JPS6240049B2 - - Google Patents

Info

Publication number
JPS6240049B2
JPS6240049B2 JP13874079A JP13874079A JPS6240049B2 JP S6240049 B2 JPS6240049 B2 JP S6240049B2 JP 13874079 A JP13874079 A JP 13874079A JP 13874079 A JP13874079 A JP 13874079A JP S6240049 B2 JPS6240049 B2 JP S6240049B2
Authority
JP
Japan
Prior art keywords
particles
magnetic
magnetic field
separation
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13874079A
Other languages
Japanese (ja)
Other versions
JPS5662508A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP13874079A priority Critical patent/JPS5662508A/en
Publication of JPS5662508A publication Critical patent/JPS5662508A/en
Publication of JPS6240049B2 publication Critical patent/JPS6240049B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/032Matrix cleaning systems

Description

【発明の詳細な説明】 本発明は、磁性粒体の分離装置に関する。[Detailed description of the invention] The present invention relates to an apparatus for separating magnetic particles.

在来のメツシユ層を利用したものは、メツシユ
の開き目を通過するものと、メツシユによつて分
離される介在物とに分離される介在物とに分離さ
れるが、このようなメツシユ層によつて分離され
たものの中には非磁性粒も含まれ、再度他の磁気
分離装置により分離する必要があり、工程が複雑
になる欠点があつた。また前記分離用のメツシユ
層の開き目は分離しようとする粒体の直径に一致
させて形成する必要があり、このため目詰まりし
易かつた。
In the case of using a conventional mesh layer, the inclusions are separated into those that pass through the openings of the mesh, the inclusions that are separated by the mesh, and the inclusions that are separated by the mesh. The separated particles thus include non-magnetic particles, and it is necessary to separate them again using another magnetic separation device, which has the disadvantage of complicating the process. Furthermore, the openings in the separating mesh layer must be formed to match the diameter of the grains to be separated, which makes them prone to clogging.

本発明は、前記の在来技術の欠点を除去するた
めに、非磁性、弱磁性材の線状物、粒状物、又は
多孔質物で構成され、且つ開き目が分離しようと
する磁性粒体よりも大きく形成されたメツシユ層
と、該メツシユ層に磁界を作用する磁界発生装置
とにより高勾配磁場を形成した分離層を設け、該
分離層に磁性粒体が混合した流体を供給通過させ
るポンプ装置を設けた装置の提供を目的とする。
In order to eliminate the drawbacks of the above-mentioned conventional techniques, the present invention is made of linear, granular, or porous materials made of non-magnetic or weakly magnetic material, and has an opening that is smaller than the magnetic grains to be separated. A pump device that provides a separation layer in which a high gradient magnetic field is formed by a mesh layer formed with a large mesh layer and a magnetic field generator that applies a magnetic field to the mesh layer, and supplies and passes a fluid mixed with magnetic particles through the separation layer. The purpose is to provide a device equipped with

次に、本発明の1実施例について、図面に基づ
いて説明する。第1図は本発明の装置の側断面図
を、第2図は1実施例の磁性粒体の分離特性曲線
A−Bを示した。
Next, one embodiment of the present invention will be described based on the drawings. FIG. 1 shows a side sectional view of the apparatus of the present invention, and FIG. 2 shows a separation characteristic curve A-B of magnetic particles of one embodiment.

磁石1のN極とS極とに、8000ガウスGの磁界
を加えて用いた。磁界を作用するメツシユ層2は
ステンレス鋼線15ミクロン直径のものを、線間の
空間寸法が、ほぼ40ミクロン角になる開き目とし
て用いた。このメツシユの空間比は、ほぼ53パー
セントである。いま、この程度の空間比のメツシ
ユが、強度及び篩い分けに、比較的良好な効率を
示す範囲に属することが知られ、30パーセント以
下になると種々の障害が生ずる。メツシユ層2に
磁石(電磁石)1によつて磁界を作用し高勾配磁
場を形成した分離層に形成する。この分離層で処
理容器3を2分し、一方から他方に分離流体を供
給通過させて磁性粒の分離を行う。
A magnetic field of 8000 Gauss G was applied to the north and south poles of magnet 1. For the mesh layer 2 on which the magnetic field is applied, stainless steel wires with a diameter of 15 microns were used as openings in which the space between the wires was approximately 40 microns square. The spatial ratio of this mesh is approximately 53%. It is now known that a mesh having a space ratio of this level belongs to a range that exhibits relatively good efficiency in terms of strength and sieving, and when it falls below 30%, various problems occur. A magnetic field is applied to the mesh layer 2 by a magnet (electromagnet) 1 to form a separation layer in which a high gradient magnetic field is formed. The processing container 3 is divided into two by this separation layer, and a separation fluid is supplied from one side to the other to separate the magnetic particles.

