JPS6240175A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPS6240175A
JPS6240175A JP60179132A JP17913285A JPS6240175A JP S6240175 A JPS6240175 A JP S6240175A JP 60179132 A JP60179132 A JP 60179132A JP 17913285 A JP17913285 A JP 17913285A JP S6240175 A JPS6240175 A JP S6240175A
Authority
JP
Japan
Prior art keywords
polymer
electrode
solid electrolyte
battery
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60179132A
Other languages
Japanese (ja)
Other versions
JPH0727776B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Koji Nishio
晃治 西尾
Tetsuyoshi Suzuki
鈴木 哲身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Sanyo Electric Co Ltd
Original Assignee
Mitsubishi Kasei Corp
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Sanyo Electric Co Ltd filed Critical Mitsubishi Kasei Corp
Priority to JP60179132A priority Critical patent/JPH0727776B2/en
Publication of JPS6240175A publication Critical patent/JPS6240175A/en
Publication of JPH0727776B2 publication Critical patent/JPH0727776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/365Zinc-halogen accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make a secondary cell good in long-period preservation and in high-temperature preservation and operation, by making at least one electrode of an electroconductive polymer having no conjugate double bond in the main chain, and by providing a solid electrolyte. CONSTITUTION:At least one electrode is made of an erlectroconductive polymer having no conjugate double bond in the main chain. A solid electrolyte is provided. The electroconductive polymer has a molecular weight of about 10,000 to 500,000 in general. For example, the polymer is an acenaphthylene polymer having a constituting unit represented by a formula 1. To be concrete, the electroconductive polymer is polyacenaphthylene or the like. A negative electrode is made of a polymer obtained through the radical polymerization of an acenaphthylene compound represented by a formula 2 or through the like. In the formulae 1 and 2, R<1> and R<2> denote hydrogen atoms or the like.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は二次電池に関し、詳しくは、導電性ポリマー
を電極材料とした固体電解質二次電池に関するものでお
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a secondary battery, and more particularly to a solid electrolyte secondary battery using a conductive polymer as an electrode material.

〈従来の技術〉 従来より非水電解液二次電池としては、リチウム等の軽
金属からなる負極に、二硫化チタン素酸リチウム(L 
i C,+204 > 、ホウフ、ツ化リチウム(Li
BF4)等の塩を溶解・させた非水電解質を用いて構成
される・電池系のものが検討されてきた。
<Conventional technology> Conventionally, non-aqueous electrolyte secondary batteries have used lithium titanate disulfide (L) as a negative electrode made of a light metal such as lithium.
i C, +204 > , Houf, lithium tsunide (Li
Battery systems constructed using non-aqueous electrolytes in which salts such as BF4) are dissolved have been studied.

また近年、ポリアセチレンに代表される導電性ポリマー
を電極材料とした二次電池(所謂ポリマー電池)が提案
されている。
Furthermore, in recent years, secondary batteries (so-called polymer batteries) using conductive polymers such as polyacetylene as electrode materials have been proposed.

この種の二次電池の電極材料となる導電性ポリマーは、
通常は導電性はわずかであるが、各種のドーパン1〜を
ドーピング、アンド−ピングすることが可能でおり、ド
ーピングにより導電性が飛躍的に上置する。そして、ア
ニオンをドーピングした導電性ポリマー化合物は正極I
A料として、またカチオンをドーピングした導電i生ポ
リマー化合物は負極材料として各々使用され、ドーピン
グ及びアンド−ピングを電気化学的に可逆的に行なうこ
とにより充放電可能な電池を構成することが、例えばA
、 G、 MaCDiarmids、 : J 、 E
 Iectrochem : Soc、、128165
1 (198t)、あるいは特開昭56−138469
月公報等において提案されている。
The conductive polymer that serves as the electrode material for this type of secondary battery is
Normally, the conductivity is slight, but it is possible to dope or undope with various dopants 1 to 1, and the conductivity is dramatically increased by doping. Then, the anion-doped conductive polymer compound is used as the positive electrode I.
The conductive raw polymer compound doped with cations is used as the A material and as the negative electrode material, and it is possible to construct a chargeable and dischargeable battery by performing doping and undoping electrochemically and reversibly, for example. A
, G., MaCDiarmids: J.E.
Ielectrochem: Soc, 128165
1 (198t) or JP-A-56-138469
It has been proposed in the monthly bulletin, etc.

