JPS61232563A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPS61232563A
JPS61232563A JP60072692A JP7269285A JPS61232563A JP S61232563 A JPS61232563 A JP S61232563A JP 60072692 A JP60072692 A JP 60072692A JP 7269285 A JP7269285 A JP 7269285A JP S61232563 A JPS61232563 A JP S61232563A
Authority
JP
Japan
Prior art keywords
polythiophene
negative electrode
active material
battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60072692A
Other languages
Japanese (ja)
Inventor
Riichi Shishikura
利一 獅々倉
Masao Kobayashi
小林 征男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP60072692A priority Critical patent/JPS61232563A/en
Publication of JPS61232563A publication Critical patent/JPS61232563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve cycle life by using an active material mainly comprising polythiophene or polythiophene derivative, aluminum, and lithium in a negative electrode. CONSTITUTION:8mg of Al-Li alloy having an atomic percentage of 55:45 and 2mg of polythiophene powder obtained by washing with tetrahydrofuran and drying under a reduced pressure is mixed with a mortar in an atmosphere of argon. The mixture is molded in a pellet having a 10mm diameter and wrapped with nickel net 3, and a nickel wire 3 is drawn out from the nickel net 3 to form a negative active material. About 50g of lithium foil pressed on a nickel net 4 is used as a counter electrode. About 20ml of solution obtained by dissolving 1mol/l of LiBF4 in the mixture solvent of 2Me-THF and TMS having a volume ratio of 1:1 is used as electrolyte 5. They are accommodated into a glass cell with cover to form a secondary battery. The cycle life of this battery is lengthened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、エネルギー密度が高く、充放電の可逆性が良
好であり、かつ自己放電率の極めて低い、高性能非水溶
媒系二次電池に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a high-performance non-aqueous solvent secondary battery that has high energy density, good charge/discharge reversibility, and extremely low self-discharge rate. Regarding.

[従来の技術及び発明が解決しよう、とする問題点1現
在汎用されている二次電池には、鉛N電池、Ni/Cd
W池等がある。これらの二次電池は、単セルの電池電圧
が最大2.0V程度であり、一般には、水溶液系の電池
である。最近、電池電圧を高くとることができる二次電
池として、l−iを負極に用いた電池の二次電池化の研
究が盛んに行なわれている。
[Problems to be solved by the conventional technology and invention 1 Currently used secondary batteries include lead-N batteries, Ni/Cd batteries, etc.
There is W Pond etc. These secondary batteries have a single cell battery voltage of about 2.0 V at maximum, and are generally aqueous batteries. Recently, as a secondary battery capable of achieving a high battery voltage, research has been actively conducted on the development of a secondary battery using l-i as a negative electrode.

1−iを電極に用いた場合には、水とli との高G)
反応性のため、電解液としては非水系を用いることが必
要である。
When 1-i is used as an electrode, the high G between water and li)
Due to the reactivity, it is necessary to use a non-aqueous electrolyte.

しかし、l−iを負極活物質として二次電池反応を行な
う場合には、充電時にli+が還元されるときにデンド
ライトが生じ、充放電効率の低下及び正・負極の短絡等
の問題がある。そのため、デンドライトを防止し、負極
の充放電効率、サイクル寿命を改良するための技術開発
も数多く報告されており、例えばメチル化した環状ニー
デル系溶媒を電池の電解液の溶媒として用いる方法〔ケ
ー・エム・アブラハム等“リチウム バッチリーズ″、
ジェー・ピー・ガパノ纏集、アカデミツクプレス発行、
ロンドン(1983年)、に、M。
However, when carrying out a secondary battery reaction using li as a negative electrode active material, dendrites are generated when li+ is reduced during charging, resulting in problems such as a decrease in charge/discharge efficiency and a short circuit between the positive and negative electrodes. Therefore, many technological developments have been reported to prevent dendrites and improve the charge/discharge efficiency and cycle life of negative electrodes. M Abraham et al. “Lithium Batches”,
J.P. Gapano Collection, published by Academic Press,
London (1983), M.

Abraham et al、 in  ” L i 
thium 13atteries” 。
Abraham et al.
thium 13 atteries”.

J、 P、 Gabano、 ediicr、  Ac
ademic press。
J, P, Gabano, ediicr, Ac
academic press.

ヰ#≠掌London  (1983) )や電解液系
に添加物を配合したり、電極自体をへ吏と合金化するこ
とにより、Llのデンドライトを防止する方法〔特開昭
59−108281号〕等が提案されている。
ヰ#≠Short London (1983)), a method of preventing Ll dendrites by adding additives to the electrolytic solution system, or alloying the electrode itself with helical metal [JP-A-59-108281], etc. is proposed.

しかし、これらの従来技術では、未だliの充放電の可
逆性が不充分であり、サイクル寿命が必ずしも満足でき
るものではない。
However, in these conventional techniques, the reversibility of charging and discharging li is still insufficient, and the cycle life is not necessarily satisfactory.

また、Anとl−iの合金を負極に用いただけでは、負
極自体の使用中における脆性の問題があるばかりでなく
、高電密(1mA/ci!以上)の充放電では、Llを
負極に用いた場合と同様にデンドライトは避けられない
ものであった。特にLlの利用率を上げ、エネルギー密
度を高くするために、AFL−Li合金中のl−i含有
量を増加させると、デンドライト等、上記の問題の発生
は顕著であり、二次電池としての性能、特に充放電の繰
り返しは充分実用に耐える程には行なえなかった。
In addition, if only an alloy of An and l-i is used for the negative electrode, not only will there be a problem of brittleness of the negative electrode itself during use, but also when charging and discharging at high electric density (1 mA/ci! or more), Ll will be used as the negative electrode. As in the case where dendrites were used, dendrites were unavoidable. In particular, when the l-i content in the AFL-Li alloy is increased in order to increase the utilization rate of Ll and increase the energy density, the occurrence of the above-mentioned problems such as dendrites is noticeable, and it is difficult to use as a secondary battery. The performance, especially the repeated charging and discharging, was not good enough for practical use.

この理由としては、l−iとAiの合金を用いても、充
電時にl−iがl−iとAlの合金中を拡散して行く速
度が高電密(5mA/CI!以上)では間に合わず、部
分的に合金比率のLifitが相当量多くなってしまい
(例えば局部的には、はぼLlが100%で殆んど単一
金属と考えられる程になっていると考えられる)、Li
金属そのものを負極に用いたと同様な@舞いを示してい
るからと考えられる。
The reason for this is that even if an alloy of l-i and Ai is used, the rate at which l-i diffuses through the alloy of l-i and Al during charging is insufficient at high current density (more than 5 mA/CI!). First, the alloy ratio Lifit has increased considerably in some areas (for example, in some areas, Ll is 100% and is considered to be almost a single metal), and Li
This is thought to be because it exhibits the same @ dance as when the metal itself is used as the negative electrode.

