol), 2.0 g of sodium dotesyl sulfate, and 100 mg of demineralized water, replace the system with nitrogen, and add 6.1 nl of ammonium persulfate (]
Add. After maintaining the reaction temperature at 95° C. for 4 hours while stirring, the reaction solution was cooled and added to a saturated aqueous solution of sodium sulfate to precipitate the produced polyacenaphthylene. Next, after repeated washing with methanol and water and filtration, the obtained pale yellow solid was dissolved in 1 to 1 to 1 toluene, poured into a large amount of methanol, and purified by reprecipitation to obtain a 12.9 CJ pale yellow polymer (polymer). acenaphthylene)
I got it. This polymer was prepared using Te1-G using lahydrofuran.
When subjected to molecular pressure measurement using PC, the weight average molecular weight was found to be 1.5×105.

上記のようにして得た重合体に、熱可塑性樹脂としてボ
リテ1〜ラフロロエチレンを用い、重合体に対してこの
熱可塑性樹脂を重量比で0.007(電池A)、0.0
5  (電池B)、0.11(電池C)、0.18  
(電池D)の割合で夫々添加し、均一に混合した。そし
て、ステンレス鋼を導電性部材として用い、上記混合物
を夫々このステンレス鋼と共にプレス成型し各種の複合
体電極を作った。そして、これらの電極を夫々正極とし
て用い、第1図に示ず様に、正極1、セパレータ2、公
知のリチウム金属からなる負極3、絶縁バッキング4、
正極缶5、正極集電体6、負極化7、負極集電体8等を
組合せ、また電解液溶媒としてプロピレンカーボネイト
、電解質としてホウフッ化リチウムを用いて電池A−D
を夫々作製した。
Volite 1 to Lafluoroethylene were used as thermoplastic resins in the polymer obtained as described above, and the weight ratio of this thermoplastic resin to the polymer was 0.007 (Battery A), 0.0
5 (Battery B), 0.11 (Battery C), 0.18
(Battery D) and mixed uniformly. Using stainless steel as a conductive member, each of the above mixtures was press-molded together with the stainless steel to produce various composite electrodes. Each of these electrodes is used as a positive electrode, and as shown in FIG. 1, a positive electrode 1, a separator 2, a negative electrode 3 made of known lithium metal, an insulating backing 4,
Batteries A-D were prepared by combining the positive electrode can 5, the positive electrode current collector 6, the negative electrode 7, the negative electrode current collector 8, etc., and using propylene carbonate as the electrolyte solvent and lithium fluoroborate as the electrolyte.
were prepared respectively.

また、上記重合体に対して上記熱可塑性樹脂を重量比で
0.03  (電池E〉、0.22  (電池F)、O
(電池G)の割合で添加・混合し、他は上記と同様にし
て作った複合体電極を正極とし、上記と同様な構造の電
池E−Gを夫々作製した。
In addition, the weight ratio of the thermoplastic resin to the polymer was 0.03 (Battery E), 0.22 (Battery F), O
(Battery G) and a composite electrode prepared in the same manner as above was used as a positive electrode to prepare batteries E-G having the same structure as above.

これらの電池A〜Gをそれぞれ電流1mAで5時間充電
し、また電流1mAで電池電圧2.0Vまで放電すると
いうサイクルを繰り返した時の、電池電圧の充電あるい
は放電にお(ブる経時変化を調べた。この時の特性を第
2図に示す。
When these batteries A to G are each charged with a current of 1 mA for 5 hours and then discharged with a current of 1 mA to a battery voltage of 2.0 V, the cycle is repeated. The characteristics at this time are shown in Figure 2.

第2図から明らかな様に、電池A〜Dはかなり良好な特
性を示し、特に放電電圧の平坦性が優れていることがわ
かる。これに対して、電池E、Fは特性が悪く、電池G
は最も劣悪である。
As is clear from FIG. 2, Batteries A to D exhibited fairly good characteristics, and in particular, the flatness of the discharge voltage was excellent. On the other hand, batteries E and F have poor characteristics, and battery G
is the worst.

また、第3図は放電効率のサイクル特性を示したもので
、同図より、本発明に係る電池A〜Dは従来の電池Gあ
るいは比較電池E、Fに較べてサイクル特性のみならず
放電効率自体もかなり改善されていることがわかる。
In addition, FIG. 3 shows the cycle characteristics of discharge efficiency, and from this figure, it can be seen that batteries A to D according to the present invention have not only cycle characteristics but also discharge efficiency compared to conventional batteries G or comparative batteries E and F. It can be seen that it has also been significantly improved.

また第4図は以上のように熱可塑性樹脂の混合量を夫々
変えた電池A−,−Gのサイクル寿命を夫々の熱可塑1
生樹脂混合量をパラメータとして示したもので、同図よ
り、熱可塑性樹脂の混合量を本発明の範囲とすることに
よって電池寿命を150リイクル以上とすることができ
ることがわかる。
Figure 4 also shows the cycle life of batteries A- and -G with different amounts of thermoplastic resin mixed as described above.
The amount of raw resin mixed is shown as a parameter, and it can be seen from the figure that by setting the amount of thermoplastic resin mixed within the range of the present invention, the battery life can be increased to 150 cycles or more.