他方、非水電解質として固体電解質を用いた電池の研究
も多くなされている。このような固体電解質電池は、漏
液がないので保存特性が優れていること、広い温度範囲
で使用できること、セパレータを使用する必要がないの
で電池の極薄型化が容易なこと等の特長があり、現在柱
々な電極材料が検討されている。そのうち、上記のよう
な導電性ポリマーのうちポリアセチレン等を電極材料と
して使用するものが、例えば特開昭58−128677
号公報などに開示されているように提案されている。
On the other hand, many studies have been conducted on batteries using solid electrolytes as non-aqueous electrolytes. These solid electrolyte batteries have the following advantages: they have excellent storage characteristics because they do not leak, they can be used over a wide temperature range, and they do not require a separator, making it easy to make the batteries extremely thin. Currently, various electrode materials are being considered. Among these, among the above-mentioned conductive polymers, those using polyacetylene etc. as electrode materials are disclosed in, for example, JP-A-58-128677.
It has been proposed as disclosed in the No.

〈発明が解決しようとする問題点〉 しかしながら、この種のポリマー電池の電極材、料とし
て提案されているポリアセチレン等は主鎖に兵役二重結
合をもつ導電性ポリマーであり、このようなポリマーは
不安定で、空気中の酸素によって非常にたやすく酸化さ
れ、また3 00 ’C以上の温度になると熱変成や熱
分解を起こし易い等の欠点かめる。このため、この種の
ポリマーを用いて電池を製造する際には電極作製環境の
管理が重大で極めて難しく、電極作製作業が煩雑化し、
電極自身の保存性が悪い等の欠点がおる。また電池特性
も微iの酸素や水により劣化し易く、更に温度によって
影響を受は易いため、固体電解質を用いたポリマー電池
に使用した時には、長期保存や高温での保存1作動にお
いて難があり、固体電解質電池の特長が生かしきれない
のが現状である。
<Problems to be solved by the invention> However, polyacetylene and other materials proposed as electrode materials for this type of polymer battery are conductive polymers that have military double bonds in their main chains; It has drawbacks such as being unstable and being oxidized very easily by oxygen in the air, and being susceptible to thermal transformation and thermal decomposition at temperatures above 300'C. For this reason, when manufacturing batteries using this type of polymer, it is important and extremely difficult to control the electrode manufacturing environment, making the electrode manufacturing work complicated.
There are drawbacks such as poor storage stability of the electrode itself. In addition, battery characteristics are easily deteriorated by small amounts of oxygen and water, and are also easily affected by temperature, so when used in polymer batteries using solid electrolytes, there may be difficulties in long-term storage or storage and operation at high temperatures. Currently, the features of solid electrolyte batteries cannot be fully utilized.

〈問題点を解決するための手段〉 この発明の二次電池は、主鎖に共役二重結合を痔だない
導電性ポリマーを少なくとも一方の電極とすると共に、
固体電解質を有してなることを要旨とするものである。
<Means for Solving the Problems> The secondary battery of the present invention uses a conductive polymer that does not have a conjugated double bond in its main chain as at least one electrode, and
The gist thereof is to include a solid electrolyte.

主鎖に共役二重結合を有ざない導電性ポリマーの分子量
としては、一般に1万〜50万程度のものが使用され、
例えば次式によって表せられる偶成単位を有するもの等
の7セナフチレン系重合体が挙げられる。
The molecular weight of a conductive polymer that does not have a conjugated double bond in its main chain is generally about 10,000 to 500,000,
Examples include 7-cenaphthylene-based polymers having an incidental unit represented by the following formula.