[問題点を解決するための手段] 本発明者らは、前記従来法の欠点を解決すべく鋭意検討
した結果、特定の組成からなる活物質を負極として用い
ることによって、充放電の可逆性が良好で、サイクル寿
命が長く、高エネルギー密度を有し、自己放電率の極め
て低い、高性能の非水溶媒系二次電池が得られることを
見出し、本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive studies to solve the drawbacks of the conventional method, the present inventors found that by using an active material having a specific composition as a negative electrode, reversibility of charging and discharging can be improved. The present inventors have discovered that a high-performance non-aqueous solvent secondary battery can be obtained that has good performance, long cycle life, high energy density, and extremely low self-discharge rate, and has completed the present invention.

即ち、本発明は、ポリチオフェンまたはポリチオフェン
誘導体、Al及びljの三成分を主体として構成された
活物質を負極に用いたことを特徴とする非水溶媒系二次
電池に関する。
That is, the present invention relates to a non-aqueous solvent-based secondary battery characterized in that an active material mainly composed of polythiophene or a polythiophene derivative, Al, and lj is used as a negative electrode.

[作 用] 本発明において、ポリチオフェンまたはポリチオフェン
誘導体、An及びl−iの三成分を主体として構成され
た活物質を負極に用いた効果は顕著であり、その作用機
構の詳細は明らかではないが、ポリチオフェンまたはポ
リチオフェン誘導体を使用すると、ポリチオフェンまた
はポリチオフェン誘導体が均一に分散していることによ
り、電極全体の比表面積を大きくし、l−iの拡散速度
をはやめる効果があり、そしてポリチオフェンまたはポ
リチオフェン、l!!導体自体がli+と可逆的に反応
して、いわゆるドーピング現象で電気屋の一部を担って
いるため、デンドライトができないと考えられる。しか
も、ポリチオフェンまたはポリチオフェン誘導体そのも
のは、結着剤的特性をも有するものであり、ポリチオフ
ェンまたはポリチオフェン誘導体を添加することにより
、負極の寸法安定性を維持する効果もあると考えられる
[Function] In the present invention, the effect of using an active material mainly composed of polythiophene or a polythiophene derivative, An and l-i in the negative electrode is remarkable, and although the details of the mechanism of action are not clear, When polythiophene or polythiophene derivatives are used, polythiophene or polythiophene derivatives are uniformly dispersed, which has the effect of increasing the specific surface area of the entire electrode and slowing down the diffusion rate of l-i. l! ! It is thought that dendrites cannot be formed because the conductor itself reacts reversibly with li+ and plays a part in the electrician through a so-called doping phenomenon. Moreover, the polythiophene or polythiophene derivative itself also has binding agent properties, and the addition of the polythiophene or polythiophene derivative is thought to have the effect of maintaining the dimensional stability of the negative electrode.

[問題点を解決するための手段] 本発明の負極活物質の構成成分の一成分として用いられ
るポリチオフェンは、その共役構造がシス型ポリアセチ
レンに類似し、また硫黄原子を含むことから、その特異
的電子構造を有するものとして電導性材料として期待さ
れ、種々の合成例が報告されている。
[Means for Solving the Problems] The polythiophene used as one of the components of the negative electrode active material of the present invention has a conjugated structure similar to that of cis-type polyacetylene and contains a sulfur atom. Since it has an electronic structure, it is expected to be a conductive material, and various synthesis examples have been reported.

例えばジャーナル・オブ・ポリマー・サイエンス、パー
トA−1、第5巻第1527頁(1967年)に゛は、
エム・アーマ−等による報告があり、その中にはトリフ
ルオロ酢酸を触媒としてチオフェンを重合させると黄褐
色の重合体が得られるが、この重合体は繰返し単位が4
個1モル程度であ、ベンゼン、クロロホルム等の溶媒に
可溶の低重合体である旨記載されている。またジャーナ
ル・オブ・ケミカルソサエティー(c) 、1971巻
第234頁には、アール・エフ・クルティウス等の報告
があり、その中にはチオフェンをポリリン酸中で重合さ
せると数種類の低重合体が得られるが主生成物としては
、2.4−ジー2−チェニルテトラヒドロチオフェンか
らなる非共役化合物である旨記載されている。
For example, in Journal of Polymer Science, Part A-1, Volume 5, Page 1527 (1967),
There is a report by M. Armor et al., in which a yellow-brown polymer is obtained by polymerizing thiophene using trifluoroacetic acid as a catalyst, but this polymer has 4 repeating units.
It is described that it is a low polymer that has a molecular weight of about 1 mole and is soluble in solvents such as benzene and chloroform. Also, in Journal of Chemical Society (c), Vol. 1971, p. 234, there is a report by R.F. Curtius et al., which states that when thiophene is polymerized in polyphosphoric acid, several types of low polymers are formed. It is stated that the main product obtained is a non-conjugated compound consisting of 2,4-di-2-chenyltetrahydrothiophene.

一方、山水らは、ジャーナル・オブ・ポリマー・サイエ
ンス・ボリマーレターズ・エディジョン第18巻第9頁
(1980年)および特開昭56−47421号公報で
、2.5−ジブロモチオフェンをテトラヒドロフランあ
るいはジブチルエーテルの如きエーテル系溶媒中で金属
マグネシウムと反応さきて活性有機マグネシウム化合物
を作り、これにニッケル錯体触媒を加えると容易に重合
が起り、ポリチオフェンが得られる旨記載している。
On the other hand, Sansui et al. reported in the Journal of Polymer Science Polymer Letters Edition Vol. It is described that when an active organomagnesium compound is produced by reacting with metallic magnesium in an ether solvent such as dibutyl ether, and a nickel complex catalyst is added to this, polymerization easily occurs to obtain polythiophene.

山水らは、さらにケミストリー・レターズ第1079頁
(1981年)において、この方法で得られたポリマー
は非品性であること、このポリマーにヨウ素あるいは無
水硫酸をドープすると、その電尋度が未添加ポリマーに
比べて7〜9桁上昇し、10 〜1G’S/α程度の電
導度を有する半導体となる旨記載している。
Furthermore, in Chemistry Letters, p. 1079 (1981), Sansui et al. state that the polymer obtained by this method is of poor quality, and that when this polymer is doped with iodine or sulfuric anhydride, its electrolyte is lower than that of the non-added polymer. It is stated that the conductivity of the semiconductor is 7 to 9 orders of magnitude higher than that of polymers, and has a conductivity of about 10 to 1 G'S/α.

この方法で得られたポリチオフェンは、前述の如くに非
品性であり、また熱クロロホルム不溶部の収率も低く、
さらに特開昭56−47421号公報では元素分析結果
から平均分子量が1730 (平均重合度約19)であ
る旨記載しており、重合度は余り高くない。
As mentioned above, the polythiophene obtained by this method is of poor quality, and the yield of the hot chloroform-insoluble part is low.
Further, JP-A-56-47421 describes that the average molecular weight is 1730 (average degree of polymerization of about 19) based on the results of elemental analysis, and the degree of polymerization is not very high.