以上のことは、主鎖に共役二重結合をもたない導電性ポ
リマーを用いてなる電極では熱可塑性樹脂の電極への混
合量が特に重大でおり、本発明の如き最適範囲とするこ
とにより始めてその性能向上を図ることができることを
意味しており、熱可塑性樹脂の電極への混合量が少なけ
れば電極強度が不十分となり満足な電池特性が得られな
いし、混合層が多すぎると電極の導°電性が不十分とな
るので電池特性が低下してしまう訳である。
The above means that the amount of thermoplastic resin mixed into the electrode is particularly important for electrodes made of conductive polymers that do not have conjugated double bonds in the main chain, and that This means that it is possible to improve the performance for the first time.If the amount of thermoplastic resin mixed in the electrode is small, the electrode strength will be insufficient and satisfactory battery characteristics cannot be obtained, and if there are too many mixed layers, the electrode Since the conductivity becomes insufficient, the battery characteristics deteriorate.

尚、この発明を負極に応用しても同様な効果が1qられ
ることは明らかでおる。
It is clear that the same effect can be obtained by applying this invention to the negative electrode.

〈発明の効果〉 以上のように構成されるこの発明の二次電池によれば、
未ドープ時等における導電性低下を招くことなく電極強
度向上を図れると共に電極の導電性を極めて良好なもの
とできるため、主鎖に共役二重結合をもたない導電性ポ
リマーを電極材料とする二次電池におけるサイクル特性
及びエネルギー密度の向上、並びに放電電圧の平坦性改
善を図ることができる等の効果を奏する。
<Effects of the Invention> According to the secondary battery of the present invention configured as described above,
A conductive polymer that does not have a conjugated double bond in its main chain is used as the electrode material because it can improve the strength of the electrode without causing a decrease in conductivity when undoped, and the conductivity of the electrode can be made extremely good. This has effects such as improving the cycle characteristics and energy density of the secondary battery, and improving the flatness of the discharge voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の電池構造を示した断面図、
第2図は各種電池の充放電における電池電圧の経時変化
を示したグラフ、第3図は各種電池のサイクル特性を示
したグラフ、第4図はサイクル寿命と熱可塑性樹脂の混
合量との関係を示したグラフでおる。 1・・・正極、3・・・負極、5・・・正極缶、7・・
・負極色。 特許出願人   三菱化成工業株式会社同    三洋
電機株式会社
FIG. 1 is a sectional view showing the battery structure of an embodiment of the present invention;
Figure 2 is a graph showing changes in battery voltage over time during charging and discharging of various batteries, Figure 3 is a graph showing cycle characteristics of various batteries, and Figure 4 is the relationship between cycle life and the amount of thermoplastic resin mixed. This is a graph showing the following. 1... Positive electrode, 3... Negative electrode, 5... Positive electrode can, 7...
・Negative polarity. Patent applicant Mitsubishi Chemical Industries, Ltd. Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、主鎖に共役二重結合をもたない導電性ポリマー、熱
可塑性樹脂、および導電性部材よりなる複合体を正極ま
たは負極の少なくとも一方の電極とした二次電池であつ
て、熱可塑性樹脂の混合量が導電性ポリマーに対する重
量比で0.005〜0.2であることを特徴とする二次
電池。
1. A secondary battery in which at least one of the positive electrode and the negative electrode is a composite consisting of a conductive polymer that does not have a conjugated double bond in its main chain, a thermoplastic resin, and a conductive member, the thermoplastic resin A secondary battery characterized in that the mixing amount of is 0.005 to 0.2 in weight ratio to the conductive polymer.
JP60179129A 1985-08-14 1985-08-14 Secondary battery Expired - Lifetime JPH0727775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60179129A JPH0727775B2 (en) 1985-08-14 1985-08-14 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60179129A JPH0727775B2 (en) 1985-08-14 1985-08-14 Secondary battery

Publications (2)

Publication Number Publication Date
JPS6240165A true JPS6240165A (en) 1987-02-21
JPH0727775B2 JPH0727775B2 (en) 1995-03-29

Family

ID=16060493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60179129A Expired - Lifetime JPH0727775B2 (en) 1985-08-14 1985-08-14 Secondary battery

Country Status (1)

Country Link
JP (1) JPH0727775B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221560A (en) * 1988-07-11 1990-01-24 Tokuyama Soda Co Ltd Film state material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998165A (en) * 1982-08-02 1984-06-06 レイケム・リミテツド Electroconductive polymer composition
JPS6010570A (en) * 1983-06-30 1985-01-19 Showa Denko Kk Secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998165A (en) * 1982-08-02 1984-06-06 レイケム・リミテツド Electroconductive polymer composition
JPS6010570A (en) * 1983-06-30 1985-01-19 Showa Denko Kk Secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221560A (en) * 1988-07-11 1990-01-24 Tokuyama Soda Co Ltd Film state material

Also Published As

Publication number Publication date
JPH0727775B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
WO2011068217A1 (en) Air cell
JPS6240165A (en) Secondary battery
JP2021163558A (en) Electrode active material for secondary battery, and secondary battery using the same
US7544441B2 (en) Secondary battery having an active material radical compound
JPH0821430B2 (en) Secondary battery
JPS5942784A (en) Battery
JPS59112584A (en) Battery
JP2501821B2 (en) Secondary battery
JPH0650637B2 (en) Secondary battery
JPH0722025B2 (en) Secondary battery
JPS6240178A (en) Battery
JP2644480B2 (en) Rechargeable battery
JP5716934B2 (en) Electrode active material, electrode, and secondary battery
JPS62110257A (en) Secondary battery
JPS6240175A (en) Secondary battery
JPH0622127B2 (en) Secondary battery
JPH0373992B2 (en)
JPS62226567A (en) Secondary battery
JPH0719603B2 (en) Secondary battery
JPH0527232B2 (en)
JPH0821383B2 (en) Secondary battery
JPH0677464B2 (en) Secondary battery
JPS58206078A (en) Battery
JPS59160965A (en) Battery
JPS61232563A (en) Nonaqueous solvent secondary battery