式中、R1、R2は、水素原子;ハロゲン原子、例えば
、塩素、臭素、沃素:アルキル基、例えば、炭素数1〜
6、好ましくは、炭素数1〜3のアルキル基;アルコキ
シ基、例えば、炭素数1〜6、好ましくは、炭素数1〜
3のアルコキシ基;アリール基、例えば、フェニル基、
1−ルイル基;アリロギシ基、例えば、フェノキシ基、
メチルフェノキシ基:ニトロ基ニジアノ基を表わす。
In the formula, R1 and R2 are a hydrogen atom; a halogen atom, such as chlorine, bromine, and iodine; an alkyl group, such as a carbon number of 1 to
6, preferably an alkyl group having 1 to 3 carbon atoms; an alkoxy group, for example, 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms;
3 alkoxy group; aryl group, for example, phenyl group,
1-ruyl group; aryloxy group, e.g. phenoxy group,
Methylphenoxy group: Represents a nitro group or a diano group.

具体的には、例えば、ポリアセナフチレン。Specifically, for example, polyacenaphthylene.

ポリブロムアセナフチレン、ポリクロルアセナフチレン
、ポリエチルアセナフチレン、ポリジメヂルアセナフチ
レン、ポリメトキシアセナフチレン、ポリジフェニルア
セナフチレン、ポリフェノキシアセナフチレン、ポリエ
チルアセナフチレン、ポリシアノアセナフチレン等が挙
げられる。
Polybromoacenaphthylene, polychloroacenaphthylene, polyethylacenaphthylene, polydimethylacenaphthylene, polymethoxyacenaphthylene, polydiphenylacenaphthylene, polyphenoxyacenaphthylene, polyethylacenaphthylene, poly Examples include cyanoacenaphthylene.

本発明で負極として用いられる該ポリマーは、例えば下
記一般式(2) (式中、R1、R2は一般式(1)と同一の意味を表わ
す。)で示されるアセナフチレン化合物を公知の方法、
即ちラジカル重合する方法(ケミカルアブストラフ1〜
55巻、12911頁(1961) )、カチオン重合
する方法(高分子化学15巻、No、 158.368
 頁(1958) ) 、?ニオン’J合する方法(ポ
リマー・コミュニケーション25巻、108i (19
84) )等に準じて得ることができる。
The polymer used as the negative electrode in the present invention can be obtained by preparing an acenaphthylene compound represented by the following general formula (2) (wherein R1 and R2 have the same meanings as in general formula (1)) by a known method.
That is, the method of radical polymerization (Chemical abstract rough 1~
Vol. 55, p. 12911 (1961)), Method of cationic polymerization (Kobunshi Kagaku Vol. 15, No. 158.368
Page (1958) ),? How to combine ions' J (Polymer Communication Vol. 25, 108i (19
84) ) etc.

また一般式(1)においてR1および/またはR2が水
素の場合のポリマーを上記の重合方法によって得た後に
ポリマーの側鎖を公知の方法(ジャーナル・オブ・オー
ガニック・ケミス1〜り一48巻、2949頁(198
3) )に準じて高分子反応を行なって、Rおよび/ま
たはR2が水素以外の置換基を有する一般式(1)で示
される溝道単位を有するポリマーを1nることができる
Further, after obtaining a polymer in which R1 and/or R2 are hydrogen in the general formula (1) by the above polymerization method, the side chains of the polymer are prepared by a known method (Journal of Organic Chemistry Vol. 1-148, 2949 pages (198
3) A polymer having a channel unit represented by the general formula (1) in which R and/or R2 has a substituent other than hydrogen can be obtained by carrying out a polymer reaction according to (3)).