また、結晶性のポリチオフェンの合成方法としては、特
願昭58−95857号にあるように不活性雰囲気下、
脂肪族エーテル系溶媒中で、2.5−ジハロゲノチオフ
ェンまたはその誘導体と金属マグネシウムとを反応せし
めて実質的に活性有機モノマグネシウム化合物となし、
前記脂肪族エーテル系溶媒を除去した後、不活性雰囲気
下、ニッケル錯体触媒の存在下、芳香族エーテル系溶媒
中で前記有機モノマグネシウム化合物を損金せしめる方
法があり、この方法で得られた2、5−位で結合したポ
リチオフェンは極めて高収率かつ4分子爪で得られるば
かりでなく、結晶性であることが知られている。さらに
、マクロモレキュラー・ケミストリー、ラビッド・コミ
ユニケイジョン第4巻、第639頁〜643頁(198
3年)に記載されているように、チオフェンモノマーま
たは2.2′−ビチェニルのような低分子量物にN0B
F4またはN08b Feのようなニド0ソニウム塩を
有機溶媒中でドーピングさせ、上記低分子a物をカチオ
ン重合させる方法も知られている。さらにまた、応用物
理第52巻、第11号(1983年)に記載されている
ように電気化学的に重合する金藤らの方法も知られてい
る。この電気化学的な重合方法は、例えば、支持電解液
としてベンゾニトリルまたはアセトニトリル溶媒中に一
価金属カチオン、Li +、Na+およびテトラブチル
アンモニウム、ヘキサフルオロホスフェートまたはへキ
サフルオロアーセナイドアニオンからなる塩を溶解した
ものを用い、陽極に低抵抗ネサガラス(インジウム−ス
ズ酸化膜)を用い陰極に白金板を用い、上記支持電解液
に、例えば500mojl /rrt3のチオフェンを
溶かした液を電解液として+10〜+20Vの電圧を白
金板に対しネサ側に印加して、重合電流を流し、ネ勺ガ
ラス板上に青色の陰イオンがドープされたポリチオフェ
ン膜を得る方法である。中性ポリチオフェンは、上記重
合物を脱ドープすることによって簡単に得られる。
In addition, as a method for synthesizing crystalline polythiophene, as described in Japanese Patent Application No. 58-95857, under an inert atmosphere,
reacting 2,5-dihalogenothiophene or a derivative thereof with metallic magnesium in an aliphatic ether solvent to form a substantially active organic monomagnesium compound;
After removing the aliphatic ether solvent, there is a method of depleting the organic monomagnesium compound in an aromatic ether solvent in the presence of a nickel complex catalyst under an inert atmosphere, and the 2, It is known that polythiophene bonded at the 5-position is not only obtained in extremely high yield and in the form of four molecular claws, but also crystalline. Furthermore, Macromolecular Chemistry, Rabid Communication Vol. 4, pp. 639-643 (198
N0B to low molecular weight compounds such as thiophene monomers or 2,2'-bichenyl, as described in
There is also known a method of doping a nido-0sonium salt such as F4 or N08b Fe in an organic solvent and cationically polymerizing the above-mentioned low-molecular-weight compound a. Furthermore, the method of Kaneto et al., which involves electrochemical polymerization, is also known, as described in Applied Physics Vol. 52, No. 11 (1983). This electrochemical polymerization method uses, for example, monovalent metal cations, Li + , Na + and salts consisting of tetrabutylammonium, hexafluorophosphate or hexafluoroarsenide anions in a benzonitrile or acetonitrile solvent as supporting electrolyte. A low resistance Nesaglass (indium-tin oxide film) is used as the anode, a platinum plate is used as the cathode, and the supporting electrolyte is a solution containing, for example, 500 mojl/rrt3 of thiophene as the electrolyte. In this method, a voltage of +20 V is applied to the negative side of the platinum plate to cause a polymerization current to flow, thereby obtaining a polythiophene film doped with blue anions on the platinum glass plate. Neutral polythiophene can be easily obtained by dedoping the above polymer.

本発明に用いるポリチオフェンは、上記いずれの方法で
製造されたものであってもよいが、必ずしもこれらの方
法で製造されたものに限定されるものではない。また、
ポリチオフェン誘導体も上記と同様の方法で製造するこ
とができる。ポリチオフェン誘導体としては、例えばポ
リ−3−メチルチオフェン、ポリ−3,4−ジメチルチ
オフェン、ポリ−3−エチルチオフェン等があげられる
The polythiophene used in the present invention may be produced by any of the above methods, but is not necessarily limited to those produced by these methods. Also,
Polythiophene derivatives can also be produced in the same manner as above. Examples of polythiophene derivatives include poly-3-methylthiophene, poly-3,4-dimethylthiophene, and poly-3-ethylthiophene.

ポリチオフェンとポリチオフェン誘導体とは混合して使
用してもよい。
Polythiophene and polythiophene derivatives may be used in combination.

本発明において負極として用いられるポリチオフェンま
たはポリチオフェン誘導体、AI及び1−iの三成分を
主体として構成される活物質の作成方法としては、例え
ば (1)ポリチオフェンまたはポリチオフェン誘導体と、
Anとliの合金粉体とを混合した後、加圧成形する方
法。
As a method for producing an active material mainly composed of the three components polythiophene or polythiophene derivative, AI, and 1-i used as the negative electrode in the present invention, for example, (1) polythiophene or polythiophene derivative,
A method of mixing An and Li alloy powder and then press-forming the mixture.

即ら、予め重合した粉体状または粒状のポリチオフェン
またはポリチオフェン誘導体とLi−へ交合金(Li含
聞6〜73wt%)とを機械的に混合し、成形してペレ
ット状またはフィルム状の活物質を作る。なお、この活
物質は、集電基板、即ち、N i 、F (! 1ステ
ンレススチール、へ吏板等を包含した形で成形しても良
い。
That is, a prepolymerized powder or granular polythiophene or polythiophene derivative and a Li-hexagonal alloy (Li content of 6 to 73 wt%) are mechanically mixed and molded to form a pellet or film active material. make. Note that this active material may be molded in a form that includes a current collecting substrate, that is, N i , F (! 1 stainless steel, a helical plate, etc.).

(2)電気化学的に重合して得られたボリチオフエンま
たはポリチオフェン誘導体を電気化学的にまたは化学的
に中性にした後、ポリチオフェンまたはポリチオフェン
誘導体をカソードを用いて電気化学的にA髪3+及びL
1+を還元してポリチオフェンまたはポリチオフェン誘
導体中にAI及びLlを析出させる方法。
(2) After electrochemically or chemically neutralizing the polythiophene or polythiophene derivative obtained by electrochemical polymerization, the polythiophene or polythiophene derivative is electrochemically applied to A3+ and L using a cathode.
A method of reducing 1+ to precipitate AI and Ll in polythiophene or polythiophene derivatives.

即ち、予めチオフェンまたはチオフェン誘導体を電気化
学的に重合して得られたフィルム状のポリチオフェンま
たはポリチオフェン誘導体を中性状態にした後、Al塩
及びLi塩を添加した電解液中に浸漬し、電気化学的に
AI及びL:を合金化しながら、ポリチオフェンまたは
ポリチオフェン誘導体中にAI及びl−iを析出する方
法であり、AUとl−iの合金中の比率は、Al塩及び
l−i塩の電解液中の分子量比によって大きく左右され
る。
That is, a film-like polythiophene or polythiophene derivative obtained by electrochemically polymerizing thiophene or a thiophene derivative in advance is brought into a neutral state, and then immersed in an electrolytic solution containing Al salt and Li salt. This is a method in which AI and li are precipitated in polythiophene or polythiophene derivatives while alloying AI and L:, and the ratio of AU and li in the alloy is determined by the electrolysis of Al salt and li salt. It is greatly influenced by the molecular weight ratio in the liquid.