分離しようとする鉄粉は、第2図に示したよう
に、平均7ミクロン直径の正規分布をした粒体の
混合物であつた。
The iron powder to be separated was a mixture of normally distributed particles with an average diameter of 7 microns, as shown in FIG.

ステンレス鋼線は磁性吸着をしない処理線を用
い、磁石1の磁界を除いた場合は線の吸着の作用
はない。メツシユ層2の厚さは75mm、この層2に
鉄粉を含んだ液Wをポンプ4によつて供給し、通
過圧力は0.5Kg/cm2、通過量は5/min.で行つ
た。5は液体貯蔵タンクで循環して分離するよう
にしてある。6,7,8は切換コツクで分離作用
中はコツク7を閉じ、コツク6,8を開いて液W
を循環させる。
The stainless steel wire used is a treated wire that does not attract magnetically, and when the magnetic field of the magnet 1 is removed, there is no attraction of the wire. The mesh layer 2 had a thickness of 75 mm, and a liquid W containing iron powder was supplied to this layer 2 by a pump 4 at a passing pressure of 0.5 kg/cm 2 and a passing rate of 5/min. 5 is configured to circulate and separate the liquid in a liquid storage tank. 6, 7, and 8 are switching sockets, and during separation operation, switch 7 is closed, and sockets 6 and 8 are opened to switch off the liquid W.
circulate.

前記の条件下で流体を磁界を加えてメツシユ層
2を通過させ、通過圧が1.0Kg/cm2に達した時に
コツク6を閉じて液の流通を止め、次にコツク7
を開き、コツク8をコンプレツサ9に切換えて気
体を吹きこみ、磁気吸着した鉄粉を除去し、スク
リユーコンベア10で排出する。その除去鉄粉の
直径を直径を測定した結果は、図示のA点、すな
わち、5ミクロン直径以上の粒子は、すべてがメ
ツシユ層2に吸着されていることが判然と確認さ
れた。
Under the above conditions, the fluid is passed through the mesh layer 2 by applying a magnetic field, and when the passing pressure reaches 1.0 Kg/cm 2 , the pot 6 is closed to stop the flow of the liquid, and then the pot 7 is closed.
is opened, the tank 8 is switched to the compressor 9, gas is blown in, the magnetically attracted iron powder is removed, and the screw conveyor 10 discharges it. As a result of measuring the diameter of the removed iron powder, it was clearly confirmed that all particles having a diameter of 5 microns or more were adsorbed to the mesh layer 2 at point A shown in the figure.

吸着されていた鉄粉の直径は、ほとんどが、5
ミクロン直径以上で、そのうちの大部分は図に曲
線ABで示した範囲の6〜10ミクロン直径のもの
であつた。また、流通液中には点線のような微粒
子が含まれていたが分離粒子中には5ミクロン以
下のものが、きわめて少量、0.01%以下が含まれ
ていた。要するに5ミクロン以下の直径の粒子
は、ほとんど通過して、フイルターには吸着され
ていなかつた。又分離粒子中には非磁性粒は含ま
れておらず、メツシユ層の開き目以下のものは容
易に通過することが確認された。さらに、吸着粒
子を繰り返えし分離して、完全に5ミクロン以下
の粒子を除去することができた。
Most of the adsorbed iron powder had a diameter of 5.
Micron diameter or larger, most of which were 6 to 10 micron diameter in the range shown by curve AB in the figure. Furthermore, although the circulating liquid contained fine particles as shown by the dotted line, the separated particles contained a very small amount of 5 microns or less, less than 0.01%. In short, most of the particles with a diameter of 5 microns or less passed through and were not adsorbed by the filter. It was also confirmed that the separated particles did not contain any non-magnetic particles and that particles below the opening of the mesh layer easily passed through. Furthermore, by repeatedly separating the adsorbed particles, it was possible to completely remove particles of 5 microns or less.