前記する一般式(2)で示されるアセナフチレン化合物
の重合反応に於てラジカル重合反応では開始剤として通
常のラジカル重合反応の開始剤が使用されるが、好まし
くはベンゾイルパーオキシド、アゾビスイソブチロニト
リル、過硫酸アンモニウム、過硫酸カリウム等が使用さ
れ、アセナフチレン化合物に対する開始剤の使用量は1
0〜10−1モル比の範囲で行なうのが好ましい。反応
は無溶媒で行なうか、ベンゼン。
In the radical polymerization reaction of the acenaphthylene compound represented by the general formula (2) described above, an ordinary radical polymerization initiator is used as an initiator, preferably benzoyl peroxide, azobisisobutyro Nitrile, ammonium persulfate, potassium persulfate, etc. are used, and the amount of initiator used for the acenaphthylene compound is 1
The molar ratio is preferably 0 to 10<-1>. The reaction is carried out without solvent or with benzene.

トルエン、ヘプタン等の有機溶媒又は水−乳化剤系の水
溶媒中で行なう。溶媒を使用する場合、アセナフチレン
化合物は1Q−2〜102モル濃度の範囲で行なうのが
好ましい。反応温度は0〜150°Cの範囲で行なうが
、好ましくは10〜100 °Cで行なわれる。カチオ
ン重合反応では開始剤として通常のカチオン重合反応の
開始剤が使用されるが、好ましくは三フッ化ホウ素エー
テラート、塩化アルミニウム、臭化アルミニウム、五フ
ッ化リン、1〜リフルオロメタンスルフオン酸エステル
等が使用され、アセナフチレン化合物に対する開始剤の
使用iは10−6〜10−1モル比の範囲で行なうのが
好ましい。反応は塩化メチレン、四塩化炭素、二(・ロ
メタン。
The reaction is carried out in an organic solvent such as toluene or heptane, or in an aqueous solvent based on a water-emulsifier system. When a solvent is used, the acenaphthylene compound is preferably used in a concentration range of 1Q-2 to 102 molar. The reaction temperature ranges from 0 to 150°C, preferably from 10 to 100°C. In the cationic polymerization reaction, an ordinary cationic polymerization reaction initiator is used as an initiator, but preferably boron trifluoride etherate, aluminum chloride, aluminum bromide, phosphorus pentafluoride, 1-lifluoromethanesulfonic acid ester etc., and the use of initiator i to the acenaphthylene compound is preferably carried out in a molar ratio of 10@-6 to 10@-1. The reaction involves methylene chloride, carbon tetrachloride, and di(-lomethane).

ジクロルエタン等の有機溶媒中で行ない10−2〜10
2モル濃度の範囲で行なうのが好ましい。
10-2 to 10 in an organic solvent such as dichloroethane
Preferably, it is carried out within a 2 molar concentration range.

反応温度は一78〜100℃、好ましくは一78〜50
’Cで行なわれる。アニオン重合反応では開始剤として
通常のアニオン重合反応の開始剤が使用されるが、好ま
しくはn−ブチルリチウム、  5ec−ブチルリチウ
ム、フェニルマグネシウムブロマイド等が使用され、ア
セナフチレン化合物に対する開始剤の使用量は10−6
〜10−1モル比の範囲で行なうのが好ましい。反応は
エーテル系溶媒、好ましくはジエチルエーテル、ジブチ
ルエーテル、テトラヒドロフラン。
The reaction temperature is -78 to 100°C, preferably -78 to 50°C.
' It is done in C. In the anionic polymerization reaction, a normal anionic polymerization reaction initiator is used as an initiator, preferably n-butyllithium, 5ec-butyllithium, phenylmagnesium bromide, etc., and the amount of initiator used relative to the acenaphthylene compound is 10-6
The molar ratio is preferably 10-1. The reaction is carried out using an ether solvent, preferably diethyl ether, dibutyl ether, or tetrahydrofuran.