Alを電解析出させる電解液としては、例えば芳尾真幸
、山用剛−1石11ffl彦、電気化学、(44)隘7
462〜467  (197B>に記載されている。こ
の電解液の溶媒としては、上記文猷中に記載されている
テトラヒドロフラン(TI−IF)の他、電池用溶媒と
して使用が可能な2−メチル−テトラヒドロフラン(2
Me −THF) 、ジオキンラン、4−メチル−ジオ
キソラン<4Me−ジオキンラン)、ジメトキシエタン
(DME)、テトラメチレンサルホン<TMS)及びこ
れらの混合系を用いても良い。
As an electrolytic solution for electrolytically depositing Al, for example, Masayuki Yoshio, Tsuyoshi Yamayo-1 stone 11fflhiko, Electrochemistry, (44) No. 7
462-467 (described in 197B>. As a solvent for this electrolytic solution, in addition to tetrahydrofuran (TI-IF) described in the above-mentioned Bunyu, 2-methyl-, which can be used as a battery solvent, is used. Tetrahydrofuran (2
Me-THF), dioquinrane, 4-methyl-dioxolane <4Me-dioquinrane), dimethoxyethane (DME), tetramethylene sulfone <TMS), and mixtures thereof may also be used.

また、合金中のLiの鎖を増量させるには、さらに、L
i塩のみを含んだ電解液系で5TrLA/cIi以下の
低電密でli+を還元させる方法がある。
Furthermore, in order to increase the amount of Li chains in the alloy, L
There is a method of reducing li+ at a low electric density of 5 TrLA/cIi or less using an electrolytic solution system containing only i salt.

(3)粉体状または粒状のポリチオフェンまたはポリチ
オフェン誘導体と粉体状のAILを混合、加圧成形し、
電極とした後、電気化学的にLiを還元してポリチオフ
ェンまたはポリチオフェン誘導体とAfLとの混合物中
にLlを析出させる方法。
(3) Mixing powdered or granular polythiophene or polythiophene derivative and powdered AIL and press-molding,
A method in which, after forming an electrode, Li is electrochemically reduced to precipitate Ll in a mixture of polythiophene or a polythiophene derivative and AfL.

この方法は、予め重合した粉体状または粒状ポリチオフ
ェンまたはポリチオフェン誘導体と粉体状Anを混合し
、成形して電極の形にした後、Li塩を含む電解液でL
1+を電解還元して混合電極を作る。この場合の電解′
M流苗密度57FLA/7FL2以下の低電密の方が均
一にliが分散した混合電極が得られる。
In this method, prepolymerized powdered or granular polythiophene or polythiophene derivative and powdered An are mixed, molded into an electrode shape, and then immersed in an electrolytic solution containing Li salt.
1+ is electrolytically reduced to create a mixed electrode. Electrolysis in this case
A mixed electrode in which li is evenly dispersed can be obtained with a low electric density of M flow seedling density of 57FLA/7FL2 or less.

(4)重合後のポリチオフェンまたはポリチオフェン誘
導体中のAfL?[が適量になるように、A!L粉末を
含んだ重合液中でチオフェンまたはチオフェン誘導体を
化学重合し、得られたポリチオフェンまたはポリチオフ
ェン誘導体とΔ文の混合物を電極として電気化学的にl
−iを還元してポリチオフェンまたはポリチオフェン誘
導体とA[合物中にl−iを析出させる方法。この方法
は、例えば、白木法(特開昭56−47421号)に従
ってチオフェンまたはチオフェン誘導体上ツマ−をエー
テル溶媒に溶かし、次いで金属マグネシウムとモノマー
を反応させて活性有機マグネシウム化合物を作り、これ
に適mのAn粉体を添加し、全体を良く撹拌しながら、
NiN体触媒を加えると、AILrfJを含んだポリチ
オフェンまたはポリチオフェン誘導体が得られる。この
重合物を電極に用いて(3)の方法と同様にl−i塩を
含む電解液で1−i+を電解還元するとポリチオフェン
またはポリチオフェン誘導体とAl及びl−iの三成分
系物質電極が得られる。
(4) AfL in polythiophene or polythiophene derivative after polymerization? [So that the amount is appropriate, A! Thiophene or a thiophene derivative is chemically polymerized in a polymerization solution containing L powder, and the resulting mixture of polythiophene or polythiophene derivative and Δ is used as an electrode to electrochemically polymerize thiophene or a thiophene derivative.
A method of reducing -i to precipitate l-i in a polythiophene or polythiophene derivative and A [compound. This method involves, for example, dissolving thiophene or a thiophene derivative derivative in an ether solvent according to the Shiraki method (Japanese Patent Application Laid-Open No. 56-47421), and then reacting metallic magnesium with a monomer to produce an active organomagnesium compound. m of An powder was added, and while stirring the whole well,
When a NiN catalyst is added, a polythiophene or polythiophene derivative containing AILrfJ is obtained. When this polymer is used as an electrode and 1-i+ is electrolytically reduced with an electrolytic solution containing l-i salt in the same manner as in method (3), a three-component material electrode of polythiophene or polythiophene derivative, Al, and l-i is obtained. It will be done.

上記(2) 、 (3)及び(4)の方法においても(
1)と同様電極中に、集電用基板等を包含した形で成形
しても良い。
In methods (2), (3), and (4) above, (
Similar to 1), the electrode may include a current collecting substrate and the like.

負極活物質の充電時の混合比を原子St度比率で表わす
と、次記のごとくである。
The mixing ratio of the negative electrode active material during charging is expressed as an atomic St degree ratio as follows.

即ち、AIの原子量を27、liの原子量を7、ポリチ
オフェン及びポリチオフェン誘導体の場合は、繰り返し
単位当りの分子間をここでいう原子量と考え、ポリチオ
フェンの原子量を82と仮定すると、ポリチオフェンま
たはポリチオフェン誘導体1.3〜34原子酪%、好ま
しくは4.4〜9.6原子量%が良く、A1は11〜7
7原子量%、好ましくは30〜14原子a%が良く、L
lは18〜77原子研%、好ましくは19〜59原子か
%の範囲が良い。なお、当然ながらこれらの値は、電極
中の集電用基板等の重量を除いた値である。
That is, assuming that the atomic weight of AI is 27, the atomic weight of li is 7, and in the case of polythiophene and polythiophene derivatives, the intermolecular distance per repeating unit is considered as the atomic weight here, and the atomic weight of polythiophene is 82, polythiophene or polythiophene derivative 1 .3 to 34 atomic weight%, preferably 4.4 to 9.6 atomic weight%, A1 is 11 to 7
7 atomic weight %, preferably 30 to 14 atomic a%, L
L is preferably in the range of 18 to 77 atoms, preferably 19 to 59 atoms. Note that, as a matter of course, these values exclude the weight of the current collecting substrate and the like in the electrode.

次いで、これら活物質を負極に用いた場合の対極、即ち
正極の活物質について示す。
Next, the active materials of the counter electrode, that is, the positive electrode when these active materials are used for the negative electrode will be described.