このように空間が、40ミクロンφの開き目の中
を、磁界を加えて高勾配磁場の分離層を形成する
ことによつて、空間面積に対しきわめて小径の5
ミクロンφ程度の磁性体粒子を殆んど100%捕集
することができ、空間に対して0.012パーセント
し小粒子が捕集されたことになる。このことは高
勾配磁場の作用であり、磁気の作用みない粒子は
容易に分離層を通過することができ、目的とする
磁性粒子のみを容易に効率良く分離できるもので
ある。
In this way, the space is created by applying a magnetic field through the openings of 40 microns φ and forming a separation layer with a high gradient magnetic field.
It was possible to collect almost 100% of magnetic particles of about micron φ, which means that 0.012% of the small particles were collected relative to the space. This is due to the effect of a high gradient magnetic field, and particles that are not affected by magnetism can easily pass through the separation layer, making it possible to easily and efficiently separate only the desired magnetic particles.

なおメツシユ層を形成する材料は磁界を加えて
高勾配磁場が形成できる非磁性、弱磁性材を用い
る。線状物としてはステンレスウール、ガラスウ
ール、プラスチツクウール等の集合体、織布、不
織布等が用いられ、また粉末粒子の多孔質充填層
が用いられる。また多孔質物としては多孔性発泡
体、穿孔多孔体等が任意に用いられ、これにより
構成されるメツシユ層は分離しようとする磁性体
粒子の粒径サイズより充分大きな開き目をもつて
形成し、これに数1000ガウスから10000ガウス程
度の磁界を加えて高勾配磁場を形成する。
Note that the material used to form the mesh layer is a nonmagnetic or weakly magnetic material that can form a high gradient magnetic field by applying a magnetic field. As the linear material, aggregates of stainless wool, glass wool, plastic wool, etc., woven fabrics, non-woven fabrics, etc. are used, and porous packed layers of powder particles are used. Further, as the porous material, a porous foam, a perforated material, etc. can be arbitrarily used, and the mesh layer formed by this is formed with openings that are sufficiently larger than the particle size of the magnetic particles to be separated. A magnetic field of several thousand to 10,000 Gauss is added to this to form a high gradient magnetic field.

メツシユ層の開き目、作用磁界の強さは分離し
ようとする粒子の材質、粒子サイズ等につて変更
し制御することによつて最良の分離ができる。ま
たポンプ圧の制御によつて目的とする分離の効果
を上げることができる。また、液体中の粒子の分
級のほか、気体など流体中のものも同様に分離で
きる。
The best separation can be achieved by controlling the opening of the mesh layer, the strength of the applied magnetic field, and the material and particle size of the particles to be separated. Furthermore, the desired separation effect can be improved by controlling the pump pressure. In addition to classifying particles in liquids, it can also separate particles in fluids such as gases.

磁界の強さを変化させ、捕集した粒子をさらに
分級して捕集し又は通過させることができ、これ
を繰り返えし行つて、確実に精度の高い分級を
し、粒子の分離をすることができる。
By changing the strength of the magnetic field, the collected particles can be further classified and collected or passed through, and this can be repeated to ensure highly accurate classification and particle separation. be able to.

すでに述べたように、本発明は分離粒子より充
分大きい開き目をもつて形成したメツシユ層に磁
界を加えて高勾配磁場を変化させて加え、大小の
粒子の混合したものを、そのうちの磁性粒子のみ
を所望の寸法の粒子に分離することができ、捕集
した粒子を同様に繰り返えし分離して、1度に精
度の高い確実な磁性体粒子の分離をすることがで
き、またメツシユ層は分離粒子のサイズより充分
大きい開き目を形成してあるから分離層は目詰ま
りを起し難く、長時間に亘つて効率のよい分離作
業を行うことができる。
As already mentioned, in the present invention, a magnetic field is applied to a mesh layer formed with openings sufficiently larger than the separated particles, and a high gradient magnetic field is applied in a varying manner, and a mixture of large and small particles is separated from the magnetic particles. It is possible to separate the collected particles into particles of a desired size, and the collected particles can be separated repeatedly in the same way to reliably separate the magnetic particles at once with high precision. Since the layer has openings that are sufficiently larger than the size of the separation particles, the separation layer is unlikely to become clogged, and efficient separation work can be carried out over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例構成図。第2図は分
離した粒子の大きさを分離量と対比して示した分
離曲線。 1……磁石、2……メツシユ層、4……ポン
プ、5……液貯蔵タンク、W……粒子を含む液、
A−B……粒子分離量(捕集)とサイズの関係曲
線。
FIG. 1 is a configuration diagram of one embodiment of the present invention. Figure 2 is a separation curve showing the size of separated particles compared to the amount of separation. DESCRIPTION OF SYMBOLS 1...Magnet, 2...Mesh layer, 4...Pump, 5...Liquid storage tank, W...Liquid containing particles,
A-B...Relationship curve between particle separation amount (collection) and size.