ジオキサン、ジフェニルエーテル等の中で行なわれ、ア
セナフチレン化合物は1o−2〜102モル濃度の範囲
で行なうのが好ましい。反応温度は一78〜15°O℃
、好まシクハ−78〜1o。
It is preferably carried out in dioxane, diphenyl ether, etc., and the acenaphthylene compound is preferably carried out at a concentration in the range of 10@-2 to 10@2 molar. The reaction temperature is -78~15°C
, preferably Shikuha-78-1o.

℃で行なわれる。It is carried out at ℃.

このような主鎖に共役二重結合をもたない導電性ポリマ
ーはポリアセチレン等と較べて空気中で安定で酸化され
ることがなく、また300 ’C以上の温度においても
熱分解などによる変質がない等の特長がある。
Conductive polymers that do not have conjugated double bonds in their main chains are more stable in air than polyacetylene and do not oxidize, and do not undergo deterioration due to thermal decomposition even at temperatures above 300'C. There are some features such as:

尚、この種の導電性ポリマーは単独で電池の電極として
用いることも可能でおるが、機械的強度、導電性を上昇
させ電池特性を向上させるためには熱可塑性樹脂、導電
性部材等を添加することが望ましい。
Although this type of conductive polymer can be used alone as a battery electrode, it is necessary to add thermoplastic resin, conductive materials, etc. to increase mechanical strength and conductivity and improve battery characteristics. It is desirable to do so.

この種のポリマーを用いる電池の一例として、負極にこ
の種のポリマー、正極に金属硫化物、電解質としてリチ
ウムイオン伝導性の固体電解質を用いてなる二次電池の
各電極における電池反応は次のように表わされる。
As an example of a battery that uses this type of polymer, the battery reaction at each electrode of a secondary battery that uses this type of polymer for the negative electrode, a metal sulfide for the positive electrode, and a lithium ion conductive solid electrolyte for the electrolyte is as follows. is expressed in

(充電) (負極>  P十Li+ =:= P(Li)(放電) (放電) 但し P:導電性ポリマー M:金属原子 即ち、この電池系の場合、放電時には導電性ポリマーか
らL1+がアンド−ピングされて金属硫化物と反応し、
充電時には逆の反応が起こる訳でおる。
(Charge) (Negative electrode> P + Li+ =:= P (Li) (Discharge) (Discharge) However, P: Conductive polymer M: Metal atom In other words, in this battery system, when discharging, L1+ from the conductive polymer pinged and reacts with metal sulfides,
When charging, the opposite reaction occurs.

この種の電池系に用いられるリチウム導電性固体電解質
の例としては、Li1. Lir−A、e203.Li
3N、LISICON、IJ−)ラムイオン導電性ガラ
ス(例えばL;2S−P2S5−LiI系等)、γ1−
L!3PO4型構造を有するリチウムイオン尋電体(例
えばL 14 S ! 04 − L 13 PO4系
等〉、リチウムイオン導電性高分子電解質(例えばポリ
エチレンオキシドーLICJ204系等)及びそれらに
添加物を加えたもの等がある。
Examples of lithium conductive solid electrolytes used in this type of battery system include Li1. Lir-A, e203. Li
3N, LISICON, IJ-) Lamb ion conductive glass (e.g. L; 2S-P2S5-LiI system, etc.), γ1-
L! Lithium ion conductive materials having a 3PO4 type structure (e.g. L14S!04-L13PO4 type etc.), lithium ion conductive polymer electrolytes (e.g. polyethylene oxide LICJ204 type etc.) and additives added thereto etc.

上記の例においては固体電解質としてリチウムイオン導
電体を示したが、負極活物質としてす1〜リウム必るい
はカリウムを用いる場合には、それぞれナトリウムイオ
ン導電性、あるいはカリウムイオン導電性の固体電解質
を用いれば良い。
In the above example, a lithium ion conductor is shown as the solid electrolyte, but when using lithium or potassium as the negative electrode active material, a solid electrolyte with sodium ion conductivity or potassium ion conductivity is used, respectively. Just use it.