正極活物質については、特に規定するものではないが、
l−i塩を電解質に使用した場合に安定で、可逆的に反
応が起こる物質であり、二次電池として充放電が行なえ
る物質であることが重要であり、なおかつ負極活物質と
組み合せて高エネルギー密度、高電力−密度を発揮しサ
イクル特性が良く、自己放電率が小さく維持できるもの
でなくてはならない。
There are no particular regulations regarding the positive electrode active material, but
When l-i salt is used as an electrolyte, it is a substance that is stable and undergoes a reversible reaction, and it is important that it is a substance that can be charged and discharged as a secondary battery. It must exhibit high energy density and high power density, have good cycle characteristics, and be able to maintain a low self-discharge rate.

非水溶媒系でl−i+カチオンと可逆的に化合物を作る
ものの具体例としてはTi 82 、 V205 。
Specific examples of compounds that reversibly form compounds with l-i+ cations in non-aqueous solvent systems include Ti 82 and V205.

Vs 013. MO82、Nb Se s 、7 ツ
化グラファイト等があげられ、また電解質中のアニオン
と可逆的に化合物またはチャージトランスファー錯体を
形成するものの具体例としては、共役二重結合を有する
ポリマー、例えばポリアセチレン、ポリピロール及びポ
リピロール誘導体、ポリチオフェン及びポリチオフェン
誘導体、ポリアニリン及びポリアニリン誘導体、ポリバ
ラフェニレン及びポリパラフェニン誘導体等があげられ
るが、必ずしもこれらに限定されるものではない。
Vs 013. Examples include MO82, NbSe s , graphite 7 tsunide, and examples of compounds that reversibly form compounds or charge transfer complexes with anions in the electrolyte include polymers with conjugated double bonds, such as polyacetylene and polypyrrole. and polypyrrole derivatives, polythiophene and polythiophene derivatives, polyaniline and polyaniline derivatives, polyparaphenylene and polyparaphenylene derivatives, but are not necessarily limited to these.

本発明の非水溶媒系二次電池の電解液としては、非水の
有機溶媒に電解質を溶かしたものである。
The electrolytic solution for the non-aqueous solvent secondary battery of the present invention is one in which an electrolyte is dissolved in a non-aqueous organic solvent.

ここでいう有機溶媒としては、非プロトン性でかつ高誘
電率のものが好ましい。例えばエーテル類、ケトン類、
アミド類、硫黄化合物、リン酸エステル系化合物、塩素
化炭化水素類、エステル類、カーボネート類、ニトロ化
合物、スルホラン類等を用いることができるが、これら
のうちでもエーテル類、ケトン類、リン酸エステル系化
合物、塩素化炭化水素類、カーボネート類、スルホラン
類が好ましい。これらの代表例としては、テトラヒドロ
フラン、2−メチルテトラヒドロフラン、1.4−ジオ
キサン、モノグリム、4−メチル−2−ペンタノン、1
,2−ジクロロエタン、γ−プチOラクトン、バレロラ
クトン、ジメトキシエタン、メチルフォルメート、プロ
ピレンカーボネート、エチレンカーボネート、ジメチル
ホルムアミド、ジメチルスルホキシド、ジメチルチオホ
ルムアミド、リン酸エチル、リン酸メチル、クロロベン
ゼン、スルホラン、3−メチルスルホラン等をあげるこ
とができる。
The organic solvent mentioned here is preferably one that is aprotic and has a high dielectric constant. For example, ethers, ketones,
Amides, sulfur compounds, phosphate ester compounds, chlorinated hydrocarbons, esters, carbonates, nitro compounds, sulfolanes, etc. can be used, but among these, ethers, ketones, phosphate esters, etc. Preferred are compounds, chlorinated hydrocarbons, carbonates, and sulfolanes. Representative examples of these include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, monoglyme, 4-methyl-2-pentanone, 1
, 2-dichloroethane, γ-buty-O-lactone, valerolactone, dimethoxyethane, methylformate, propylene carbonate, ethylene carbonate, dimethylformamide, dimethyl sulfoxide, dimethylthioformamide, ethyl phosphate, methyl phosphate, chlorobenzene, sulfolane, 3 -Methylsulfolane and the like can be mentioned.

これらの有機溶媒のうち、本発明の負極活物質と可逆的
にl−iを酸化還元できる安定な有機溶媒として好まし
いものは、エーテル類またはエーテル類と他の有機溶媒
との混合系である。
Among these organic solvents, ethers or a mixed system of ethers and other organic solvents are preferred as stable organic solvents that can reversibly redox l-i with the negative electrode active material of the present invention.

電解質としては、例えば1−iBF+。As the electrolyte, for example, 1-iBF+.

Li AJLC1+ 、Li A吏8r3G愛。Li AJLC1+, Li AJ8r3G love.

Li l”e C14、Li Sn C10,Li P
Fe 。
Li l"e C14, Li Sn C10, Li P
Fe.

Li PCjte Li Sb C吏e 、 Li S
b Fe 。
Li PCjte Li Sb C 吏e, Li S
bFe.

Li As Fe等があげられる。Examples include Li, As, and Fe.

[発明の効果1 以上述べたように、本発明のポリチオフェンまたはポリ
チオフェン誘導体、A吏及びl−iの三成分を主体とし
て構成された活物質を負極に用いた非水溶媒系二次電池
は、正極活物質、電解液の種類等によって種々の組み合
せが考えられるが、いずれの場合も負極活物質のliの
酸化、還元系は可逆的であり、自己放電が極めて小さく
、高いエネルギー密度を有する。特に、従来から問題と
されてきたli極を負極に用いて二次電池化した場合の
充電時のl−i極側のデンドライトの生成を本発明の二
次電池では防止することが可能となり、サイクル寿命を
著しく改善することができる。
[Effects of the Invention 1] As described above, a nonaqueous solvent-based secondary battery using an active material mainly composed of the three components of polythiophene or polythiophene derivative, A and l of the present invention as a negative electrode has the following effects: Various combinations can be considered depending on the type of positive electrode active material, electrolyte, etc., but in any case, the oxidation and reduction system of Li in the negative electrode active material is reversible, has extremely low self-discharge, and has high energy density. In particular, the secondary battery of the present invention can prevent the formation of dendrites on the l-i electrode side during charging when the Li electrode is used as a negative electrode to form a secondary battery, which has been a problem in the past. Cycle life can be significantly improved.

[実施例1 以下、実施例及び比較例をあげて本発明をさらに詳細に
説明する。
[Example 1] Hereinafter, the present invention will be explained in more detail by giving Examples and Comparative Examples.

実施例 1 Ax : L+の原子濃度比率が55 : 45のAl
−li合金8qと山水らの方法(特開昭56−4742
1号)に従って製造したポリチオフェンをTHFで洗浄
した後、減圧乾燥した粉体状ポリチオフェン2qとをア
ルゴン雰囲気下で乳鉢でよく混合した。次いで、混合物
を金型ブレス機によって直径1G、φの円板状に成形し
た後、50メツシユのニッケル金網で袋状に包み、ニッ
ケル金網の一部からニッケル線を引き出し、これを負極
活物質とした。
Example 1 Al with an atomic concentration ratio of Ax:L+ of 55:45
-Li alloy 8q and the method of Sansui et al. (JP-A-56-4742
After washing the polythiophene produced according to No. 1) with THF, it was thoroughly mixed with powdered polythiophene 2q dried under reduced pressure in a mortar under an argon atmosphere. Next, the mixture was formed into a disk shape with a diameter of 1G and φ using a mold press machine, and then wrapped in a bag with 50 mesh nickel wire mesh, a nickel wire was pulled out from a part of the nickel wire mesh, and this was used as the negative electrode active material. did.