Claims (1)

【特許請求の範囲】 1 非磁性、弱磁性材の線状物、粒状物、又は多
孔質物で構成され、且つ開き目が分離しようとす
る磁性粒体よりも大きく形成されたメツシユ層
と、該メツシユ層に磁界を作用する磁界発生装置
とにより高勾配磁場を形成した分離層を設け、該
分離層に磁性粒体が混合した流体を供給通過させ
るポンプ装置を設けたことを特徴とした磁性粒体
分離装置。 2 大小の粒子混合体が介在し又は共存する流体
に対応してポンプ圧、磁界の強さ、又はメツシユ
を変えて分離する特許請求の範囲第1項に記載の
磁性粒体分離装置。
[Scope of Claims] 1. A mesh layer composed of linear, granular, or porous materials of non-magnetic or weakly magnetic material, and in which openings are formed to be larger than the magnetic grains to be separated; A magnetic particle characterized in that a separation layer is provided in which a high gradient magnetic field is formed by a magnetic field generator that applies a magnetic field to the mesh layer, and a pump device is provided for supplying and passing a fluid mixed with magnetic particles to the separation layer. Body separation device. 2. The magnetic particle separation device according to claim 1, which separates particles by changing the pump pressure, the strength of the magnetic field, or the mesh depending on the fluid in which a mixture of large and small particles exists or coexists.
JP13874079A 1979-10-29 1979-10-29 Magnetic fine particle separator Granted JPS5662508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13874079A JPS5662508A (en) 1979-10-29 1979-10-29 Magnetic fine particle separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13874079A JPS5662508A (en) 1979-10-29 1979-10-29 Magnetic fine particle separator

Publications (2)

Publication Number Publication Date
JPS5662508A JPS5662508A (en) 1981-05-28
JPS6240049B2 true JPS6240049B2 (en) 1987-08-26

Family

ID=15229058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13874079A Granted JPS5662508A (en) 1979-10-29 1979-10-29 Magnetic fine particle separator

Country Status (1)

Country Link
JP (1) JPS5662508A (en)

Also Published As

Publication number Publication date
JPS5662508A (en) 1981-05-28

Similar Documents

Publication Publication Date Title
US4190524A (en) Magnetic separators
US4209394A (en) Magnetic separator having a multilayer matrix, method and apparatus
Hirschbein et al. Magnetic separations in chemistry and biochemistry
US4225425A (en) Method for separating metallic minerals utilizing magnetic seeding
US5356015A (en) Magnetic separation process
US3714037A (en) Flocculating apparatus and method
JPS6242647B2 (en)
JPS6240049B2 (en)
JPS607769Y2 (en) Magnetizable particle separator
JPS5952509A (en) Magnetic separation apparatus
US4424124A (en) Method and magnetic separator for removing weakly magnetic particles from slurries of minute mineral particles
JPS634443B2 (en)
JPS5853926B2 (en) Jikibunrihouhou
KR930010550B1 (en) Magnetic selector
JPS61118112A (en) Magnetic separator
JPS58501662A (en) Apparatus and method for magnetic sorting
DE3938245A1 (en) Liq. filtration by fine mobile magnetic particles layer - subject to variable field and periodically transformed for regeneration
JPS634820A (en) Filtrating apparatus using laminated magnet
JPH037122B2 (en)
Cohen et al. The application of a superconducting magnet system to the cleaning and desulphurization of coal
JPS6157248A (en) Apparatus for polishing and washing fine metal particles
JPS60175514A (en) Magnetic filter
JPS6027458Y2 (en) Separation device for magnetic fine powder suspended in liquid
JPH08243431A (en) Selective separation of magnetic material and device therefor
JPH02303505A (en) High gradient magnetic separator of continuously changing flow velocity