〈作 用〉 電極として使用する主鎖に共役二重結合をもたない導電
性ポリマーは上jホの如く酸素や水分及び熱に対して安
定なため、固体電解質を用いた二次電池の特性改善を図
ることができる。
<Function> Conductive polymers that do not have conjugated double bonds in their main chains and are used as electrodes are stable against oxygen, moisture, and heat, as shown in (e) above, so the characteristics of secondary batteries using solid electrolytes are Improvements can be made.

〈実施例〉 容量500mgの四ツロ丸底フラスコにアセナフチレン
 20.0CI (0,131モル)、ドテシル硫酸ナ
トリウム2.Oq、脱塩水100mNを採り、窒素で系
内を置換し、更に過FiA酸アンモニウム6.1111
gを添加する。これらを攪拌しながら反応温度90’C
で4時間保持したのち、反応液を冷却し、硫酸ナトリウ
ムの飽和水溶液中に添加し、生成したポリアセナフチレ
ンを析出させた。次いで、メタノール及び水による洗浄
並びに濾過を繰り返した後、得られた淡黄色固体を1〜
ルエンに溶解し、人員のメタノール中にあけて再沈L 
Wb4 L/、12.9CIの淡黄色重合体(ポリアセ
ナフチレン)を得た。この重合体をテ(〜ラヒドロフラ
ンを用いたGPCによる分子量測定にかけたところ、屯
邑平均分子耐は1.5X 105であった。
<Example> In a four-bottle round bottom flask with a capacity of 500 mg, 20.0 CI (0,131 mol) of acenaphthylene and 2. Take Oq, 100 mN of demineralized water, replace the system with nitrogen, and add 6.1111 ammonium perfiA acid.
Add g. While stirring these, the reaction temperature was 90'C.
After being held for 4 hours, the reaction solution was cooled and added to a saturated aqueous solution of sodium sulfate to precipitate the produced polyacenaphthylene. Next, after repeated washing with methanol and water and filtration, the obtained pale yellow solid was
Dissolved in luene, poured into methanol and reprecipitated.
A pale yellow polymer (polyacenaphthylene) of Wb4 L/, 12.9 CI was obtained. When this polymer was subjected to molecular weight measurement by GPC using TE (~rahydrofuran), the average molecular resistance of the polymer was found to be 1.5×105.

次に、こうして得たポリアセナフチレンに−n−ヘキサ
ン中でn−ブチルリチウムを添IJ口してポリアセナフ
チレン中にリチウムをドーピングし、これを乾燥した後
、導電剤としてアセチレンブラック(AB)、結着剤と
してポリテトラフルオロエチレン(TFE>を、重量比
でポリアセナフチレン:AB:TFE=80:10:1
0となるように混合し110圧成形して負匝とした。ま
た、固体電解質としては、ヨウ化リチウム−アルミナ(
2:1)系を用い、正極としては、混合比でT i 3
2  :AB : TFE=80:10:10となるよ
うに混合したものを用いた。
Next, n-butyllithium was added to the polyacenaphthylene thus obtained in -n-hexane to dope lithium into the polyacenaphthylene, and after drying, acetylene black ( AB), polytetrafluoroethylene (TFE) as a binder, weight ratio of polyacenaphthylene:AB:TFE=80:10:1
The mixture was mixed to a temperature of 0 and then molded under 110 pressure to form a negative sucrose. In addition, as a solid electrolyte, lithium iodide-alumina (
2:1) system, and as a positive electrode, the mixture ratio is T i 3
2:AB:TFE was mixed in a ratio of 80:10:10.