成である。It is complete.

対極としては、ニッケル金網上に実験中に消耗しないよ
うに充分多おのリチウム箔約50gを押圧成形したもの
を用いた。
As a counter electrode, about 50 g of lithium foil was press-molded on a nickel wire gauze, and was sufficiently thick so as not to be consumed during the experiment.

電解液としては、1iBF4を2Me −THFとTM
Sの体積比1:1の混合溶媒に溶解したLi BF4濃
度が1モル/lの溶液を約20m使用した。
As the electrolyte, 1iBF4 was used with 2Me-THF and TM.
Approximately 20 m of a solution of LiBF4 having a concentration of 1 mol/l dissolved in a mixed solvent of S at a volume ratio of 1:1 was used.

電池実験用セルは、第1図に示したものを用い、導線と
なるように白金線をガラスで封じた密閉フタ付ガラスセ
ルを用いた。電池実験はすべて実験用セル内の雰囲気が
アルゴンガス雰囲気になるように、アルゴンガスで置換
したグローブボークス内で行なった。負極と対極との間
隔は1.01に保った。
The battery experimental cell shown in FIG. 1 was used as a glass cell with a sealed lid in which a platinum wire was sealed with glass to serve as a conducting wire. All battery experiments were conducted in a globe vox replaced with argon gas so that the atmosphere inside the experimental cell was an argon gas atmosphere. The distance between the negative electrode and the counter electrode was maintained at 1.01.

実験はまず、電流密度を5mA/dにして、負極のli
がli+に酸化する方向から電流を流した。対極のl−
iとの電匝が急激に上昇し、2.0Vになったところで
電流を止め、それまでに流れた電気量を記録したところ
、14.5G (クーロン)であった。この電気量は、
負極に使用したすべてのLi  (約1.411g)が
L1+になると仮定した場合の15%に相当する。次い
で、負極に対して反対側の向きで、同じ′7ji流密度
の5 m A / ctdで、電気量がさきほど2.O
vに達するまでに流れた電気量、即ち14.5Gに達す
るまで電流を流した。
In the experiment, first, the current density was set to 5 mA/d, and the negative electrode Li
A current was applied in the direction that oxidized to li+. Opposite l-
When the electric current with i rose rapidly and reached 2.0V, the current was stopped and the amount of electricity that had flowed up to that point was recorded, and it was 14.5G (coulombs). This amount of electricity is
This corresponds to 15% of the amount assuming that all the Li (approximately 1.411 g) used in the negative electrode becomes L1+. Then, in the direction opposite to the negative electrode, at the same flow density of 5 mA/ctd, the amount of electricity was 2. O
A current was allowed to flow until it reached the amount of electricity that flowed until it reached v, that is, 14.5G.

以上の操作を1サイクルとし、以下同様に負極のl−i
がL1+になる方向に電流を流す場合は、電圧が2.0
Vになるまで行ない、反対側の向きに流す場合は、その
サイクルの前半で2.Ovに達する電気量と同じ電気量
だけ流すことを繰り返した。
The above operation is one cycle, and the negative electrode l-i
When the current flows in the direction where becomes L1+, the voltage is 2.0
If you want to continue until V and then flow in the opposite direction, do 2. in the first half of the cycle. It was repeated to flow the same amount of electricity as the amount of electricity that reached Ov.

50サイクル目にl−i+を放出する方向に流れた  
 ゛電気量は14.50で、負極の重1io■に対して
取り出せた電気量は14.5Gであるから、1 Kg当
り1.450,0OOG 、即ち15.0フアラデイに
相当する。
At the 50th cycle, it flowed in the direction of releasing l-i+.
``The amount of electricity is 14.50, and the amount of electricity extracted per 1 io² of the weight of the negative electrode is 14.5G, which corresponds to 1.450,0OOG per 1 kg, or 15.0 far days.

また、100サイクル充放電を繰り返した後も負極側に
l−iのデンドライトは見当らなかった。
Further, even after 100 cycles of charging and discharging, no l-i dendrite was found on the negative electrode side.

比較例 1 実施例1の負極に用いた三成分系活物質の代わりにAi
:Llの原子S*比率が55 : 45(7) A i
 −1−i合金8j19のみを金型ブレス機で成形した
ものを負極にした以外は実施例1と全く、同様の方法で
、実験を行なった。
Comparative Example 1 Ai instead of the three-component active material used in the negative electrode of Example 1
:The atomic S* ratio of Ll is 55: 45(7) A i
An experiment was conducted in exactly the same manner as in Example 1, except that only -1-i alloy 8j19 was molded using a mold press machine and used as the negative electrode.

1サイクル目の初めに2.0■に達するまでに流れた電
気量は15.4Cで、これは合金中のl−iの反応量の
80%に達した。次いで、逆方向に電流を流したら、す
でにliのデンドライトが表われ、2サイクル目に2,
0■に達するまで流れた電気量は12.5Gで、サイク
ルを追うごとに徐々に低下していった。そして、100
サイクル目に2.0■に達するまでに取り出し得た電気
量は3.2Cで、1サイクル目の21%しか取り出し得
なかった。
The amount of electricity that flowed until reaching 2.0 .mu. at the beginning of the first cycle was 15.4 C, which reached 80% of the reaction amount of l-i in the alloy. Next, when current is passed in the opposite direction, li dendrites have already appeared, and in the second cycle 2,
The amount of electricity that flowed until it reached 0■ was 12.5G, and gradually decreased with each cycle. And 100
The amount of electricity that could be extracted by the time the battery reached 2.0 cm in the first cycle was 3.2 C, which was only 21% of the amount in the first cycle.

50サイクル終了後の負極にはデンドライトが、激しく
表われており、これが電気量を低下させてしまった原因
と考えられる。また、電解液の表面には、デンドライト
が剥離したリチウム片が浮んでいた。
Dendrites were strongly visible on the negative electrode after 50 cycles, and this is considered to be the cause of the decrease in the amount of electricity. In addition, lithium pieces with peeled dendrites were floating on the surface of the electrolyte.

実施例 2 直径108φの白金板の両面に電解型合法重合条件:電
解重合液;1モル/N−LiBF++ 0.05モル/
交チオ フェンのプロピレン カーボネート液 電解重合重書:10mA/aiの定電流法対    極
;Liの板 で、液を撹拌しながら、フィルム状のポリチオフェンを
作製した後、重合時ドーピングした8F′4ドーパント
を対極1−iに対し2.Ovの一定電圧に24時間保持
してアンド−ピングして中性ポリチオフェンにした。こ
のポリチオフェンフィルムを白金基板の両面から、それ
ぞれ別々に剥離させてアセトニトリルで数回洗浄、減圧
乾燥を繰り返した後、ポリチオフェンの41を測定した
ところ1枚は、2.5Rgであり、他の1枚は2.2#
I9であった。
Example 2 Electrolytic legal polymerization conditions: Electrolytic polymerization solution; 1 mol/N-LiBF++ 0.05 mol/
Electrolytic polymerization of crossthiophene in propylene carbonate solution: 10 mA/ai constant current method Counter electrode: While stirring the solution with a Li plate, a film-like polythiophene was prepared, and then the 8F'4 dopant doped during polymerization was prepared. 2 for the counter electrode 1-i. It was held at a constant voltage of Ov for 24 hours and then subjected to and-pumping to obtain a neutral polythiophene. This polythiophene film was peeled off from both sides of the platinum substrate separately, washed several times with acetonitrile, and dried under reduced pressure repeatedly. When the 41 of the polythiophene was measured, one sheet had 2.5Rg, and the other sheet had 2.5Rg. is 2.2#
It was I9.

次いで、[tが2.51Rgの方のポリチオフェンフィ
ルムをNi網で包み、対極にl−i板を用いて1モル/
iのΔIC更3.0,5モル/1のLiAuH+のTH
F液を電解液に用い、0.57rLA/cjの一定重書
でポリチオフェンフィルム中にAfLの析出操作を行な
った。
Next, the polythiophene film with [t of 2.51Rg] was wrapped with Ni net, and a 1 mol/l
ΔIC of i and 3.0.5 mol/1 TH of LiAuH+
Using solution F as an electrolytic solution, AfL was deposited into the polythiophene film at a constant weight of 0.57 rLA/cj.

このAnを析出させたポリチオフェンフィルムをTHF
で洗浄し、減圧乾燥した後の重量は7.4■であり、顕
微鏡でwA察するとポリチオフェンの空孔中にほとんど
均一にA1金属が析出していた。
This polythiophene film on which An was precipitated was heated in THF.
After washing with water and drying under reduced pressure, the weight was 7.4 cm, and when observed with a microscope, A1 metal was almost uniformly precipitated in the pores of the polythiophene.

また、このフィルムをさらに0.5モル/1のL i 
PFe /2M11!−丁HF液中F対1k−Li金属
を用いて電解法で0.5mA/aiの一定電流で1−i
を還元させた後、重量を測定したところ、重量は8.9
II1gであった。この活物質を原子濃度で示すとポリ
チオフェンが7原子量%、Alが43原子壷%、し1が
50原子量%である。
Further, this film was further added to 0.5 mol/1 Li
PFe /2M11! - 1-i at a constant current of 0.5 mA/ai by electrolytic method using F vs. 1k-Li metal in HF solution
When the weight was measured after reducing, the weight was 8.9
II1g. The atomic concentration of this active material is 7 atomic weight % for polythiophene, 43 atomic weight % for Al, and 50 atomic weight % for 1.

以上の方法で作成したポリチオフェン、An及びLiの
三成分からなる活物質をNi網で挟んで負極として用い
、正極には25.OIIgの重量のT I S 2 、
結着剤テフロン2JI9及び導電剤カーボンブラック2
qとを混合して、ニッケル網上にのせて成形したものを
用いた。
The active material consisting of the three components of polythiophene, An and Li prepared by the above method was sandwiched between Ni meshes and used as a negative electrode, and the positive electrode was used as a positive electrode. T I S 2 of the weight of OIIg,
Binder Teflon 2JI9 and conductive agent Carbon Black 2
q was mixed and molded by placing it on a nickel mesh.

電解液としては、Li PFeを2Me −T)−IF
とDMEをそれぞれ体積比で2:1に混合した溶媒中に
溶解した1ipFeの濃度が1.0モル/lの溶液を用
いた。
As the electrolyte, LiPFe was used as 2Me-T)-IF
A solution having a concentration of 1.0 mol/l of 1ipFe dissolved in a solvent containing 1ipFe and DME mixed at a volume ratio of 2:1 was used.

電池実験の際の電池の電流密度は、577LA/mの一
定電流として、まず放電から行ない、セル電圧が0,5
vになるまで電流を流したところ、放電電気量は18.
70であった。その後は同じ電流密度で同じ電気量を充
電し、続いてO,SVのセル電圧になるまで放電し、以
下、上記の操作を繰り返し、この電池のサイクル特性を
調べた。
The current density of the battery during the battery experiment was a constant current of 577 LA/m, and the cell voltage was 0.5.
When the current was passed until the voltage reached 18.
It was 70. Thereafter, the battery was charged with the same amount of electricity at the same current density, and then discharged until the cell voltage reached O and SV.The above operations were then repeated to examine the cycle characteristics of this battery.

その結果、サイクル数100回目の充′R電気員に対す
る放電電気iの割合は99%であり、この電池は殆んど
完全に可逆的に働いていることがわかった。
As a result, it was found that the ratio of discharged electricity i to charged electricity at the 100th cycle was 99%, indicating that this battery worked almost completely reversibly.

この電池の100回目の放電電気量から計算した電池の
エネルギー密度は、負極活物質当り、6351/l/ 
−hr/酊であった。
The energy density of this battery calculated from the 100th discharge electricity amount is 6351/l/per negative electrode active material.
-hr/I was drunk.

なお、この電池をサイクル5回目に充電した後、24時
間問回路に置いたのち、1.0■に達するまで放電を行
ない自己放電率(SD)を の式で計算したところ、5D=0.8%であった。
After charging this battery for the 5th cycle, it was left in the circuit for 24 hours, and then discharged until it reached 1.0■, and the self-discharge rate (SD) was calculated using the formula: 5D = 0. It was 8%.

実施例 3 実施例1と同様な方法で重合して得られたポリチオフェ
ン粉末2.0■と常法に従って精製したA1粉末、6.
01115を乳鉢で良く混合した後、金型成形してペレ
ット状にしたものを電極とし、対極にLi板を用いて、
対極との間に厚さ2am厚のガラスセパレーターを挟ん
で1モール・LiBF4/THE中でl−i+を上記電
極中に1.0mA/dの一定電流でl−iが1.5■還
元するのに相当する電気量を流した。
Example 3 2.0 mm of polythiophene powder obtained by polymerization in the same manner as in Example 1, A1 powder purified according to a conventional method, 6.
After mixing 01115 well in a mortar, mold it into a pellet and use it as an electrode, and use a Li plate as a counter electrode.
A glass separator with a thickness of 2 am is sandwiched between the counter electrode and l-i+ is reduced into the above electrode in 1M LiBF4/THE with a constant current of 1.0 mA/d to reduce l-i to 1.5μ. An amount of electricity equivalent to that of

この電極をTI−IFで洗浄した後、減圧乾燥して負極
活物質を作成した。この負極活物質を原子濃度で表わす
とポリチオフェンが5原子量%、Alが48原子遣%、
l−iが47原子泊%の組成となる。
This electrode was washed with TI-IF and then dried under reduced pressure to prepare a negative electrode active material. Expressing this negative electrode active material in terms of atomic concentration, polythiophene is 5 atomic weight %, Al is 48 atomic weight %,
The composition has a l−i ratio of 47 atomic percent.