以上のようにして作った正極500mg 、固体電解質
150mc+ 、負極300mgをこの順で2層mmφ
の成形金型の中に入れて3層を同時にプレスした後、公
知の絶縁バッキング4、正極缶5、正極集電体6、負極
缶7、負極集電体8を組合せて、第1図に示す構造の、
本発明に係る電池を作製した。また、比較のため、負極
に用いる導電性ポリマーとしてポリアセチレンを用いた
以外は全く同様にして電池Bを作製した。
500mg of the positive electrode, 150mc+ solid electrolyte, and 300mg of the negative electrode made as above, in this order, in two layers mmφ.
After putting the three layers into a mold and pressing the three layers at the same time, the known insulating backing 4, positive electrode can 5, positive electrode current collector 6, negative electrode can 7, and negative electrode current collector 8 were combined, as shown in FIG. of the structure shown,
A battery according to the present invention was manufactured. Further, for comparison, Battery B was produced in exactly the same manner except that polyacetylene was used as the conductive polymer for the negative electrode.

これらの電池△、Bを用い、環境温度80’Cにおいて
、0.1mAで2時間充電し、0.1mAで終止電圧0
.5■まで放電するという充放電試験をした所、初すイ
クルでは電池A、Bはいずれも70%以上の充放電効率
を示した。そこで、このような一連の充放電サイクルを
繰り返し、充放電容量効率のサイクル変化を調べた。こ
の結果は第2図に示す通りであり、本発明の電池Aは6
0サイクルを経過しても初サイクルとほぼ同じ充放電@
量効率を維持しているのに対し、電池Bでは20サイク
ルを経過した時点から充放電容量効率の劣化がみられ、
60サイクルにおいては電池Aに較べて大幅な性能低下
がみられた。
These batteries △ and B were charged at 0.1 mA for 2 hours at an environmental temperature of 80'C, and the final voltage reached 0 at 0.1 mA.
.. When a charge/discharge test was performed in which the batteries were discharged to 5 ■, both batteries A and B showed a charge/discharge efficiency of 70% or more in the first cycle. Therefore, such a series of charge/discharge cycles was repeated to examine cycle changes in charge/discharge capacity efficiency. The results are as shown in FIG. 2, and the battery A of the present invention has 6
Even after 0 cycles, charging and discharging is almost the same as the first cycle @
While the volume efficiency was maintained, battery B showed a deterioration in charge/discharge capacity efficiency after 20 cycles.
At 60 cycles, a significant decrease in performance was observed compared to Battery A.

この理由としては、本発明の電池Aに用いたポリマーが
電池系内に存在する微量の酸素や水分によっては殆んど
劣化せず、また高温化でも長期間安定なためであると考
えられる。
The reason for this is thought to be that the polymer used in Battery A of the present invention is hardly degraded by trace amounts of oxygen or moisture present in the battery system, and is stable for a long period of time even at high temperatures.

尚、この発明を正極に応用しても同様な効果が得られる
ことは明らかでおる。
It is clear that similar effects can be obtained even when this invention is applied to a positive electrode.

〈発明の効果〉 以上のように構成されるこの発明の二次電池は、電極材
料として主鎖に兵役二重結合を持たない導電性ポリマー
を用いてなるものであり、このようなポリマーは酸素や
水分及び熱に対して安定であるので、固体電解質を用い
た電池の電極材料としては@適であり、この種の固体電
解質電池の特性が著しく改善されるといった効果を奏す
る。
<Effects of the Invention> The secondary battery of the present invention constructed as described above uses a conductive polymer that does not have a military double bond in its main chain as an electrode material. Since it is stable against water, moisture, and heat, it is suitable as an electrode material for batteries using solid electrolytes, and has the effect of significantly improving the characteristics of this type of solid electrolyte batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の電池構造を示した断面図、
第2図は各種電池の充放電容伍効等のサイクル特性゛を
示したグラフである。 1・・・正極、2・・・固体電解質、3・・・負極、5
・・・正極缶、7・・・負極缶。 特許出願人   三菱化成工業株式会社同    三洋
電機株式会社
FIG. 1 is a sectional view showing the battery structure of an embodiment of the present invention;
FIG. 2 is a graph showing cycle characteristics such as charge/discharge capacity and effectiveness of various batteries. 1... Positive electrode, 2... Solid electrolyte, 3... Negative electrode, 5
...Positive electrode can, 7...Negative electrode can. Patent applicant Mitsubishi Chemical Industries, Ltd. Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、主鎖に共役二重結合を持たない導電性ポリマーを少
なくとも一方の電極とすると共に、固体電解質を有して
なることを特徴とする二次電池。
1. A secondary battery comprising at least one electrode made of a conductive polymer that does not have a conjugated double bond in its main chain, and a solid electrolyte.
JP60179132A 1985-08-14 1985-08-14 Secondary battery Expired - Lifetime JPH0727776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60179132A JPH0727776B2 (en) 1985-08-14 1985-08-14 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60179132A JPH0727776B2 (en) 1985-08-14 1985-08-14 Secondary battery