次いで、再度新しい1モル・Li BF4 /−rHF
電解液に浸し、対極に実施例2と全く同様のTi 82
系電極を用いて、対極との間に厚さ1jI#I厚のガラ
スセパレーターを挟んで第2図のセルを用いて電流密度
5′rrLA/cdで、放電から始めた。
Then, add fresh 1 mol Li BF4 /-rHF again
Ti 82 immersed in an electrolytic solution and used as a counter electrode exactly the same as in Example 2.
A discharge was started at a current density of 5'rrLA/cd using the cell shown in FIG. 2 with a glass separator having a thickness of 1jI#I sandwiched between the system electrode and the counter electrode.

放電終止はO,SVとしたところ、放電電気量は19.
1Cであった。
When the end of discharge was set to O, SV, the amount of discharged electricity was 19.
It was 1C.

その後は、第一回目の放電電気量相当分を充電し、続い
て0゜5Vのセル電圧になるまで放電し、以下、上記の
操作を繰り返しこの電池のサイクル特性を調べた。
Thereafter, the battery was charged for an amount equivalent to the amount of electricity discharged for the first time, and then discharged until the cell voltage reached 0°5V.The above operation was then repeated to examine the cycle characteristics of this battery.

その結果、サイクル数100回目の充電電気層に対する
放電電気量の割合は99%以上あった。
As a result, the ratio of the amount of discharged electricity to the charged electrical layer at the 100th cycle was 99% or more.

この100回目の放電電気量から計算した電池のエネル
ギー密度は負極活物質当り556W−hr/ Kgであ
った。なお、実施例2と同様の方法で、自己放電率を調
べたところ31)= 1.0%であった。
The energy density of the battery calculated from the amount of electricity discharged for the 100th time was 556 W-hr/Kg per negative electrode active material. In addition, when the self-discharge rate was examined by the same method as in Example 2, it was found to be 1.0% (31).

比較例 2 実施例3で用いた負極活物質の代わりに、1.5■のL
i箔を負極活物質に用い、正極には、実施例3と同様の
Ti 82系電極を用いた。
Comparative Example 2 Instead of the negative electrode active material used in Example 3, 1.5
i-foil was used as the negative electrode active material, and the same Ti 82-based electrode as in Example 3 was used as the positive electrode.

その他は、実施例3と全く同様の方法で電池のサイクル
特性を調べた。
Otherwise, the cycle characteristics of the battery were examined in exactly the same manner as in Example 3.

初回の放電電気はは19. ICであり、実施例3の電
気量にほぼ等しい値であった。
The first discharge electricity is 19. IC, and the amount of electricity was approximately equal to the amount of electricity in Example 3.

その後、実施例3の充放電電気はと同宿を充放電させた
ところ、5サイクル目から充放電効率が落ちはじめ、3
0サイクル目で放電不能となった・この電池を解体した
ところ、セパレーター中に1−iのデンドライトが激し
く生じており、そのため電池性能を低下させたものと推
定された。
After that, when the charging and discharging electricity of Example 3 was charged and discharged, the charging and discharging efficiency started to decrease from the 5th cycle.
Discharge became impossible at the 0th cycle. When this battery was disassembled, it was found that 1-i dendrites were heavily formed in the separator, which was presumed to have reduced the battery performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一興体例である密閉フタ付電池実験用
ガラスセルの断面概略図であり、第2図は本発明の一具
体例である非水溶媒系二次電池の特性測定用電池セルの
断面概略図である。 1・・・白金線       2・・・ニッケル線3・
・・ニッケル網(作用極) 4・・・ニッケル網(対極) 5・・・電解液6・・・
ガラス製密閉フタ 7・・・ガラス’IJ電池セル  8・・・負極用リー
ド線9・・・負極集電体     10・・・負 極1
1・・・多孔質ガラスセパレーター 12・・・正 極       13・・・正極集電体
14・・・正極リード線    15・・・テフロン製
容器第1図 第2図
FIG. 1 is a schematic cross-sectional view of a glass cell for testing a battery with a sealed lid, which is an example of the present invention, and FIG. 2 is a battery for measuring the characteristics of a non-aqueous solvent-based secondary battery, which is a specific example of the present invention. It is a cross-sectional schematic diagram of a cell. 1...Platinum wire 2...Nickel wire 3.
...Nickel mesh (working electrode) 4...Nickel mesh (counter electrode) 5...Electrolyte 6...
Glass airtight lid 7...Glass IJ battery cell 8...Negative electrode lead wire 9...Negative electrode current collector 10...Negative electrode 1
1... Porous glass separator 12... Positive electrode 13... Positive electrode current collector 14... Positive electrode lead wire 15... Teflon container Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] ポリチオフェンまたはポリチオフェン誘導体、アルミニ
ウム及びリチウムの三成分を主体として構成された活物
質を負極に用いたことを特徴とする非水溶媒系二次電池
A non-aqueous solvent secondary battery characterized in that an active material mainly composed of three components: polythiophene or a polythiophene derivative, aluminum, and lithium is used as a negative electrode.
JP60072692A 1985-04-08 1985-04-08 Nonaqueous solvent secondary battery Pending JPS61232563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60072692A JPS61232563A (en) 1985-04-08 1985-04-08 Nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60072692A JPS61232563A (en) 1985-04-08 1985-04-08 Nonaqueous solvent secondary battery

Publications (1)

Publication Number Publication Date
JPS61232563A true JPS61232563A (en) 1986-10-16

Family

ID=13496668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60072692A Pending JPS61232563A (en) 1985-04-08 1985-04-08 Nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPS61232563A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467314A (en) * 2020-11-03 2021-03-09 东莞市创明电池技术有限公司 Thermosensitive material, electrode and preparation method thereof, and lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467314A (en) * 2020-11-03 2021-03-09 东莞市创明电池技术有限公司 Thermosensitive material, electrode and preparation method thereof, and lithium secondary battery

Similar Documents

Publication Publication Date Title
EP1722430B1 (en) Secondary battery using a radical compound as active electrode material
JP4467926B2 (en) Electrochemical element
EP0208254A2 (en) Secondary battery
JP3292441B2 (en) Electrode containing organic disulfide compound and method for producing the same
EP0282068B1 (en) Nonaqueous secondary battery
JP4468058B2 (en) Secondary battery and electrode active material for secondary battery
JP2008159275A (en) Electrode active material and power storage device using the same
JP5280806B2 (en) Secondary battery active material and secondary battery
JP4110980B2 (en) Secondary battery
JP4737365B2 (en) Electrode active material, battery and polymer
JPS61232563A (en) Nonaqueous solvent secondary battery
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
JP4752218B2 (en) Electrode active material, battery and polyradical compound
JP2501821B2 (en) Secondary battery
JP4752217B2 (en) Active materials, batteries and polymers
JPS61279073A (en) Nonaqueous secondary battery
JP3444463B2 (en) Electrode containing organic disulfide compound and method for producing the same
JP5109670B2 (en) Polymer
JPS63250069A (en) Secondary battery
JPH0628162B2 (en) Secondary battery
JPH0740493B2 (en) Non-aqueous solvent secondary battery
JP2004303566A (en) Electrode composite adjusting method, and manufacturing method of electrode film
JPS6355867A (en) Secondary cell
JPS6229066A (en) Secondary cell
JPS6235454A (en) Secondary battery