Publications (2)

Publication Number Publication Date
JPS6240175A true JPS6240175A (en) 1987-02-21
JPH0727776B2 JPH0727776B2 (en) 1995-03-29

Family

ID=16060542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60179132A Expired - Lifetime JPH0727776B2 (en) 1985-08-14 1985-08-14 Secondary battery

Country Status (1)

Country Link
JP (1) JPH0727776B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235167A (en) * 1988-02-29 1989-09-20 Henry F Hope Rechargeable cell
JP2021157919A (en) * 2020-03-26 2021-10-07 住友大阪セメント株式会社 Lithium ion polymer battery and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157863A (en) * 1979-05-28 1980-12-08 Seiko Instr & Electronics Ltd Solid electrolyte cell
JPS5652868A (en) * 1979-10-05 1981-05-12 Citizen Watch Co Ltd Solid-electrolyte battery
JPS5998165A (en) * 1982-08-02 1984-06-06 レイケム・リミテツド Electroconductive polymer composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157863A (en) * 1979-05-28 1980-12-08 Seiko Instr & Electronics Ltd Solid electrolyte cell
JPS5652868A (en) * 1979-10-05 1981-05-12 Citizen Watch Co Ltd Solid-electrolyte battery
JPS5998165A (en) * 1982-08-02 1984-06-06 レイケム・リミテツド Electroconductive polymer composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235167A (en) * 1988-02-29 1989-09-20 Henry F Hope Rechargeable cell
JP2021157919A (en) * 2020-03-26 2021-10-07 住友大阪セメント株式会社 Lithium ion polymer battery and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0727776B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
US5529860A (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
JP2717890B2 (en) Lithium secondary battery
US5597661A (en) Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof
US5601947A (en) Electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same
KR950001257B1 (en) Secondary battery
JP5827404B2 (en) Electrode protective film forming agent
EP1189295B1 (en) Secondary battery and capacitor utilizing indole compounds
KR20170042660A (en) Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using same
KR100389713B1 (en) Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof
Zhang et al. Redox shuttle additives for lithium-ion battery
JPS6240175A (en) Secondary battery
GB2385706A (en) Secondary battery and capacitor utilizing indole compounds
CN108615937B (en) Polymer electrolyte, solid electrolyte membrane and lithium ion battery
US6309778B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
JPS6054181A (en) Rechargeable battery
JP2015103465A (en) Electrode additive agent for lithium secondary batteries
WO2021106834A1 (en) Electrode material
JP3161906B2 (en) Polymer solid electrolyte, battery and solid electric double layer capacitor using the same, and methods for producing them
JPH0722025B2 (en) Secondary battery
JP2002141065A (en) Redox active reversible electrode and lithium secondary battery using same
JPS6240178A (en) Battery
JP2607571B2 (en) Novel conductive polymer and secondary battery using it as cathode material
JPS61224264A (en) Secondary battery
JPS60262355A (en) Secondary battery
JPS61285656A (en) Nonaqueous system secondary cell